1
|
Zachar I, Boza G. The Evolution of Microbial Facilitation: Sociogenesis, Symbiogenesis, and Transition in Individuality. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.798045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Metabolic cooperation is widespread, and it seems to be a ubiquitous and easily evolvable interaction in the microbial domain. Mutual metabolic cooperation, like syntrophy, is thought to have a crucial role in stabilizing interactions and communities, for example biofilms. Furthermore, cooperation is expected to feed back positively to the community under higher-level selection. In certain cases, cooperation can lead to a transition in individuality, when freely reproducing, unrelated entities (genes, microbes, etc.) irreversibly integrate to form a new evolutionary unit. The textbook example is endosymbiosis, prevalent among eukaryotes but virtually lacking among prokaryotes. Concerning the ubiquity of syntrophic microbial communities, it is intriguing why evolution has not lead to more transitions in individuality in the microbial domain. We set out to distinguish syntrophy-specific aspects of major transitions, to investigate why a transition in individuality within a syntrophic pair or community is so rare. We review the field of metabolic communities to identify potential evolutionary trajectories that may lead to a transition. Community properties, like joint metabolic capacity, functional profile, guild composition, assembly and interaction patterns are important concepts that may not only persist stably but according to thought-provoking theories, may provide the heritable information at a higher level of selection. We explore these ideas, relating to concepts of multilevel selection and of informational replication, to assess their relevance in the debate whether microbial communities may inherit community-level information or not.
Collapse
|
2
|
Zachar I, Boza G. Endosymbiosis before eukaryotes: mitochondrial establishment in protoeukaryotes. Cell Mol Life Sci 2020; 77:3503-3523. [PMID: 32008087 PMCID: PMC7452879 DOI: 10.1007/s00018-020-03462-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 12/25/2019] [Accepted: 01/14/2020] [Indexed: 02/07/2023]
Abstract
Endosymbiosis and organellogenesis are virtually unknown among prokaryotes. The single presumed example is the endosymbiogenetic origin of mitochondria, which is hidden behind the event horizon of the last eukaryotic common ancestor. While eukaryotes are monophyletic, it is unlikely that during billions of years, there were no other prokaryote-prokaryote endosymbioses as symbiosis is extremely common among prokaryotes, e.g., in biofilms. Therefore, it is even more precarious to draw conclusions about potentially existing (or once existing) prokaryotic endosymbioses based on a single example. It is yet unknown if the bacterial endosymbiont was captured by a prokaryote or by a (proto-)eukaryote, and if the process of internalization was parasitic infection, slow engulfment, or phagocytosis. In this review, we accordingly explore multiple mechanisms and processes that could drive the evolution of unicellular microbial symbioses with a special attention to prokaryote-prokaryote interactions and to the mitochondrion, possibly the single prokaryotic endosymbiosis that turned out to be a major evolutionary transition. We investigate the ecology and evolutionary stability of inter-species microbial interactions based on dependence, physical proximity, cost-benefit budget, and the types of benefits, investments, and controls. We identify challenges that had to be conquered for the mitochondrial host to establish a stable eukaryotic lineage. Any assumption about the initial interaction of the mitochondrial ancestor and its contemporary host based solely on their modern relationship is rather perilous. As a result, we warn against assuming an initial mutually beneficial interaction based on modern mitochondria-host cooperation. This assumption is twice fallacious: (i) endosymbioses are known to evolve from exploitative interactions and (ii) cooperativity does not necessarily lead to stable mutualism. We point out that the lack of evidence so far on the evolution of endosymbiosis from mutual syntrophy supports the idea that mitochondria emerged from an exploitative (parasitic or phagotrophic) interaction rather than from syntrophy.
Collapse
Affiliation(s)
- István Zachar
- Evolutionary Systems Research Group, Institute of Evolution, Centre for Ecological Research, Klebelsberg Kunó str. 3., Tihany, 8237, Hungary.
- MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Department of Plant Taxonomy and Ecology, Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest, 1117, Hungary.
- Center for the Conceptual Foundations of Science, Parmenides Foundation, Kirchplatz 1, 82049, Munich, Germany.
| | - Gergely Boza
- Evolutionary Systems Research Group, Institute of Evolution, Centre for Ecological Research, Klebelsberg Kunó str. 3., Tihany, 8237, Hungary
- Evolution and Ecology Program, International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, 2361, Laxenburg, Austria
| |
Collapse
|
3
|
Koonin EV. Origin of eukaryotes from within archaea, archaeal eukaryome and bursts of gene gain: eukaryogenesis just made easier? Philos Trans R Soc Lond B Biol Sci 2016; 370:20140333. [PMID: 26323764 PMCID: PMC4571572 DOI: 10.1098/rstb.2014.0333] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The origin of eukaryotes is a fundamental, forbidding evolutionary puzzle. Comparative genomic analysis clearly shows that the last eukaryotic common ancestor (LECA) possessed most of the signature complex features of modern eukaryotic cells, in particular the mitochondria, the endomembrane system including the nucleus, an advanced cytoskeleton and the ubiquitin network. Numerous duplications of ancestral genes, e.g. DNA polymerases, RNA polymerases and proteasome subunits, also can be traced back to the LECA. Thus, the LECA was not a primitive organism and its emergence must have resulted from extensive evolution towards cellular complexity. However, the scenario of eukaryogenesis, and in particular the relationship between endosymbiosis and the origin of eukaryotes, is far from being clear. Four recent developments provide new clues to the likely routes of eukaryogenesis. First, evolutionary reconstructions suggest complex ancestors for most of the major groups of archaea, with the subsequent evolution dominated by gene loss. Second, homologues of signature eukaryotic proteins, such as actin and tubulin that form the core of the cytoskeleton or the ubiquitin system, have been detected in diverse archaea. The discovery of this ‘dispersed eukaryome’ implies that the archaeal ancestor of eukaryotes was a complex cell that might have been capable of a primitive form of phagocytosis and thus conducive to endosymbiont capture. Third, phylogenomic analyses converge on the origin of most eukaryotic genes of archaeal descent from within the archaeal evolutionary tree, specifically, the TACK superphylum. Fourth, evidence has been presented that the origin of the major archaeal phyla involved massive acquisition of bacterial genes. Taken together, these findings make the symbiogenetic scenario for the origin of eukaryotes considerably more plausible and the origin of the organizational complexity of eukaryotic cells more readily explainable than they appeared until recently.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
4
|
Baum DA. A comparison of autogenous theories for the origin of eukaryotic cells. AMERICAN JOURNAL OF BOTANY 2015; 102:1954-1965. [PMID: 26643887 DOI: 10.3732/ajb.1500196] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 10/21/2015] [Indexed: 06/05/2023]
Abstract
PREMISE Eukaryotic cells have many unique features that all evolved on the stem lineage of living eukaryotes, making it difficult to reconstruct the order in which they accumulated. Nuclear endosymbiotic theories hold that three prokaryotes (nucleus, cytoplasm, and mitochondrion) came together to form a eukaryotic cell, whereas autogenous models hold that the nucleus and cytoplasm formed through evolutionary changes in a single prokaryotic lineage. Given several problems with nuclear endosymbiotic theories, this review focuses on autogenous models. KEY INSIGHTS Until recently all autogenous models assumed an outside-in (OI) topology, proposing that the nuclear envelope was formed from membrane-bound vesicles within the original cell body. Buzz Baum and I recently proposed an inside-out (IO) alternative, suggesting that the nucleus corresponds to the original cell body, with the cytoplasmic compartment deriving from extracellular protrusions. In this review, I show that OI and IO models are compatible with both mitochondria early (ME) or mitochondria late (ML) formulations. Whereas ME models allow that the relationship between mitochondria and host was mutualistic from the outset, ML models imply that the association began with predation or parasitism, becoming mutualistic later. In either case, the mutualistic interaction that eventually formed was probably syntrophic. CONCLUSIONS Diverse features of eukaryotic cell biology align well with the IOME model, but it would be premature to rule out the OIME model. ML models require that phagocytosis, a complex and energy expensive process, evolved before mitochondria, which seems unlikely. Nonetheless, further research is needed, especially resolution of the phylogenetic affinities of mitochondria.
Collapse
Affiliation(s)
- David A Baum
- Department of Botany and Wisconsin Institute for Discovery, University of Wisconsin, 430 Lincoln Drive, Madison, Wisconsin 53706 USA
| |
Collapse
|
5
|
Koonin EV, Yutin N. The dispersed archaeal eukaryome and the complex archaeal ancestor of eukaryotes. Cold Spring Harb Perspect Biol 2014; 6:a016188. [PMID: 24691961 DOI: 10.1101/cshperspect.a016188] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The ancestral set of eukaryotic genes is a chimera composed of genes of archaeal and bacterial origins thanks to the endosymbiosis event that gave rise to the mitochondria and apparently antedated the last common ancestor of the extant eukaryotes. The proto-mitochondrial endosymbiont is confidently identified as an α-proteobacterium. In contrast, the archaeal ancestor of eukaryotes remains elusive, although evidence is accumulating that it could have belonged to a deep lineage within the TACK (Thaumarchaeota, Aigarchaeota, Crenarchaeota, Korarchaeota) superphylum of the Archaea. Recent surveys of archaeal genomes show that the apparent ancestors of several key functional systems of eukaryotes, the components of the archaeal "eukaryome," such as ubiquitin signaling, RNA interference, and actin-based and tubulin-based cytoskeleton structures, are identifiable in different archaeal groups. We suggest that the archaeal ancestor of eukaryotes was a complex form, rooted deeply within the TACK superphylum, that already possessed some quintessential eukaryotic features, in particular, a cytoskeleton, and perhaps was capable of a primitive form of phagocytosis that would facilitate the engulfment of potential symbionts. This putative group of Archaea could have existed for a relatively short time before going extinct or undergoing genome streamlining, resulting in the dispersion of the eukaryome. This scenario might explain the difficulty with the identification of the archaeal ancestor of eukaryotes despite the straightforward detection of apparent ancestors to many signature eukaryotic functional systems.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | | |
Collapse
|
6
|
Godde JS. Breaking through a phylogenetic impasse: a pair of associated archaea might have played host in the endosymbiotic origin of eukaryotes. Cell Biosci 2012; 2:29. [PMID: 22913376 PMCID: PMC3490757 DOI: 10.1186/2045-3701-2-29] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 07/03/2012] [Indexed: 11/23/2022] Open
Abstract
For over a century, the origin of eukaryotes has been a topic of intense debate among scientists. Although it has become widely accepted that organelles such as the mitochondria and chloroplasts arose via endosymbiosis, the origin of the eukaryotic nucleus remains enigmatic. Numerous models for the origin of the nucleus have been proposed over the years, many of which use endosymbiosis to explain its existence. Proposals of microbes whose ancestors may have served as either a host or a guest in various endosymbiotic scenarios abound, none of which have been able to sufficiently incorporate the cell biological as well as phylogenetic data which links these organisms to the nucleus. While it is generally agreed that eukaryotic nuclei share more features in common with archaea rather than with bacteria, different studies have identified either one or the other of the two major groups of archaea as potential ancestors, leading to somewhat of a stalemate. This paper seeks to resolve this impasse by presenting evidence that not just one, but a pair of archaea might have served as host to the bacterial ancestor of the mitochondria. This pair may have consisted of ancestors of both Ignicoccus hospitalis as well as its ectosymbiont/ectoparasite ‘Nanoarchaeum equitans’.
Collapse
Affiliation(s)
- James S Godde
- Department of Biology, Monmouth College, 700 East Broadway, Monmouth, IL 61430, USA.
| |
Collapse
|
7
|
Gribaldo S, Poole AM, Daubin V, Forterre P, Brochier-Armanet C. The origin of eukaryotes and their relationship with the Archaea: are we at a phylogenomic impasse? Nat Rev Microbiol 2010; 8:743-52. [PMID: 20844558 DOI: 10.1038/nrmicro2426] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The origin of eukaryotes and their evolutionary relationship with the Archaea is a major biological question and the subject of intense debate. In the context of the classical view of the universal tree of life, the Archaea and the Eukarya have a common ancestor, the nature of which remains undetermined. Alternative views propose instead that the Eukarya evolved directly from a bona fide archaeal lineage. Several recent large-scale phylogenomic studies using an array of approaches are divided in supporting either one or the other scenario, despite analysing largely overlapping data sets of universal genes. We examine the reasons for such a lack of consensus and consider how alternative approaches may enable progress in answering this fascinating and as-yet-unresolved question.
Collapse
|
8
|
Almeida FC, Leszczyniecka M, Fisher PB, DeSalle R. Examining Ancient Inter-domain Horizontal Gene Transfer. Evol Bioinform Online 2008. [DOI: 10.1177/117693430800400002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Details of the genomic changes that occurred in the ancestors of Eukarya, Archaea and Bacteria are elusive. Ancient interdomain horizontal gene transfer (IDHGT) amongst the ancestors of these three domains has been difficult to detect and analyze because of the extreme degree of divergence of genes in these three domains and because most evidence for such events are poorly supported. In addition, many researchers have suggested that the prevalence of IDHGT events early in the evolution of life would most likely obscure the patterns of divergence of major groups of organisms let alone allow the tracking of horizontal transfer at this level. In order to approach this problem, we mined the E. coli genome for genes with distinct paralogs. Using the 1,268 E. coli K-12 genes with 40% or higher similarity level to a paralog elsewhere in the E. coli genome we detected 95 genes found exclusively in Bacteria and Archaea and 86 genes found in Bacteria and Eukarya. These genes form the basis for our analysis of IDHGT. We also applied a newly developed statistical test (the node height test), to examine the robustness of these inferences and to corroborate the phylogenetically identified cases of ancient IDHGT. Our results suggest that ancient inter domain HGT is restricted to special cases, mostly involving symbiosis in eukaryotes and specific adaptations in prokaryotes. Only three genes in the Bacteria + Eukarya class (Deoxyxylulose-5-phosphate synthase (DXPS), fructose 1,6-phosphate aldolase class II protein and glucosamine-6-phosphate deaminase) and three genes–in the Bacteria + Archaea class (ABC-type FE3+ -siderophore transport system, ferrous iron transport protein B, and dipeptide transport protein) showed evidence of ancient IDHGT. However, we conclude that robust estimates of IDHGT will be very difficult to obtain due to the methodological limitations and the extreme sequence saturation of the genes suspected of being involved in IDHGT.
Collapse
Affiliation(s)
- Francisca C. Almeida
- Department of Biology, New York University, New York, NY
- Sackler Institute for Comparative Genomics, American Museum of Natural History, 79th Street @ Central Park West, New York 10024, U.S.A
| | - Magdalena Leszczyniecka
- Departments of Pathology, Urology and Neurosurgery, Herbert Irving Comprehensive Caner Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, U.S.A
| | - Paul B. Fisher
- Departments of Pathology, Urology and Neurosurgery, Herbert Irving Comprehensive Caner Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, U.S.A
| | - Rob DeSalle
- Department of Biology, New York University, New York, NY
- Sackler Institute for Comparative Genomics, American Museum of Natural History, 79th Street @ Central Park West, New York 10024, U.S.A
| |
Collapse
|
9
|
Yutin N, Makarova KS, Mekhedov SL, Wolf YI, Koonin EV. The deep archaeal roots of eukaryotes. Mol Biol Evol 2008; 25:1619-30. [PMID: 18463089 PMCID: PMC2464739 DOI: 10.1093/molbev/msn108] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The set of conserved eukaryotic protein-coding genes includes distinct subsets one of which appears to be most closely related to and, by inference, derived from archaea, whereas another one appears to be of bacterial, possibly, endosymbiotic origin. The “archaeal” genes of eukaryotes, primarily, encode components of information-processing systems, whereas the “bacterial” genes are predominantly operational. The precise nature of the archaeo–eukaryotic relationship remains uncertain, and it has been variously argued that eukaryotic informational genes evolved from the homologous genes of Euryarchaeota or Crenarchaeota (the major branches of extant archaea) or that the origin of eukaryotes lies outside the known diversity of archaea. We describe a comprehensive set of 355 eukaryotic genes of apparent archaeal origin identified through ortholog detection and phylogenetic analysis. Phylogenetic hypothesis testing using constrained trees, combined with a systematic search for shared derived characters in the form of homologous inserts in conserved proteins, indicate that, for the majority of these genes, the preferred tree topology is one with the eukaryotic branch placed outside the extant diversity of archaea although small subsets of genes show crenarchaeal and euryarchaeal affinities. Thus, the archaeal genes in eukaryotes appear to descend from a distinct, ancient, and otherwise uncharacterized archaeal lineage that acquired some euryarchaeal and crenarchaeal genes via early horizontal gene transfer.
Collapse
Affiliation(s)
- Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
10
|
Abstract
Although mitochondria provide eukaryotic cells with certain metabolic advantages, in other ways they may be disadvantageous. For example, mitochondria produce reactive oxygen species that damage both nucleocytoplasm and mitochondria, resulting in mutations, diseases, and aging. The relationship of mitochondria to the cytoplasm is best understood in the context of evolutionary history. Although it is clear that mitochondria evolved from symbiotic bacteria, the exact nature of the initial symbiosis is a matter of continuing debate. The exchange of nutrients between host and symbiont may have differed from that between the cytoplasm and mitochondria in modern cells. Speculations about the initial relationships include the following. (1) The pre-mitochondrion may have been an invasive, parasitic bacterium. The host did not benefit. (2) The relationship was a nutritional syntrophy based upon transfer of organic acids from host to symbiont. (3) The relationship was a syntrophy based upon H2 transfer from symbiont to host, where the host was a methanogen. (4) There was a syntrophy based upon reciprocal exchange of sulfur compounds. The last conjecture receives support from our detection in eukaryotic cells of substantial H2S-oxidizing activity in mitochondria, and sulfur-reducing activity in the cytoplasm.
Collapse
Affiliation(s)
- Dennis G Searcy
- Biology Department, University of Massachusetts, Amherst, MA 01003-9297, USA.
| |
Collapse
|
11
|
Senejani AG, Hilario E, Gogarten JP. The intein of the Thermoplasma A-ATPase A subunit: structure, evolution and expression in E. coli. BMC BIOCHEMISTRY 2001; 2:13. [PMID: 11722801 PMCID: PMC60005 DOI: 10.1186/1471-2091-2-13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2001] [Accepted: 11/14/2001] [Indexed: 11/28/2022]
Abstract
BACKGROUND Inteins are selfish genetic elements that excise themselves from the host protein during post translational processing, and religate the host protein with a peptide bond. In addition to this splicing activity, most reported inteins also contain an endonuclease domain that is important in intein propagation. RESULTS The gene encoding the Thermoplasma acidophilum A-ATPase catalytic subunit A is the only one in the entire T. acidophilum genome that has been identified to contain an intein. This intein is inserted in the same position as the inteins found in the ATPase A-subunits encoding gene in Pyrococcus abyssi, P. furiosus and P. horikoshii and is found 20 amino acids upstream of the intein in the homologous vma-1 gene in Saccharomyces cerevisiae. In contrast to the other inteins in catalytic ATPase subunits, the T. acidophilum intein does not contain an endonuclease domain.T. acidophilum has different codon usage frequencies as compared to Escherichia coli. Initially, the low abundance of rare tRNAs prevented expression of the T. acidophilum A-ATPase A subunit in E. coli. Using a strain of E. coli that expresses additional tRNAs for rare codons, the T. acidophilum A-ATPase A subunit was successfully expressed in E. coli. CONCLUSIONS Despite differences in pH and temperature between the E. coli and the T. acidophilum cytoplasms, the T. acidophilum intein retains efficient self-splicing activity when expressed in E. coli. The small intein in the Thermoplasma A-ATPase is closely related to the endonuclease containing intein in the Pyrococcus A-ATPase. Phylogenetic analyses suggest that this intein was horizontally transferred between Pyrococcus and Thermoplasma, and that the small intein has persisted in Thermoplasma apparently without homing.
Collapse
Affiliation(s)
- Alireza G Senejani
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3044, USA
| | - Elena Hilario
- Current address: HortResearch, 120 Mt Albert Road, Private Bag 92, 169 Mt Albert, Auckland, New Zealand
| | - J Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, 75 North Eagleville Rd. Storrs, CT 06269-3044, USA
| |
Collapse
|
12
|
Margulis L, Dolan MF, Guerrero R. The chimeric eukaryote: origin of the nucleus from the karyomastigont in amitochondriate protists. Proc Natl Acad Sci U S A 2000; 97:6954-9. [PMID: 10860956 PMCID: PMC34369 DOI: 10.1073/pnas.97.13.6954] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present a testable model for the origin of the nucleus, the membrane-bounded organelle that defines eukaryotes. A chimeric cell evolved via symbiogenesis by syntrophic merger between an archaebacterium and a eubacterium. The archaebacterium, a thermoacidophil resembling extant Thermoplasma, generated hydrogen sulfide to protect the eubacterium, a heterotrophic swimmer comparable to Spirochaeta or Hollandina that oxidized sulfide to sulfur. Selection pressure for speed swimming and oxygen avoidance led to an ancient analogue of the extant cosmopolitan bacterial consortium "Thiodendron latens." By eubacterial-archaebacterial genetic integration, the chimera, an amitochondriate heterotroph, evolved. This "earliest branching protist" that formed by permanent DNA recombination generated the nucleus as a component of the karyomastigont, an intracellular complex that assured genetic continuity of the former symbionts. The karyomastigont organellar system, common in extant amitochondriate protists as well as in presumed mitochondriate ancestors, minimally consists of a single nucleus, a single kinetosome and their protein connector. As predecessor of standard mitosis, the karyomastigont preceded free (unattached) nuclei. The nucleus evolved in karyomastigont ancestors by detachment at least five times (archamoebae, calonymphids, chlorophyte green algae, ciliates, foraminifera). This specific model of syntrophic chimeric fusion can be proved by sequence comparison of functional domains of motility proteins isolated from candidate taxa.
Collapse
Affiliation(s)
- L Margulis
- Department of Geosciences, Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | | | | |
Collapse
|
13
|
Kulms D, Schäfer G, Hahn U. Overproduction of Sac7d and Sac7e reveals only Sac7e to be a DNA-binding protein with ribonuclease activity from the extremophilic archaeon Sulfolobus acidocaldarius. Biol Chem 1997; 378:545-51. [PMID: 9224936 DOI: 10.1515/bchm.1997.378.6.545] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Genomic DNA from Sulfolobus acidocaldarius was screened using a degenerate oligodeoxyribonucleotide, derived from the sequence of 16 N-terminal amino acids from SaRD protein. SaRD protein was previously isolated in our laboratory and identified as a protein from S. acidocaldarius exhibiting ribonuclease activity as well as DNA-binding properties. On the basis of Southern hybridization analysis two genes from S. acidocaldarius have been cloned, sequenced and overproduced in Escherichia coli. The deduced amino acid sequences revealed that one gene encodes Sac7d and the other one Sac7e; two small, previously described basic proteins from S. acidocaldarius, and furthermore the N-termini of Sac7e and SaRD are identical. Northern blot analysis demonstrated that the genes are transcribed separately. After expression of sac7d and sac7e genes in E. coli it was shown that only recombinant Sac7e protein exhibits RNase activity and is catalytically indistinguishable from SaRD protein. Western blot analysis using a polyclonal antiserum raised against purified SaRD protein further confirmed that Sac7e and SaRD are identical proteins endowed with RNase activity and DNA-binding properties. A new RNA cleavage mechanism has to be postulated for Sac7e since, in contrast to common RNases (e.g. RNase A and T1), no histidines are present in the amino acid sequence. Differences between the very closely related 7 kDa proteins from two Sulfolobus strains converting DNA-binding proteins into RNases are pointed out and discussed, whereas substitutions of Glu by Gln (S. solfataricus) or by Lys (S. acidocaldarius) seem to be crucial.
Collapse
Affiliation(s)
- D Kulms
- Institut für Biochemie, Fakultät für Biowissenschaften, Pharmazie und Psychologie, Universität Leipzig, Germany
| | | | | |
Collapse
|
14
|
|
15
|
Woese CR. Introduction The archaea: Their history and significance. THE BIOCHEMISTRY OF ARCHAEA (ARCHAEBACTERIA) 1993. [DOI: 10.1016/s0167-7306(08)60248-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
|
17
|
Hixon WG, Searcy DG. Cytoskeleton in the archaebacterium Thermoplasma acidophilum? Viscosity increase in soluble extracts. Biosystems 1993; 29:151-60. [PMID: 8374067 DOI: 10.1016/0303-2647(93)90091-p] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Thermoplasma acidophilum has no cell wall, and so its irregular shape implies the presence of a cytoskeleton. When soluble extracts of T. acidophilum were incubated in vitro they increased in viscosity, suggestive of a polymerizable component. Optimal conditions for the viscosity increase coincided with physiological ionic concentrations. Electron micrographs of negatively stained extracts showed a meshlike lattice of elements 10 nm in diameter similar to nuclear lamins. However, immunologically there was no cross-reaction with lamins nor with the other eukaryotic cytoskeletal proteins tested: tubulin, calmodulin, giardin, actin or myosin.
Collapse
Affiliation(s)
- W G Hixon
- Biology Department, University of Massachusetts, Amherst
| | | |
Collapse
|
18
|
Abstract
Several of the thermophilic acidopholic sulfur-metabolizing archaebacteria lack rigid cell walls. Their irregular shapes were maintained by an internal mechanism, presumably a cytoskeleton. Apparently this is an adaptation for respiration upon elemental sulfur, which requires cell contact since sulfur is insoluble in water. Also, we speculate that there could be additional functions of the cytoskeleton, such as prevention of osmotic cell lysis, thermal stabilization of enzymes, and improvements in metabolic efficiency through specific enzyme positioning. Such a well-developed cytoskeleton, evolving first in thermophilic archaebacteria, could have been a preadaptation for the evolution of eukaryotic cells.
Collapse
Affiliation(s)
- D G Searcy
- Zoology Department, University of Massachusetts, Amherst 01003-0027
| | | |
Collapse
|
19
|
Gogarten JP, Kibak H, Dittrich P, Taiz L, Bowman EJ, Bowman BJ, Manolson MF, Poole RJ, Date T, Oshima T, Konishi J, Denda K, Yoshida M. Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. Proc Natl Acad Sci U S A 1989; 86:6661-5. [PMID: 2528146 PMCID: PMC297905 DOI: 10.1073/pnas.86.17.6661] [Citation(s) in RCA: 436] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Active transport across the vacuolar components of the eukaryotic endomembrane system is energized by a specific vacuolar H+-ATPase. The amino acid sequences of the 70- and 60-kDa subunits of the vacuolar H+-ATPase are approximately equal to 25% identical to the beta and alpha subunits, respectively, of the eubacterial-type F0F1-ATPases. We now report that the same vacuolar H+-ATPase subunits are approximately equal to 50% identical to the alpha and beta subunits, respectively, of the sulfur-metabolizing Sulfolobus acidocaldarius, an archaebacterium (Archaeobacterium). Moreover, the homologue of an 88-amino acid stretch near the amino-terminal end of the 70-kDa subunit is absent from the F0F1-ATPase beta subunit but is present in the alpha subunit of Sulfolobus. Since the two types of subunits (alpha and beta subunits; 60- and 70-kDa subunits) are homologous to each other, they must have arisen by a gene duplication that occurred prior to the last common ancestor of the eubacteria, eukaryotes, and Sulfolobus. Thus, the phylogenetic tree of the subunits can be rooted at the site where the gene duplication occurred. The inferred evolutionary tree contains two main branches: a eubacterial branch and an eocyte branch that gave rise to Sulfolobus and the eukaryotic host cell. The implication is that the vacuolar H+-ATPase of eukaryotes arose by the internalization of the plasma membrane H+-ATPase of an archaebacterial-like ancestral cell.
Collapse
Affiliation(s)
- J P Gogarten
- Department of Biology, University of California-Santa Cruz 95064
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Danson MJ. Archaebacteria: the comparative enzymology of their central metabolic pathways. Adv Microb Physiol 1988; 29:165-231. [PMID: 3132816 DOI: 10.1016/s0065-2911(08)60348-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- M J Danson
- Department of Biochemistry, University of Bath, England
| |
Collapse
|
21
|
Sioud M, Baldacci G, Forterre P, de Recondo AM. Antitumor drugs inhibit the growth of halophilic archaebacteria. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 169:231-6. [PMID: 3121311 DOI: 10.1111/j.1432-1033.1987.tb13602.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Permeability mutants of Escherichia coli have been used to prescreen antitumor drugs. However, most compounds active against eucaryotic proteins have no effect on isofunctional proteins of eubacteria. In contrast, we show that growth of halophilic archaebacteria, procaryotes as distantly related to eubacteria as to eucaryotes, is inhibited by several drugs known to interact with tubulin, actomyosin and DNA topoisomerase II of eucaryotes. Actually, different types of evidence indicate the presence of analogous proteins in halophilic archaebacteria: (a) a yeast actin probe hybridizes with DNA restriction digests of Halobacterium halobium; (b) antibodies against tubulin and actin from chicken react in a crude extract of H. halobium with polypeptides having Mr of 55,000 and 80,000, respectively; (c) the epipodophyllotoxin VP16, a eucaryotic DNA topoisomerase II inhibitor, induces DNA strand breaks with DNA-protein covalent linkage in H. halobium as in eucaryotes. Besides the evolutionary implications, these data indicate that halophilic archaebacteria can be used to prescreen antitumor drugs active on eucaryotic proteins.
Collapse
Affiliation(s)
- M Sioud
- Laboratoire de Biologie Moléculaire de la Réplication, Centre National de la Recherche Scientifique, Institut de Recherches Scientifiques sur le Cancer, Villejuif, France
| | | | | | | |
Collapse
|
22
|
SEARCY DENNISG. Phylogenetic and Phenotypic Relationships between the Eukaryotic Nucleocytoplasm and Thermophilic Archaebacteria. Ann N Y Acad Sci 1987. [DOI: 10.1111/j.1749-6632.1987.tb40606.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Oshima T, Wakagi T. Energy metabolism of an acido-thermophilic archaebacterium, Sulfolobus acidocaldarius. ORIGINS LIFE EVOL B 1986. [DOI: 10.1007/bf02422021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Some features of thermo-acidophilic archaebacteria preadaptive for the evolution of eukaryotic cells. Syst Appl Microbiol 1986. [DOI: 10.1016/s0723-2020(86)80006-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Wakagi T, Oshima T. Membrane-bound ATPase of a thermoacidophilic archaebacterium, Sulfolobus acidocaldarius. BIOCHIMICA ET BIOPHYSICA ACTA 1985; 817:33-41. [PMID: 3159431 DOI: 10.1016/0005-2736(85)90065-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The membranes of Sulfolobus, a thermoacidophilic archaebacterium showed two types of ATP hydrolyzing activity. One was that of a neutral ATPase at an optimum pH around 6.5. This enzyme was activated by 10 mM sulfate with a shift of optimum pH to 5. In these respects, the enzyme was similar to membrane-bound ATPase of Thermoplasma, another thermoacidophilic archaebacterium, reported by Searcy and Whatley [1982) Zbl. Bakt. Hyg., I. Abt. Orig. C3, 245-257). The enzyme hydrolyzed ATP and other NTPs, but not ADP or AMP. It was highly thermostable, but irreversibly inactivated in 0.1 M HCl. The other activity was that of an acidic apyrase at an optimum pH around 2.5. This enzyme was extremely stable toward high temperature and acid and inhibited by sulfate. Both of these ATP hydrolyzing enzymes were resistant to N,N'-dicyclohexylcarbodiimide (DCCD), azide, oligomycin, N'-ethylmaleimide, p-chloromercuribenzoate, orthovanadate, or ouabain. Sulfolobus ATPases differ from F1 and other transport ATPases so far described.
Collapse
|
26
|
Oshima T, Ohba M, Wagaki T. Some biochemical properties of an acido-thermophilic archaebacterium,Sulfolobus acidocaldarius. ACTA ACUST UNITED AC 1984. [DOI: 10.1007/bf00933719] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
|
28
|
Ohba M, Oshima T. Comparative studies on biochemical properties of protein synthesis of an archaebacteria,Thermoplasma sp. ACTA ACUST UNITED AC 1982. [DOI: 10.1007/bf00927071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
|
30
|
|
31
|
Searcy DG, Stein DB, Searcy KB. A mycoplasma-like archaebacterium possibly related to the nucleus and cytoplasms of eukaryotic cells. Ann N Y Acad Sci 1981; 361:312-24. [PMID: 6941726 DOI: 10.1111/j.1749-6632.1981.tb46527.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
32
|
Searcy DG, Stein DB, Searcy KB. A MYCOPLASMA-LIKE ARCHAEBACTERIUM POSSIBLY RELATED TO THE NUCLEUS AND CYTOPLASM OF EUKARYOTIC CELLS. Ann N Y Acad Sci 1981. [DOI: 10.1111/j.1749-6632.1981.tb54373.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
|
34
|
|
35
|
Doolittle WF, Bonen L. MOLECULAR SEQUENCE DATA INDICATING AN ENDOSYMBIOTIC ORIGIN FOR PLASTIDS. Ann N Y Acad Sci 1981. [DOI: 10.1111/j.1749-6632.1981.tb54368.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Margulis L, To LP, Chase D. MICROTUBULES, UNDULIPODIA AND PILLOTINA SPIROCHETES. Ann N Y Acad Sci 1981. [DOI: 10.1111/j.1749-6632.1981.tb54377.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Abstract
Phospholipid micelles and vesicles, present in the primordial soup, formed both primitive (surface) catalyst and primitive replicative life forms. With the adoption of a common energy source, ATP, integrated biochemical systems within these vesicles became possible - cells. Fermentation within these primitive cells was favoured by the evolution, first of ion channels allowing protons to leak out, and then of an active ATP-driven pump. In the prokaryotic/mitochondria/chloroplast line, the proton channel was such as to be blocked by dicyclohexylcarbodiimide and the adenosine 5' triphosphate phosphohydrolase (ATPase) by 4-chloro 7-nitrobenzofurazan (Nbf-C1). The ATPase was initially simple (4 subunits) but later, possibly concomitant with its evolution to an ATP synthetase, became more complex (8 subunits). One of the steps in evolution probably involved gene duplication and divergence of 2 subunits (alpha and beta) from the largest of the ATPase subunits. From this stage, the general form of the ATPase was fixed, although sensitivity to, for example, oligomycin involved later, after divergence of the mitochondrial and chloroplast lines. A regulatory protein, the ATPase inhibitor, is found associated with a wide spectrum of coupling ATPases.
Collapse
|
38
|
Abstract
This paper reviews the relationship of mycoplasmas to eubacteria, the question of whether mycoplasmas and eubacteria have a cytoskeleton, and whether the unique ultrastructural features of certain mycoplasmas function as a mitotic-like apparatus. Although cytochalasins have inhibitory effects on some mycoplasmas and eubacteria, there are no data indicating that eubacteria have an actin-like protein or other cytoskeletal element. However, the situation for the mycoplasmas remain confusing. While mycoplasma may not contain actin, the data do suggest the presence of other cytoskeletal elements.
Collapse
|
39
|
Archer DB. The structure and functions of the mycoplasma membrane. INTERNATIONAL REVIEW OF CYTOLOGY 1981; 69:1-44. [PMID: 7012066 DOI: 10.1016/s0074-7696(08)62319-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
40
|
Abstract
Critical analysis of the phylogeny of prokaryotes is in its infancy. Woese and others have made the startling proposal that methane-producing bacteria and a few others form a phyletically unified group, the Archaebacteria, as old and as diverse (although not now as numerous) as all other bacteria. The only critique of this proposal is inadequate. Here we present an alternative view, that the Archaebacteria were derived from other bacteria and contain the ancestor of a cell which engulfed others, eventually to become the first eukaryote.
Collapse
|
41
|
Searcy DG, Stein DB. Nucleoprotein subunit structure in an unusual prokaryotic organism: Thermoplasma acidophilum. BIOCHIMICA ET BIOPHYSICA ACTA 1980; 609:180-95. [PMID: 7407183 DOI: 10.1016/0005-2787(80)90211-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The freeliving thermophilic mycoplasma, Thermoplasma acidophilum, has a small acid-soluble protein tightly bound to its DNA. This protein is similar to eukaryotic histones in both size and amino acid composition. Here we report that the protein condenses DNA into globular particles that are about half the size of eukaryotic nucleosomes. Our conclusions are based primarily upon the following observations: (1) Nuclease digestion produced DNA fragments of 40 base-pairs. (2) The ratio of protein to DNA was such that 4--5 molecules of protein were associated with each 40 base-pair segment of DNA. (3) Protein crosslinking reagents produced tetramers of the histone-like protein. (4) Electron microscopy revealed globular particles 5--6 nm in diameter. (5) Each globular particle reduced the apparent contour length of the DNA by 40 base-pairs. Thus, each nucleoprotein particle is apparently composed of 40 base-pairs of DNA coiled around four molecules of proteins.
Collapse
|
42
|
Doolittle WF. The cyanobacterial genome, its expression, and the control of that expression. Adv Microb Physiol 1980; 20:1-102. [PMID: 119432 DOI: 10.1016/s0065-2911(08)60206-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
Heath IB. Variant mitoses in lower eukaryotes: indicators of the evolution of mitosis. INTERNATIONAL REVIEW OF CYTOLOGY 1980; 64:1-80. [PMID: 20815116 DOI: 10.1016/s0074-7696(08)60235-1] [Citation(s) in RCA: 177] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
|
44
|
Rodwell A, Rodwell E, Archer D. Mycoplasmas lack a protein which closely resembles α-actin. FEMS Microbiol Lett 1979. [DOI: 10.1111/j.1574-6968.1979.tb03312.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
45
|
Stein DB, Searcy DG. Physiologically important stabilization of DNA by a prokaryotic histone-like protein. Science 1978; 202:219-21. [PMID: 694528 DOI: 10.1126/science.694528] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The thermophilic mycoplasma Thermoplasma acidophilum has tightly bound to its DNA a protein that closely resembles the histones of eukaryotes. DNA associated with this protein is more stable than free DNA against thermal denaturation by about 40 degrees C, as shown in both native nucleoprotein and in hybrid nucleoprotein reconstituted in vitro with calf DNA. Since only about 20 percent of the DNA in this organism is associated with the histone-like protein, we suggest that its physiological function is to prevent complete separation of the DNA strands during brief exposures of the organism to denaturing conditions, and thus to facilitate rapid renaturation when normal environmental conditions return.
Collapse
|
46
|
Abstract
Traditional classification imposed a division into plant-like and animal-like forms on the unicellular eukaryotes, or protists; in a current view the protists are a diverse assemblage of plant-, animal- and fungus-like groups. Classification of these into phyla is difficult because of their relatively simple structure and limited geological record, but study of ultrastructure and other characteristics is providing new insight on protist classification. Possible classifications are discussed, and a summary classification of the living world into kingdoms (Monera, Protista, Fungi, Animalia, Plantae) and phyla is suggested. This classification also suggests groupings of phyla into superphyla and form-superphyla, and a broadened kingdom Protista (including green algae, oomycotes and slime molds but excluding red and brown algae). The classification thus seeks to offer a compromise between the protist and protoctist kingdoms of Whittaker and Margulis and to combine a full listing of phyla with grouping of these for synoptic treatment.
Collapse
|