1
|
Barreto L, Shon A, Knox D, Song H, Park H, Kim J. Motorized Treadmill and Optical Recording System for Gait Analysis of Grasshoppers. SENSORS 2021; 21:s21175953. [PMID: 34502844 PMCID: PMC8434632 DOI: 10.3390/s21175953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/15/2021] [Accepted: 08/31/2021] [Indexed: 11/23/2022]
Abstract
(1) Background: Insects, which serve as model systems for many disciplines with their unique advantages, have not been extensively studied in gait research because of the lack of appropriate tools and insect models to properly study the insect gaits. (2) Methods: In this study, we present a gait analysis of grasshoppers with a closed-loop custom-designed motorized insect treadmill with an optical recording system for quantitative gait analysis. We used the eastern lubber grasshopper, a flightless and large-bodied species, as our insect model. Gait kinematics were recorded and analyzed by making three grasshoppers walk on the treadmill with various speeds from 0.1 to 1.5 m/s. (3) Results: Stance duty factor was measured as 70–95% and decreased as walking speed increased. As the walking speed increased, the number of contact legs decreased, and diagonal arrangement of contact was observed at walking speed of 1.1 cm/s. (4) Conclusions: This pilot study of gait analysis of grasshoppers using the custom-designed motorized insect treadmill with the optical recording system demonstrates the feasibility of quantitative, repeatable, and real-time insect gait analysis.
Collapse
Affiliation(s)
- Leslie Barreto
- Department of Engineering Technology and Industrial Distribution, Texas A&M University, College Station, TX 77843, USA;
| | - Ahnsei Shon
- Department of Multidisciplinary Engineering, Texas A&M University, College Station, TX 77843, USA; (A.S.); (H.P.)
| | - Derrick Knox
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA;
| | - Hojun Song
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA;
| | - Hangue Park
- Department of Multidisciplinary Engineering, Texas A&M University, College Station, TX 77843, USA; (A.S.); (H.P.)
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA;
| | - Jeonghee Kim
- Department of Engineering Technology and Industrial Distribution, Texas A&M University, College Station, TX 77843, USA;
- Department of Multidisciplinary Engineering, Texas A&M University, College Station, TX 77843, USA; (A.S.); (H.P.)
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA;
- Correspondence:
| |
Collapse
|
2
|
Ehrhardt E, Boyan G. Evidence for the cholinergic markers ChAT and vAChT in sensory cells of the developing antennal nervous system of the desert locust Schistocerca gregaria. INVERTEBRATE NEUROSCIENCE 2020; 20:19. [PMID: 33090291 PMCID: PMC7581592 DOI: 10.1007/s10158-020-00252-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 10/15/2020] [Indexed: 11/29/2022]
Abstract
Sensory and motor systems in insects with hemimetabolous development must be ready to mediate adaptive behavior directly on hatching from the egg. For the desert locust S. gregaria, cholinergic transmission from antennal sensillae to olfactory or mechanosensory centers in the brain requires that choline acetyltransferase (ChAT) and the vesicular acetylcholine transporter (vAChT) already be present in sensory cells in the first instar. In this study, we used immunolabeling to demonstrate that ChAT and vAChT are both expressed in sensory cells from identifiable sensilla types in the immature antennal nervous system. We observed ChAT expression in dendrites, neurites and somata of putative basiconic-type sensillae at the first instar stage. We also detected vAChT in the sensory axons of these sensillae in a major antennal nerve tract. We then examined whether evidence for cholinergic transmission is present during embryogenesis. Immunolabeling confirms that vAChT is expressed in somata typical of campaniform sensillae, as well as in small sensory cell clusters typically associated with either a large basiconic or coeloconic sensilla, at 99% of embryogenesis. The vAChT is also expressed in the somata of these sensilla types in multiple antennal regions at 90% of embryogenesis, but not at earlier (70%) embryonic stages. Neuromodulators are known to appear late in embryogenesis in neurons of the locust central complex, and the cholinergic system of the antenna may also only reach maturity shortly before hatching.
Collapse
Affiliation(s)
- Erica Ehrhardt
- Graduate School of Systemic Neuroscience, Biocenter, Ludwig-Maximilians-Universität München, Grosshadernerstrasse 2, 82152, Planegg, Martinsried, Germany.,Institute of Zoology, Universität Köln, Zülpicher Str 47b, 50674, Cologne, Germany
| | - George Boyan
- Graduate School of Systemic Neuroscience, Biocenter, Ludwig-Maximilians-Universität München, Grosshadernerstrasse 2, 82152, Planegg, Martinsried, Germany.
| |
Collapse
|
3
|
Hernandez E, MacNamee SE, Kaplan LR, Lance K, Garcia-Verdugo HD, Farhadi DS, Deer C, Lee SW, Oland LA. The astrocyte network in the ventral nerve cord neuropil of the Drosophila third-instar larva. J Comp Neurol 2020; 528:1683-1703. [PMID: 31909826 DOI: 10.1002/cne.24852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 11/10/2022]
Abstract
Understanding neuronal function at the local and circuit level requires understanding astrocyte function. We have provided a detailed analysis of astrocyte morphology and territory in the Drosophila third-instar ventral nerve cord where there already exists considerable understanding of the neuronal network. Astrocyte shape varies more than previously reported; many have bilaterally symmetrical partners, many have a high percentage of their arborization in adjacent segments, and many have branches that follow structural features. Taken together, our data are consistent with, but not fully explained by, a model of a developmental growth process dominated by competitive or repulsive interactions between astrocytes. Our data suggest that the model should also include cell-autonomous aspects, as well as the use of structural features for growth. Variation in location of arborization territory for identified astrocytes was great enough that a standardized scheme of neuropil division among the six astrocytes that populate each hemi-segment is not possible at the third instar. The arborizations of the astrocytes can extend across neuronal functional domains. The ventral astrocyte in particular, whose territory can extend well into the proprioceptive region of the neuropil, has no obvious branching pattern that correlates with domains of particular sensory modalities, suggesting that the astrocyte would respond to neuronal activity in any of the sensory modalities, perhaps integrating across them. This study sets the stage for future studies that will generate a robust, functionally oriented connectome that includes both partners in neuronal circuits-the neurons and the glial cells, providing the foundation necessary for studies to elucidate neuron-glia interactions in this neuropil.
Collapse
Key Words
- RRID:Abcam Cat# ab6953, RRID:AB_955010
- RRID:BDSC Cat# 30125, RRID:BDSC_30125
- RRID:BDSC Cat# 38760, RRID:BDSC_38760
- RRID:BDSC Cat# 4775, RRID:BDSC_4775
- RRID:BDSC Cat# 5692, RRID:BDSC_5692
- RRID:BDSC Cat# 64085, RRID:BDSC_64085
- RRID:BDSC Cat# 6938, RRID:BDSC_6938
- RRID:Bio-rad Cat # MCA1360, RRID:AB_322378
- RRID:Cell Signaling Technology Cat # 3724, RRID:AB_1549585
- RRID:DSHB Cat# 1D4, RRID:AB_528235
- RRID:DSHB Cat# nc82, RRID:AB_2314866
- RRID:Jackson ImmunoResearch Labs Cat# 115-167-003, RRID:AB_2338709
- RRID:Molecular Probes Cat# 6455, RRID:AB_2314543
- RRID:Molecular Probes Cat# A-21236, RRID:AB_141725
- RRID:Novus Cat # NBP1-06712, RRID:AB_1625981
- RRID:Thermo Fisher Scientific Cat# A-11034, RRID:AB_2576217.
- glial cells
- neuron-glia interaction
Collapse
Affiliation(s)
- Ernesto Hernandez
- Department of Neuroscience, University of Arizona, Tucson, Arizona.,University of Illinois at Chicago School of Medicine, Rockford, Illinois
| | - Sarah E MacNamee
- Department of Neuroscience, University of Arizona, Tucson, Arizona.,Inscopix, Palo Alto, California
| | - Leah R Kaplan
- Department of Neuroscience, University of Arizona, Tucson, Arizona.,Consortium for Science, Policy & Outcomes, Arizona State University, Washington, DC, Washington
| | - Kim Lance
- Department of Neuroscience, University of Arizona, Tucson, Arizona
| | | | - Dara S Farhadi
- Department of Neuroscience, University of Arizona, Tucson, Arizona.,College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona
| | - Christine Deer
- Department of Neuroscience, University of Arizona, Tucson, Arizona.,Research Technologies Group, Data Visualization Team, University of Arizona, University Information Technology Service, Tucson, Arizona
| | - Si W Lee
- Department of Neuroscience, University of Arizona, Tucson, Arizona
| | - Lynne A Oland
- Department of Neuroscience, University of Arizona, Tucson, Arizona
| |
Collapse
|
4
|
Boyan GS, Williams L, Müller T, Bacon JP. Ontogeny and development of the tritocerebral commissure giant (TCG): an identified neuron in the brain of the grasshopper Schistocerca gregaria. Dev Genes Evol 2018; 228:149-162. [PMID: 29666910 DOI: 10.1007/s00427-018-0612-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/03/2018] [Indexed: 11/26/2022]
Abstract
The tritocerebral commissure giant (TCG) of the grasshopper Schistocerca gregaria is one of the best anatomically and physiologically described arthropod brain neurons. A member of the so-called Ventral Giant cluster of cells, it integrates sensory information from visual, antennal and hair receptors, and synapses with thoracic motor neurons in order to initiate and regulate flight behavior. Its ontogeny, however, remains unclear. In this study, we use bromodeoxyuridine incorporation and cyclin labeling to reveal proliferative neuroblasts in the region of the embryonic brain where the ventral giant cluster is located. Engrailed labeling confirms the deutocerebral identity of this cluster. Comparison of soma locations and initial neurite projections into tracts of the striate deutocerebrum help identify the cells of the ventral cluster in both the embryonic and adult brain. Reconstructions of embryonic cell lineages suggest deutocerebral NB1 as being the putative neuroblast of origin. Intracellular dye injection coupled with immunolabeling against neuron-specific horseradish peroxidase is used to identify the VG1 (TCG) and VG3 neurons from the ventral cluster in embryonic brain slices. Dye injection and backfilling are used to document axogenesis and the progressive expansion of the dendritic arbor of the TCG from mid-embryogenesis up to hatching. Comparative maps of embryonic neuroblasts from several orthopteroid insects suggest equivalent deutocerebral neuroblasts from which the homologous TCG neurons already identified in the adult brain could originate. Our data offer the prospect of identifying further lineage-related neurons from the cluster and so understand a brain connectome from both a developmental and evolutionary perspective.
Collapse
Affiliation(s)
- George Stephen Boyan
- Graduate School of Systemic Neuroscience, Biocenter, Ludwig-Maximilians-Universität München, Grosshadernerstrasse 2, Planegg-Martinsried, 82152, Germany.
| | - Leslie Williams
- Graduate School of Systemic Neuroscience, Biocenter, Ludwig-Maximilians-Universität München, Grosshadernerstrasse 2, Planegg-Martinsried, 82152, Germany
| | - Tobias Müller
- Faculty of Biology, University of Konstanz, 78457, Constance, Germany
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Jonathan P Bacon
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| |
Collapse
|
5
|
Abstract
Insect hearing has independently evolved multiple times in the context of intraspecific communication and predator detection by transforming proprioceptive organs into ears. Research over the past decade, ranging from the biophysics of sound reception to molecular aspects of auditory transduction to the neuronal mechanisms of auditory signal processing, has greatly advanced our understanding of how insects hear. Apart from evolutionary innovations that seem unique to insect hearing, parallels between insect and vertebrate auditory systems have been uncovered, and the auditory sensory cells of insects and vertebrates turned out to be evolutionarily related. This review summarizes our current understanding of insect hearing. It also discusses recent advances in insect auditory research, which have put forward insect auditory systems for studying biological aspects that extend beyond hearing, such as cilium function, neuronal signal computation, and sensory system evolution.
Collapse
Affiliation(s)
- Martin C Göpfert
- Department of Cellular Neurobiology, University of Göttingen, D-37077 Göttingen, Germany;
| | - R Matthias Hennig
- Department of Biology, Behavioral Physiology, Humboldt-Universität zu Berlin, D-10115 Berlin, Germany;
| |
Collapse
|
6
|
Boyan G, Williams L, Liu Y. Conserved patterns of axogenesis in the panarthropod brain. ARTHROPOD STRUCTURE & DEVELOPMENT 2015; 44:101-112. [PMID: 25483803 DOI: 10.1016/j.asd.2014.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/11/2014] [Accepted: 11/24/2014] [Indexed: 06/04/2023]
Abstract
Neuropils in the cerebral midline of Panarthropoda exhibit a wide spectrum of neuroarchitectures--from rudimentary to highly elaborated--and which at first sight defy a unifying neuroarchitectural principle. Developmental approaches have shown that in model arthropods such as insects, conserved cellular and molecular mechanisms first establish a simple axon scaffold in the brain. However, to be adapted for adult life, this immature ground plan is transformed by a developmental process--known in the grasshopper as "fascicle switching"--in which subsets of neurons systematically redirect their growth cones at stereotypic locations across the brain midline. A topographic system of choice points along the transverse brain axis where axons decussate features in all panarthropods studied even though different modes of neurogenesis and varying degrees of neuropilar elaboration are involved. This suggests that the molecular mechanisms regulating choice point selection may be conserved. In combination with recent cladistic interpretations of arthropod phylogeny based on nuclear protein-coding sequences the data argue for this topographic decussation as having evolved early and being a conserved feature of the Panarthropoda. Differences in elaboration likely reflect both the extent to which neuropilar reorganization has progressed during development and the lifestyle of the individual organism.
Collapse
Affiliation(s)
- George Boyan
- Developmental Neurobiology Group, Biocenter, Ludwig-Maximilians-Universität, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany.
| | - Leslie Williams
- Developmental Neurobiology Group, Biocenter, Ludwig-Maximilians-Universität, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
| | - Yu Liu
- Developmental Neurobiology Group, Biocenter, Ludwig-Maximilians-Universität, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
7
|
Ohyama T, Jovanic T, Denisov G, Dang TC, Hoffmann D, Kerr RA, Zlatic M. High-throughput analysis of stimulus-evoked behaviors in Drosophila larva reveals multiple modality-specific escape strategies. PLoS One 2013; 8:e71706. [PMID: 23977118 PMCID: PMC3748116 DOI: 10.1371/journal.pone.0071706] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 07/02/2013] [Indexed: 11/18/2022] Open
Abstract
All organisms react to noxious and mechanical stimuli but we still lack a complete understanding of cellular and molecular mechanisms by which somatosensory information is transformed into appropriate motor outputs. The small number of neurons and excellent genetic tools make Drosophila larva an especially tractable model system in which to address this problem. We developed high throughput assays with which we can simultaneously expose more than 1,000 larvae per man-hour to precisely timed noxious heat, vibration, air current, or optogenetic stimuli. Using this hardware in combination with custom software we characterized larval reactions to somatosensory stimuli in far greater detail than possible previously. Each stimulus evoked a distinctive escape strategy that consisted of multiple actions. The escape strategy was context-dependent. Using our system we confirmed that the nociceptive class IV multidendritic neurons were involved in the reactions to noxious heat. Chordotonal (ch) neurons were necessary for normal modulation of head casting, crawling and hunching, in response to mechanical stimuli. Consistent with this we observed increases in calcium transients in response to vibration in ch neurons. Optogenetic activation of ch neurons was sufficient to evoke head casting and crawling. These studies significantly increase our understanding of the functional roles of larval ch neurons. More generally, our system and the detailed description of wild type reactions to somatosensory stimuli provide a basis for systematic identification of neurons and genes underlying these behaviors.
Collapse
Affiliation(s)
- Tomoko Ohyama
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Tihana Jovanic
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Gennady Denisov
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Tam C. Dang
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Dominik Hoffmann
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Rex A. Kerr
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Marta Zlatic
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| |
Collapse
|
8
|
Lovick JK, Ngo KT, Omoto JJ, Wong DC, Nguyen JD, Hartenstein V. Postembryonic lineages of the Drosophila brain: I. Development of the lineage-associated fiber tracts. Dev Biol 2013; 384:228-57. [PMID: 23880429 DOI: 10.1016/j.ydbio.2013.07.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 07/11/2013] [Accepted: 07/11/2013] [Indexed: 11/16/2022]
Abstract
Neurons of the Drosophila central brain fall into approximately 100 paired groups, termed lineages. Each lineage is derived from a single asymmetrically-dividing neuroblast. Embryonic neuroblasts produce 1,500 primary neurons (per hemisphere) that make up the larval CNS followed by a second mitotic period in the larva that generates approximately 10,000 secondary, adult-specific neurons. Clonal analyses based on previous works using lineage-specific Gal4 drivers have established that such lineages form highly invariant morphological units. All neurons of a lineage project as one or a few axon tracts (secondary axon tracts, SATs) with characteristic trajectories, thereby representing unique hallmarks. In the neuropil, SATs assemble into larger fiber bundles (fascicles) which interconnect different neuropil compartments. We have analyzed the SATs and fascicles formed by lineages during larval, pupal, and adult stages using antibodies against membrane molecules (Neurotactin/Neuroglian) and synaptic proteins (Bruchpilot/N-Cadherin). The use of these markers allows one to identify fiber bundles of the adult brain and associate them with SATs and fascicles of the larval brain. This work lays the foundation for assigning the lineage identity of GFP-labeled MARCM clones on the basis of their close association with specific SATs and neuropil fascicles, as described in the accompanying paper (Wong et al., 2013. Postembryonic lineages of the Drosophila brain: II. Identification of lineage projection patterns based on MARCM clones. Submitted.).
Collapse
Affiliation(s)
- Jennifer K Lovick
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, 610 Charles E. Young Drive, 5009 Terasaki Life Sciences Bldg, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
The diverse array of body plans possessed by arthropods is created by generating variations upon a design of repeated segments formed during development, using a relatively small "toolbox" of conserved patterning genes. These attributes make the arthropod body plan a valuable model for elucidating how changes in development create diversity of form. As increasingly specialized segments and appendages evolved in arthropods, the nervous systems of these animals also evolved to control the function of these structures. Although there is a remarkable degree of conservation in neural development both between individual segments in any given species and between the nervous systems of different arthropod groups, the differences that do exist are informative for inferring general principles about the holistic evolution of body plans. This review describes developmental processes controlling neural segmentation and regionalization, highlighting segmentation mechanisms that create both ectodermal and neural segments, as well as recent studies of the role of Hox genes in generating regional specification within the central nervous system. We argue that this system generates a modular design that allows the nervous system to evolve in concert with the body segments and their associated appendages. This information will be useful in future studies of macroevolutionary changes in arthropod body plans, especially in understanding how these transformations can be made in a way that retains the function of appendages during evolutionary transitions in morphology.
Collapse
|
10
|
Sakai N, Kaprielian Z. Guidance of longitudinally projecting axons in the developing central nervous system. Front Mol Neurosci 2012; 5:59. [PMID: 22586366 PMCID: PMC3343325 DOI: 10.3389/fnmol.2012.00059] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 04/14/2012] [Indexed: 12/26/2022] Open
Abstract
The directed and stereotypical growth of axons to their synaptic targets is a crucial phase of neural circuit formation. Many axons in the developing vertebrate and invertebrate central nervous systems (CNSs), including those that remain on their own (ipsilateral), and those that cross over to the opposite (commissural), side of the midline project over long distances along the anterior-posterior (A-P) body axis within precisely positioned longitudinally oriented tracts to facilitate the transmission of information between CNS regions. Despite the widespread distribution and functional importance of these longitudinal tracts, the mechanisms that regulate their formation and projection to poorly characterized synaptic targets remain largely unknown. Nevertheless, recent studies carried out in a variety of invertebrate and vertebrate model systems have begun to elucidate the molecular logic that controls longitudinal axon guidance.
Collapse
Affiliation(s)
- Nozomi Sakai
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx NY, USA
| | | |
Collapse
|
11
|
Nicolaï LJJ, Ramaekers A, Raemaekers T, Drozdzecki A, Mauss AS, Yan J, Landgraf M, Annaert W, Hassan BA. Genetically encoded dendritic marker sheds light on neuronal connectivity in Drosophila. Proc Natl Acad Sci U S A 2010; 107:20553-8. [PMID: 21059961 PMCID: PMC2996714 DOI: 10.1073/pnas.1010198107] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In recent years, Drosophila melanogaster has emerged as a powerful model for neuronal circuit development, pathology, and function. A major impediment to these studies has been the lack of a genetically encoded, specific, universal, and phenotypically neutral marker of the somatodendritic compartment. We have developed such a marker and show that it is effective and specific in all neuronal populations tested in the peripheral and central nervous system. The marker, which we name DenMark (Dendritic Marker), is a hybrid protein of the mouse protein ICAM5/Telencephalin and the red fluorescent protein mCherry. We show that DenMark is a powerful tool for revealing novel aspects of the neuroanatomy of developing dendrites, identifying previously unknown dendritic arbors, and elucidating neuronal connectivity.
Collapse
Affiliation(s)
- Laura J. J. Nicolaï
- Laboratory of Neurogenetics and
- Center for Human Genetics, Katholieke Universiteit Leuven School of Medicine, 3000 Leuven, Belgium
- Doctoral Program in Molecular and Developmental Genetics, Katholieke Universiteit Leuven Group Biomedicine, 3000 Leuven, Belgium; and
| | - Ariane Ramaekers
- Laboratory of Neurogenetics and
- Center for Human Genetics, Katholieke Universiteit Leuven School of Medicine, 3000 Leuven, Belgium
| | - Tim Raemaekers
- Laboratory of Membrane Trafficking, Department of Molecular and Developmental Genetics, Flanders Institute of Biotechnology (VIB), 3000 Leuven, Belgium
- Center for Human Genetics, Katholieke Universiteit Leuven School of Medicine, 3000 Leuven, Belgium
| | - Andrzej Drozdzecki
- Laboratory of Membrane Trafficking, Department of Molecular and Developmental Genetics, Flanders Institute of Biotechnology (VIB), 3000 Leuven, Belgium
- Center for Human Genetics, Katholieke Universiteit Leuven School of Medicine, 3000 Leuven, Belgium
| | - Alex S. Mauss
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | - Jiekun Yan
- Laboratory of Neurogenetics and
- Center for Human Genetics, Katholieke Universiteit Leuven School of Medicine, 3000 Leuven, Belgium
| | - Matthias Landgraf
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | - Wim Annaert
- Laboratory of Membrane Trafficking, Department of Molecular and Developmental Genetics, Flanders Institute of Biotechnology (VIB), 3000 Leuven, Belgium
- Center for Human Genetics, Katholieke Universiteit Leuven School of Medicine, 3000 Leuven, Belgium
- Doctoral Program in Molecular and Developmental Genetics, Katholieke Universiteit Leuven Group Biomedicine, 3000 Leuven, Belgium; and
| | - Bassem A. Hassan
- Laboratory of Neurogenetics and
- Center for Human Genetics, Katholieke Universiteit Leuven School of Medicine, 3000 Leuven, Belgium
- Doctoral Program in Molecular and Developmental Genetics, Katholieke Universiteit Leuven Group Biomedicine, 3000 Leuven, Belgium; and
| |
Collapse
|
12
|
Busch S, Tanimoto H. Cellular configuration of single octopamine neurons in Drosophila. J Comp Neurol 2010; 518:2355-64. [PMID: 20437532 DOI: 10.1002/cne.22337] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Individual median octopamine neurons in the insect central nervous system serve as an excellent model system for comparative neuroanatomy of single identified cells. The median octopamine cluster of the subesophageal ganglion consists of defined sets of paired and unpaired interneurons, which supply the brain and subesophageal ganglion with extensive ramifications. The developmental program underlying the complex cellular network is unknown. Here we map the segmental location and developmental origins of individual octopamine neurons in the Drosophila subesophageal ganglion. We demonstrate that two sets of unpaired median neurons, located in the mandibular and maxillary segments, exhibit the same projection patterns in the brain. Furthermore, we show that the paired and unpaired neurons belong to distinct lineages. Interspecies comparison of median neurons revealed that many individual octopamine neurons in different species project to equivalent target regions. Such identified neurons with similar morphology can derive from distinct lineages in different species (i.e., paired and unpaired neurons).
Collapse
Affiliation(s)
- Sebastian Busch
- Max-Planck-Institut für Neurobiologie, D-82152 Martinsried, Germany, and Lehrstuhl für Genetik und Neurobiologie, Universität Würzburg, D-97074 Würzburg, Germany
| | | |
Collapse
|
13
|
Vibratory interneurons in the non-hearing cave cricket indicate evolutionary origin of sound processing elements in Ensifera. ZOOLOGY 2009; 112:48-68. [PMID: 18835145 DOI: 10.1016/j.zool.2008.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 03/13/2008] [Accepted: 04/13/2008] [Indexed: 11/23/2022]
|
14
|
Expression of two different isoforms of fasciclin II during postembryonic central nervous system remodeling in Manduca sexta. Cell Tissue Res 2008; 334:477-98. [PMID: 18953569 DOI: 10.1007/s00441-008-0703-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 09/16/2008] [Indexed: 10/21/2022]
Abstract
Insect metamorphosis serves as a useful model to investigate postembryonic development in the central nervous system, because the transformation between larval and adult life is accompanied by a remodeling of neural circuitry. Most changes are controlled by ecdysteroids, but activity-dependent mechanisms and cell surface signals also play a role. This immunocytochemical study investigates the expression patterns of two isoforms of the neural cell adhesion molecule, fasciclin II (FasII), during postembryonic ventral nerve cord remodeling in the moth, Manduca sexta. Both the expression of the glycosyl-phosphatidylinositol (GPI)-linked isoform and the transmembrane isoform of Manduca FasII (TM-MFasII) are regulated in a stereotyped spatio-temporal pattern. TM-MFasII is expressed in a stage-specific manner in a subset of neurons. Subsets of central axons express high levels during outgrowth supporting a functional role for TM-FasII during pathfinding. Dendritic localization is not found at any stage of metamorphosis, suggesting no homophilic interactions of TM-MFasII during central synapse development. GPI-MFasII is expressed in a stage-specific manner, most likely only in glial cells. The larval and adult stages show almost no GPI-MFasII expression, whereas during pupal life, positive GPI-MFasII labeling is present around synaptotagmin-negative tracts or commissures, so that either homophilic stabilization of glial boundaries or heterophilic neuron-glial interactions possibly stabilize the axons within their tracts. GPI-MFasII expression is not co-localized with synaptotagmin-positive central terminals, rendering a role for synapse development unlikely. Neither isoform is expressed in all neurons of a specific class at any developmental stage, indicating that MFasII functions are restricted to specific subsets of neurons or to individual neurons.
Collapse
|
15
|
Ronacher B, Franz A, Wohlgemuth S, Hennig RM. Variability of spike trains and the processing of temporal patterns of acoustic signals-problems, constraints, and solutions. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2004; 190:257-77. [PMID: 14872260 DOI: 10.1007/s00359-004-0494-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2003] [Revised: 12/22/2003] [Accepted: 12/30/2003] [Indexed: 11/21/2022]
Abstract
Object recognition and classification by sensory pathways is rooted in spike trains provided by sensory neurons. Nervous systems had to evolve mechanisms to extract information about relevant object properties, and to separate these from spurious features. In this review, problems caused by spike train variability and counterstrategies are exemplified for the processing of acoustic signals in orthopteran insects. Due to size limitations of their nervous system we expect to find solutions that are stripped to the computational basics. A key feature of auditory systems is temporal resolution, which is likely limited by spike train variability. Basic strategies to reduce such variability are to integrate over time, or to average across several neurons. The first strategy is constrained by its possible interference with temporal resolution. Grasshoppers do not seem to explore temporal integration much, in spite of the repetitive structure of their songs, which invites for 'multiple looks' at the signal. The benefits of averaging across neurons depend on uncorrelated responses, a factor that may be crucial for the performance and evolution of small nervous systems. In spite of spike train variability the temporal information necessary for the recognition of conspecifics is preserved to a remarkable degree in the auditory pathway.
Collapse
Affiliation(s)
- B Ronacher
- Department of Biology, Humboldt University, 10099 Berlin, Germany.
| | | | | | | |
Collapse
|
16
|
Landgraf M, Sánchez-Soriano N, Technau GM, Urban J, Prokop A. Charting the Drosophila neuropile: a strategy for the standardised characterisation of genetically amenable neurites. Dev Biol 2003; 260:207-25. [PMID: 12885565 DOI: 10.1016/s0012-1606(03)00215-x] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Insect neurons are individually identifiable and have been used successfully to study principles of the formation and function of neuronal circuits. In the fruitfly Drosophila, studies on identifiable neurons can be combined with efficient genetic approaches. However, to capitalise on this potential for studies of circuit formation in the CNS of Drosophila embryos or larvae, we need to identify pre- and postsynaptic elements of such circuits and describe the neuropilar territories they occupy. Here, we present a strategy for neurite mapping, using a set of evenly distributed landmarks labelled by commercially available anti-Fasciclin2 antibodies which remain comparatively constant between specimens and over developmental time. By applying this procedure to neurites labelled by three Gal4 lines, we show that neuritic territories are established in the embryo and maintained throughout larval life, although the complexity of neuritic arborisations increases during this period. Using additional immunostainings or dye fills, we can assign Gal4-targeted neurites to individual neurons and characterise them further as a reference for future experiments on circuit formation. Using the Fasciclin2-based mapping procedure as a standard (e.g., in a common database) would facilitate studies on the functional architecture of the neuropile and the identification of candiate circuit elements.
Collapse
|
17
|
Zlatic M, Landgraf M, Bate M. Genetic specification of axonal arbors: atonal regulates robo3 to position terminal branches in the Drosophila nervous system. Neuron 2003; 37:41-51. [PMID: 12526771 DOI: 10.1016/s0896-6273(02)01131-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Drosophila sensory neurons form distinctive terminal branch patterns in the developing neuropile of the embryonic central nervous system. In this paper we make a genetic analysis of factors regulating arbor position. We show that mediolateral position is determined in a binary fashion by expression (chordotonal neurons) or nonexpression (multidendritic neurons) of the Robo3 receptor for the midline repellent Slit. Robo3 expression is one of a suite of chordotonal neuron properties that depend on expression of the proneural gene atonal. Different features of terminal branches are separately regulated: an arbor can be shifted mediolaterally without affecting its dorsoventral location, and the distinctive remodeling of one arbor continues as normal despite this arbor shifting to an abnormal position in the neuropile.
Collapse
Affiliation(s)
- Marta Zlatic
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, United Kingdom
| | | | | |
Collapse
|
18
|
Wolf H, Harzsch S. Evolution of the arthropod neuromuscular system. 2. Inhibitory innervation of the walking legs of a scorpion: Vaejovis spinigerus (Wood, 1863), Vaejovidae, Scorpiones, Arachnida. ARTHROPOD STRUCTURE & DEVELOPMENT 2002; 31:203-215. [PMID: 18088981 DOI: 10.1016/s1467-8039(02)00044-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2002] [Revised: 08/12/2002] [Accepted: 08/26/2002] [Indexed: 05/25/2023]
Abstract
Inhibitory motoneurons which supply the leg musculature are identified and characterized in the scorpion, Vaejovis spinigerus (Wood, 1863) (Vaejovidae, Scorpiones, Arachnida). (1) Successive intracellular muscle fiber recordings from antagonists, and correlation of the monitored inhibitory postsynaptic potentials with spikes in motor nerves, suggest supply of the scorpion leg musculature by common inhibitory motoneurons. (2) Anti-GABA immunohistochemistry is combined with transmission electron microscopy to estimate the number of inhibitory motor axons present in the main leg nerve. The number of immunoreactive axons decreases toward more distal leg segments, from 14 to 18 in the basis to 6-8 in the tibia. No immunoreactive axons are detected beyond the tibia. (3) The distribution of putative inhibitory neurons in the subesophageal ganglion mass is determined by anti-GABA immunohistochemistry, revealing notable similarities to the situation in pterygote insects. This provides a framework for the characterization of the inhibitory motoneurons. (4) Backfills from leg nerves are combined with anti-GABA immunocytochemistry to identify inhibitory motoneurons in the central nervous system. Putative inhibitory motoneurons occur in three clusters per hemi-segment. Two clusters are located near the posterior edge of the neuromere, one lateral, the other more medial, and both contain ca. 8-10 cell bodies. The third cluster consists of two somata located contralaterally, just off the ganglion midline.
Collapse
Affiliation(s)
- Harald Wolf
- Abteilung Neurobiologie, Universität Ulm, D-89069 Ulm, Germany
| | | |
Collapse
|
19
|
Abstract
Studies of insect identified neurons over the past 25 years have provided some of the very best data on sensorimotor integration; tracing information flow from sensory to motor networks. General principles have emerged that have increased the sophistication with which we now understand both sensory processing and motor control. Two overarching themes have emerged from studies of identified sensory interneurons. First, within a species, there are profound differences in neuronal organization associated with both the sex and the social experience of the individual. Second, single neurons exhibit some surprisingly rich examples of computational sophistication in terms of (a) temporal dynamics (coding superimposed upon circadian and shorter-term rhythms), and also (b) what Kenneth Roeder called "neural parsimony": that optimal information can be encoded, and complex acts of sensorimotor coordination can be mediated, by small ensembles of cells. Insect motor systems have proven to be relatively complex, and so studies of their organization typically have not yielded completely defined circuits as are known from some other invertebrates. However, several important findings have emerged. Analysis of neuronal oscillators for rhythmic behavior have delineated a profound influence of sensory feedback on interneuronal circuits: they are not only modulated by feedback, but may be substantially reconfigured. Additionally, insect motor circuits provide potent examples of neuronal restructuring during an organism's lifetime, as well as insights on how circuits have been modified across evolutionary time. Several areas where future advances seem likely to occur include: molecular genetic analyses, neuroecological syntheses, and neuroinformatics--the use of digital resources to organize databases with information on identified nerve cells and behavior.
Collapse
Affiliation(s)
- C M Comer
- Laboratory of Integrative Neuroscience, Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | | |
Collapse
|
20
|
Mesce KA, DeLorme AW, Brelje TC, Klukas KA. Dopamine-synthesizing neurons include the putative H-cell homologue in the moth Manduca sexta. J Comp Neurol 2001; 430:501-17. [PMID: 11169483 DOI: 10.1002/1096-9861(20010219)430:4<501::aid-cne1046>3.0.co;2-u] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The catecholamine dopamine (DA) plays a fundamental role in the regulation of behavior and neurodevelopment across animal species. Uncovering the embryonic origins of neurons that express DA opens a path for a deeper understanding of how DA expression is regulated and, in turn, how DA regulates the activities of the nervous system. In a well-established insect model, Manduca sexta, we identified the putative homologue of the embryonic grasshopper "H-cell" using intracellular techniques, laser scanning confocal microscopy, and immunohistochemistry. In both species, this neuron possesses four axons and has central projections resembling the letter H. The H-cell in grasshoppers is known to be derived from the midline precursor 3 cell (MP3) and to pioneer the pathways of the longitudinal connectives; in Drosophila, the H-cell is also known to be derived from MP3. In the current study, we demonstrate that the Manduca H-cell is immunoreactive to antibodies raised against DA and its rate-limiting synthetic enzyme, tyrosine hydroxylase (TH). In larvae and adults, one DA/TH-immunoreactive (-ir) H-cell per ganglion is present. In embryos, individual ganglia contain a single midline TH-ir cell body positioned along side its putative sibling. Such observations are consistent with the known secondary transformation (in grasshoppers) of only one of the two MP3 progeny during early development. Although a hallmark feature of invertebrate neurons is the fairly stereotypical position of neuronal somata, we found that the H-cell somata can "flip-flop" by 180 degrees between an anterior and posterior position. This variability appears to be random and is not restricted to any particular ganglion. Curiously, what is segment-specific is the absence of the DA/TH-ir H-cell in the metathoracic (T3) ganglion as well as the unique structure of the H-cell in the subesophageal ganglion. Because this is the first immunohistochemical study of DA neurons in Manduca, we have provided the distribution pattern and morphologies of dopaminergic neurons, in addition to the H-cells, within the ventral nerve cord during development.
Collapse
Affiliation(s)
- K A Mesce
- Department of Entomology, University of Minnesota, St. Paul, Minnesota 55108, USA.
| | | | | | | |
Collapse
|
21
|
Ganfornina MD, Sánchez D, Herrera M, Bastiani MJ. Developmental expression and molecular characterization of two gap junction channel proteins expressed during embryogenesis in the grasshopper Schistocerca americana. DEVELOPMENTAL GENETICS 2000; 24:137-50. [PMID: 10079517 DOI: 10.1002/(sici)1520-6408(1999)24:1/2<137::aid-dvg13>3.0.co;2-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gap junctions are membrane channels that directly connect the cytoplasm of neighboring cells, allowing the exchange of ions and small molecules. Two analogous families of proteins, the connexins and innexins, are the channel-forming molecules in vertebrates and invertebrates, respectively. In order to study the role of gap junctions in the embryonic development of the nervous system, we searched for innexins in the grasshopper Schistocerca americana. Here we present the molecular cloning and sequence analysis of two novel innexins, G-Inx(1) and G-Inx(2), expressed during grasshopper embryonic development. The analysis of G-Inx(1) and G-Inx(2) proteins suggests they bear four transmembrane domains, which show strong conservation in members of the innexin family. The study of the phylogenetic relationships between members of the innexin family and the new grasshopper proteins suggests that G-Inx(1) is orthologous to the Drosophila 1(1)-ogre. However, G-Inx(2) seems to be a member of a new group of insect innexins. We used in situ hybridization with the G-Inx(1) and G-Inx(2) cDNA clones, and two polyclonal sera raised against different regions of G-Inx(1) to study the mRNA and protein expression patterns and the subcellular localization of the grasshopper innexins. G-Inx(1) is primarily expressed in the embryonic nervous system, in neural precursors and glial cells. In addition, a restricted stripe of epithelial cells in the developing limb, involved in the guidance of sensory growth cones, expresses G-Inx(1). G-Inx(2) expression is more widespread in the grasshopper embryo, but a restricted expression is found in a subset of neural precursors. The generally different but partially overlapping expression patterns of G-Inx(1) and G-Inx(2) supports the combinatorial character of gap junction formation in invertebrates, an essential property to generate specificity in this form of cell-cell communication.
Collapse
Affiliation(s)
- M D Ganfornina
- Biology Department, University of Utah, Salt Lake City 84112, USA.
| | | | | | | |
Collapse
|
22
|
Grolleau F, Lapied B. Dorsal unpaired median neurones in the insect central nervous system: towards a better understanding of the ionic mechanisms underlying spontaneous electrical activity. J Exp Biol 2000; 203:1633-48. [PMID: 10804154 DOI: 10.1242/jeb.203.11.1633] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The efferent dorsal unpaired median (DUM) neurones, which include octopaminergic neurones, are among the most intensively studied neurones in the insect central nervous system. They differ from other insect neurones in generating endogenous spontaneous overshooting action potentials. The second half of the 1980s is certain to be considered a turning point in the study of the ion channels underlying the electrical activity of DUM neurones. Recent advances made using the patch-clamp technique have stimulated an increasing interest in the understanding of the biophysical properties of both voltage-dependent and voltage-independent ion channels. Patch-clamp studies of DUM neurones in cell culture demonstrate that these neurones express a wide variety of ion channels. At least five different types of K(+) channel have been identified: inward rectifier, delayed rectifier and A-like channels as well as Ca(2+)- and Na(+)-activated K(+) channels. Moreover, besides voltage-dependent Na(+) and Ca(2+)-sensitive Cl(−) channels, DUM neurones also express four types of Ca(2+) channel distinguished on the basis of their kinetics, voltage range of activation and pharmacological profile. Finally, two distinct resting Ca(2+) and Na(+) channels have been shown to be involved in maintaining the membrane potential and in regulating the firing pattern. In this review, we have also attempted critically to evaluate these existing ion channels with regard to their specific functions in the generation of the different phases of the spontaneous electrical activity of the DUM neurone.
Collapse
Affiliation(s)
- F Grolleau
- Laboratoire de Neurophysiologie, UPRES EA 2647 (RCIM), Université d'Angers, rue Haute de Reculée, F-49045 Angers Cedex, France
| | | |
Collapse
|
23
|
|
24
|
Abstract
This paper provides an overview of insect peripheral auditory systems focusing on tympanate ears (pressure detectors) and emphasizing research during the last 15 years. The theme throughout is the evolution of hearing in insects. Ears have appeared independently no fewer than 19 times in the class Insecta and are located on various thoracic and abdominal body segments, on legs, on wings, and on mouth parts. All have fundamentally similar structures-a tympanum backed by a tracheal sac and a tympanal chordotonal organ-though they vary widely in size, ancillary structures, and number of chordotonal sensilla. Novel ears have recently been discovered in praying mantids, two families of beetles, and two families of flies. The tachinid flies are especially notable because they use a previously unknown mechanism for sound localization. Developmental and comparative studies have identified the evolutionary precursors of the tympanal chordotonal organs in several insects; they are uniformly chordotonal proprioceptors. Tympanate species fall into clusters determined by which of the embryologically defined chordotonal organ groups in each body segment served as precursor for the tympanal organ. This suggests that the many appearances of hearing could arise from changes in a small number of developmental modules. The nature of those developmental changes that lead to a functional insect ear is not yet known.
Collapse
Affiliation(s)
- D D Yager
- Department of Psychology, University of Maryland, College Park, Maryland 20742, USA.
| |
Collapse
|
25
|
Abstract
A specialized behavior, oviposition, is produced by the eighth and ninth abdominal segments of female grasshoppers. To begin to understand how these segments produce the behavior, which is not displayed by males or pregenital regions of the abdomen in females, the structure and function of efferent neurons in abdominal ganglia of both sexes were examined. In females, the eighth and ninth segments are specialized differently for oviposition: 20 ovipositor motor neurons were found in the eighth segment, and 26 were found in the ninth segment. Males had fewer motor neurons in their eighth segment, but the same number in the ninth segment, which is the only genital segment in males. However, the axons of several of the ninth segmental male motor neurons traveled to the periphery in the genital nerve, which is only found in males. In both sexes, pregenital ganglia had the most motor neurons, but these neurons, for the most part, had morphologies that strongly resembled those of genital segments. Efferent modulatory neuron numbers were not sexually dimorphic in the segments examined, except that males had a greater number in their ninth segment. Experimental methods that activate oviposition were found to also activate a rhythmical motor pattern in pregenital abdominal segments of both sexes. In females, the pattern was phase-coupled to oviposition, but persisted after the connections with the terminal abdominal ganglion were severed. The preponderance of similarities among efferent neurons and elicited motor activity suggests a common pattern of neural circuitry in the behaviorally diverse abdominal segments of grasshoppers.
Collapse
Affiliation(s)
- K J Thompson
- Department of Biology, Agnes Scott College, Decatur, Georgia 30030, USA.
| | | | | | | |
Collapse
|
26
|
Schmid A, Chiba A, Doe CQ. Clonal analysis of Drosophila embryonic neuroblasts: neural cell types, axon projections and muscle targets. Development 1999; 126:4653-89. [PMID: 10518486 DOI: 10.1242/dev.126.21.4653] [Citation(s) in RCA: 259] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An experimental analysis of neurogenesis requires a detailed understanding of wild-type neural development. Recent DiI cell lineage studies have begun to elucidate the family of neurons and glia produced by each Drosophila embryonic neural precursor (neuroblast). Here we use DiI labeling to extend and clarify previous studies, but our analysis differs from previous studies in four major features: we analyze and compare lineages of every known embryonic neuroblast; we use an in vivo landmark (engrailed-GFP) to increase the accuracy of neuroblast identification; we use confocal fluorescence and Nomarski microscopy to collect three-dimensional data in living embryos simultaneously for each DiI-labeled clone, the engrailed-GFP landmark, and the entire CNS and muscle target field (Nomarski images); and finally, we analyze clones very late in embryonic development, which reveals novel cell types and axon/dendrite complexity. We identify the parental neuroblasts for all the cell types of the embryonic CNS: motoneurons, intersegmental interneurons, local interneurons, glia and neurosecretory cells (whose origins had never been determined). We identify muscle contacts for every thoracic and abdominal motoneuron at stage 17. We define the parental neuroblasts for neurons or glia expressing well-known molecular markers or neurotransmitters. We correlate Drosophila cell lineage data with information derived from other insects. In addition, we make the following novel conclusions: (1) neuroblasts at similar dorsoventral positions, but not anteroposterior positions, often generate similar cell lineages, and (2) neuroblasts at similar dorsoventral positions often produce the same motoneuron subtype: ventral neuroblasts typically generate motoneurons with dorsal muscle targets, while dorsal neuroblasts produce motoneurons with ventral muscle targets. Lineage data and movies can be found at http://www.biologists.com/Development/movies/dev8623.htmlhttp://www.neuro.uoregon.edu/doelab/lineages/
Collapse
Affiliation(s)
- A Schmid
- Institute of Neuroscience and Institute of Molecular Biology, Eugene OR 97403, USA
| | | | | |
Collapse
|
27
|
|
28
|
Abstract
The ability of certain grasshopper neurons to respond to exogenously applied donors of nitric oxide (NO) by producing cyclic GMP (cGMP) depends on their developmental state. ODQ, a selective blocker of NO-sensitive guanylyl cyclase, blocks cGMP production at 10(-5) M, thus confirming the nature of the response. Experiments in which the distal axon is separated from its proximal stump before application of an NO donor show that guanylyl cyclase is distributed uniformly throughout the neuron. In the locust abdomen, where segments are formed sequentially, the pattern of guanylyl cyclase up-regulation is predictable and sequential from anterior to posterior. There are two patterns of innervation by cGMP-expressing motor neurons. In the first, typified by muscle 187, an innervating neuron begins to be NO responsive on arrival at its muscle and continues to be so over most of the remainder of embryonic development, including the formation of motor end plates. In the second, typified by a neuron innervating muscle 191, the neuron extends well along the muscle, apparently laying down a number of sites of contact with it, before it becomes NO responsive. In both patterns, however, NO responsiveness marks the neuron's transition from growth cone elongation to the production of lateral branches. Individual muscles receive innervation from multiple motor neurons, some of which express transient NO sensitivity during development and others which do not. With the exception of the leg motor neuron SETi, the first motor neuron to reach any muscle is usually not NO responsive. We suggest that cGMP plays a role in, or reflects, the early stages of communication between a target and specific innervating neurons.
Collapse
Affiliation(s)
- E E Ball
- Molecular Evolution and Systematics Group, Research School of Biological Sciences, Australian National University, Canberra, ACT.
| | | |
Collapse
|
29
|
|
30
|
|
31
|
Condron BG, Zinn K. Regulated neurite tension as a mechanism for determination of neuronal arbor geometries in vivo. Curr Biol 1997; 7:813-6. [PMID: 9368767 DOI: 10.1016/s0960-9822(06)00343-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Transection and displacement experiments on isolated neurons in culture have shown that their neurites are under tension. Such tensile forces might be important in determining the structures of neuronal arbors in vivo. It has also been proposed that tension mechanisms generate the global folding patterns of the brain. It has been difficult to determine whether tension is important in vivo, however, because most neuronal arbors have complex three-dimensional structures that cannot be perturbed in a controlled manner. Here we describe a situation in which tension can be demonstrated and perturbed in an intact central nervous system (CNS). In the embryonic CNS neuropil of the grasshopper Schistocerca americana, the axon of a local serotonergic interneuron known as s1 forms a characteristic bifurcation. The geometry of this bifurcation node is highly conserved between embryos and held constant during development. Current models for the development of such geometries usually propose that they are created and maintained by neurite adhesion to localized substrates. Here we show that the structure of the s1 bifurcation node is likely to be determined by balanced tension between three fixed points. This was revealed by selectively transecting each of the branches that intersect at the node. Transections are followed by a rapid restructuring ('snapping') of the node geometry.
Collapse
Affiliation(s)
- B G Condron
- Division of Biology, Caltech, Pasadena, California 91125, USA.
| | | |
Collapse
|
32
|
Abstract
The enteric nervous system (ENS) of the grasshopper Schistocerca americana is organized into four ganglia located in the foregut (the dorsal unpaired frontal and hypocerebral ganglia, and the paired ingluvial ganglia), and two plexuses that innervate the foregut and midgut. A dorsomedial recurrent nerve and two lateral esophageal nerves connect the ganglia. The midgut plexus is arranged in four nerves running along the midgut surface. In this study, we have focused on the embryonic development of the grasshopper ENS; we have studied the proliferation pattern, morphogenesis, and some aspects of neuronal differentiation by using a number of specific molecular markers. The grasshopper ENS develops early in embryogenesis (25-30%) from three neurogenic zones (NZs) located on the roof of the stomodeum. These NZs slightly invaginate from an epithelial placode. The expression pattern of specific cell surface proteins and the analysis of the mitotic activity showed that NZs cells delaminate from the epithelium, become neuronal precursors, divide symmetrically, and then actively migrate to their final position in the enteric ganglia or plexuses. The grasshopper enteric ganglia are composed of mixed populations of cells from different NZs. The foregut and midgut plexuses are formed by the dispersal of cells from the developing hypocerebral and ingluvial ganglia. The main ENS nerves are pioneered by axons extending anteriorly from hypocerebral and ingluvial neurons. The insect ENS exhibits an enormous variation in design. Several features of the grasshopper program of neurogenesis and pattern of cell migration are compared to other insects, and some evolutionary implications are discussed.
Collapse
Affiliation(s)
- M D Ganfornina
- Biology Department, University of Utah, Salt Lake City 84112, USA
| | | | | |
Collapse
|
33
|
Heckmann R, Kutsch W. Motor supply of the dorsal longitudinal muscles II: Comparison of motoneurone sets in Tracheata. ZOOMORPHOLOGY 1995. [DOI: 10.1007/bf00393800] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Boyan GS, Williams JL, Reichert H. Morphogenetic reorganization of the brain during embryogenesis in the grasshopper. J Comp Neurol 1995; 361:429-40. [PMID: 8550890 DOI: 10.1002/cne.903610307] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have studied the morphogenetic reorganization that occurs in the grasshopper brain during embryogenesis. We find that morphogenetic movements occur at three organizational levels during brain development. First, the entire developing brain changes its orientation with respect to the segmental chain of ventral ganglia. A 90 degrees shift in the attitude of the brain neuraxis occurs during embryogenesis due to a gradual upward movement of the cerebral structures in the head. Second, the clusters of proliferating neuroblasts and progeny that generate the neuroarchitecture of the mature brain move relative to one another and to nonneural structures such as the stomodeum. This is especially pronounced for the pars intercerebralis and for the tritocerebrum, as shown by annulin and engrailed immunoreactivity. Third, individual neuroblasts within a given proliferative cluster undergo positional reorganization during embryogenesis. Identified neuroblasts of the tritocerebrum and the pars intercerebralis are displaced within the brain. We conclude that the transformation of the simple sheet-like structure of the early embryonic brain into the highly differentiated structure of the mature brain involves a series of morphogenetic movements that occur in virtually all parts of the brain.
Collapse
Affiliation(s)
- G S Boyan
- Zoologisches Institut der Universität, München, Federal Republic of Germany
| | | | | |
Collapse
|
35
|
Homonomies within the ventral muscle system and the associated motoneurons in the locust, Schistocerca gregaria (Insecta, Caelifera). ZOOMORPHOLOGY 1995. [DOI: 10.1007/bf00403169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
36
|
Organization of a midline proliferative cluster in the embryonic brain of the grasshopper. ACTA ACUST UNITED AC 1995; 205:45-53. [DOI: 10.1007/bf00188842] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/1995] [Accepted: 04/26/1995] [Indexed: 11/26/2022]
|
37
|
Steffens G, Kutsch W, Xie F, Reichert H. Segmental differentiation processes in embryonic muscle development of the grasshopper. ACTA ACUST UNITED AC 1995; 204:453-464. [DOI: 10.1007/bf00360853] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/1994] [Accepted: 01/17/1995] [Indexed: 10/26/2022]
|
38
|
Condron BG, Zinn K. Activation of cAMP-dependent protein kinase triggers a glial-to-neuronal cell-fate switch in an insect neuroblast lineage. Curr Biol 1995; 5:51-61. [PMID: 7535171 DOI: 10.1016/s0960-9822(95)00016-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND The grasshopper median neuroblast (MNB) is a multipotent progenitor cell that produces neurons and midline glia in distinct temporal phases. The MNB generates pioneer neurons during its first few divisions, and then switches to production of midline glial precursors. After the glia have been produced, the MNB reverts to generating neurons. We have investigated the molecular mechanism underlying the transition from glia production back to neuron production in the MNB lineage. RESULTS We report evidence that this second transition in the MNB lineage is triggered by the activation of cAMP-dependent protein kinase (PKA). PKA is a heterodimer of a catalytic (PKA-C) and a cAMP-binding regulatory (R) subunit. The R subunit dissociates from PKA-C on binding cAMP, and free PKA-C than translocates into the nucleus. Nuclear localization of PKA-C can thus be used as an indicator of PKA activation within a cell. We have found that PKA-C is translocated into the nucleus at the time of the second switch in the MNB lineage. When PKA is prematurely activated in the MNB by microinjection of purified PKA-C, or by pharmacological agents that elevate intracellular cAMP levels, the glial-to-neuronal cell-fate switch takes place prematurely. Inhibition of PKA activity by microinjection of a peptide inhibitor, or by a non-hydrolyzable cAMP analog, blocks the glial-to-neuronal switch. CONCLUSIONS Our results imply that elevation of cAMP in the MNB, and the resultant activation of PKA, is likely to be a trigger for the glial-to-neuronal cell-fate transition within the MNB lineage.
Collapse
Affiliation(s)
- B G Condron
- Division of Biology, Institute of Technology, Pasadena, California 91125
| | | |
Collapse
|
39
|
Abstract
The central nervous system (CNS) of grasshopper embryos is similar in organization to the embryonic Drosophila CNS, but its neurons are much larger. The recent development of a culture system in which extensive CNS development occurs has allowed new types of experiments to be performed, including perturbation of gene expression within single neuroblast lineages.
Collapse
Affiliation(s)
- K Zinn
- Division of Biology 216-76, California Institute of Technology, Pasadena 91125
| | | |
Collapse
|