1
|
Wang F, Huynh PM, An YA. Mitochondrial Function and Dysfunction in White Adipocytes and Therapeutic Implications. Compr Physiol 2024; 14:5581-5640. [PMID: 39382163 DOI: 10.1002/cphy.c230009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
For a long time, white adipocytes were thought to function as lipid storages due to the sizeable unilocular lipid droplet that occupies most of their space. However, recent discoveries have highlighted the critical role of white adipocytes in maintaining energy homeostasis and contributing to obesity and related metabolic diseases. These physiological and pathological functions depend heavily on the mitochondria that reside in white adipocytes. This article aims to provide an up-to-date overview of the recent research on the function and dysfunction of white adipocyte mitochondria. After briefly summarizing the fundamental aspects of mitochondrial biology, the article describes the protective role of functional mitochondria in white adipocyte and white adipose tissue health and various roles of dysfunctional mitochondria in unhealthy white adipocytes and obesity. Finally, the article emphasizes the importance of enhancing mitochondrial quantity and quality as a therapeutic avenue to correct mitochondrial dysfunction, promote white adipocyte browning, and ultimately improve obesity and its associated metabolic diseases. © 2024 American Physiological Society. Compr Physiol 14:5581-5640, 2024.
Collapse
Affiliation(s)
- Fenfen Wang
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Phu M Huynh
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Yu A An
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
2
|
Jin S, Bian C, Jiang S, Sun S, Xu L, Xiong Y, Qiao H, Zhang W, You X, Li J, Gong Y, Ma B, Shi Q, Fu H. Identification of Candidate Genes for the Plateau Adaptation of a Tibetan Amphipod, Gammarus lacustris, Through Integration of Genome and Transcriptome Sequencing. Front Genet 2019; 10:53. [PMID: 30804987 PMCID: PMC6378286 DOI: 10.3389/fgene.2019.00053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/22/2019] [Indexed: 01/16/2023] Open
Abstract
The amphipod Gammarus lacustris has been distributing in the Tibetan region with well-known uplifts of the Tibetan plateau. It is hence considered as a good model for investigating stress adaptations of the plateau. Here, we sequenced the whole-genome and full-length transcriptome of G. lacustris, and compared the transcriptome results with its counterpart Gammarus pisinnus from a nearby plain. Our main goal was to provide a genomic resource for investigation of genetic mechanisms, by which G. lacustris adapted to living on the plateau. The final draft genome assembly of G. lacustris was 5.07 gigabases (Gb), and it contained 443,304 scaffolds (>2 kb) with an N50 of 2,578 bp. A total of 8,858 unigenes were predicted in the full-length transcriptome of G. lacustris, with an average gene length of 1,811 bp. Compared with the G. pisinnus transcriptome, 2,672 differentially expressed genes (DEGs) were up-regulated and 2,881 DEGs were down-regulated in the G. lacustris transcriptome. Along with these critical DEGs, several enriched metabolic pathways, such as oxidative phosphorylation, ribosome, cell energy homeostasis, glycolysis and gluconeogenesis, were predicted to play essential roles in the plateau adaptation. In summary, the present study provides a genomic basis for understanding the plateau adaption of G. lacustris, which lays a fundamental basis for further biological and ecological studies on other resident aquatic species in the Tibetan plateau.
Collapse
Affiliation(s)
- Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Chao Bian
- BGI Research Center for Aquatic Genomics, Chinese Academy of Fishery Sciences, Shenzhen, China
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI, Shenzhen, China
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Shengming Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Lei Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Xinxin You
- BGI Research Center for Aquatic Genomics, Chinese Academy of Fishery Sciences, Shenzhen, China
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI, Shenzhen, China
| | - Jia Li
- BGI Research Center for Aquatic Genomics, Chinese Academy of Fishery Sciences, Shenzhen, China
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI, Shenzhen, China
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Bo Ma
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Haebin, China
| | - Qiong Shi
- BGI Research Center for Aquatic Genomics, Chinese Academy of Fishery Sciences, Shenzhen, China
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI, Shenzhen, China
| | - Hongtuo Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| |
Collapse
|
3
|
iTRAQ-based quantitative proteomic analysis of embryonic developmental stages in Amur sturgeon, Acipenser schrenckii. Sci Rep 2018; 8:6255. [PMID: 29674748 PMCID: PMC5908867 DOI: 10.1038/s41598-018-24562-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 04/05/2018] [Indexed: 11/20/2022] Open
Abstract
The Amur sturgeon, Acipenser schrenckii, is an important aquaculture species in China with annual production of about 150 thousand tons in 2015. In this study, we investigated the regulatory proteins and pathways affecting embryonic development of Amur sturgeon, by analyzing of the differential proteomes among four embryonic developmental stages using isobaric tags for relative and absolute quantitation (iTRAQ), combined with the analysis of effects of microelements and antioxidants on embryonic development. Seventy-four, 77, and 76 proteins were differentially expressed according to iTRAQ analysis between the fertilized egg and blastula, blastula and neurula, and neurula and heart-beat stages, respectively. GO and KEGG enrichment analyses indicated that Gluconeogenesis, Ribosome and Proteasome were the most enriched pathways, which may promote energy formation, immune system protection and protein synthesis process in A. schrenckii. The measurement of microelements indicated that Mn, Cu and Fe were obtained from their parents or water environment in A. schrenckii, while Zn plays vital roles throughout embryonic development. The dramatically high level of malondialdehyde (MDA) across the embryonic development may be the main reason leading to a low hatching rate in A. schrenckii. This study provides the basis for further proteome analysis of embryonic development in A. schrenckii.
Collapse
|
4
|
Discovery of Novel Oral Protein Synthesis Inhibitors of Mycobacterium tuberculosis That Target Leucyl-tRNA Synthetase. Antimicrob Agents Chemother 2016; 60:6271-80. [PMID: 27503647 PMCID: PMC5038265 DOI: 10.1128/aac.01339-16] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 07/31/2016] [Indexed: 11/30/2022] Open
Abstract
The recent development and spread of extensively drug-resistant and totally drug-resistant resistant (TDR) strains of Mycobacterium tuberculosis highlight the need for new antitubercular drugs. Protein synthesis inhibitors have played an important role in the treatment of tuberculosis (TB) starting with the inclusion of streptomycin in the first combination therapies. Although parenteral aminoglycosides are a key component of therapy for multidrug-resistant TB, the oxazolidinone linezolid is the only orally available protein synthesis inhibitor that is effective against TB. Here, we show that small-molecule inhibitors of aminoacyl-tRNA synthetases (AARSs), which are known to be excellent antibacterial protein synthesis targets, are orally bioavailable and effective against M. tuberculosis in TB mouse infection models. We applied the oxaborole tRNA-trapping (OBORT) mechanism, which was first developed to target fungal cytoplasmic leucyl-tRNA synthetase (LeuRS), to M. tuberculosis LeuRS. X-ray crystallography was used to guide the design of LeuRS inhibitors that have good biochemical potency and excellent whole-cell activity against M. tuberculosis. Importantly, their good oral bioavailability translates into in vivo efficacy in both the acute and chronic mouse models of TB with potency comparable to that of the frontline drug isoniazid.
Collapse
|
5
|
Qi Y, Fan P, Hao Y, Han B, Fang Y, Feng M, Cui Z, Li J. Phosphoproteomic Analysis of Protein Phosphorylation Networks in the Hypopharyngeal Gland of Honeybee Workers (Apis mellifera ligustica). J Proteome Res 2015; 14:4647-61. [DOI: 10.1021/acs.jproteome.5b00530] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yuping Qi
- Institute
of Apicultural Research, Chinese Academy of Agricultural Science, No. 1 Beigou Xiangshan, Beijing 100093, China
| | - Pei Fan
- Institute
of Apicultural Research, Chinese Academy of Agricultural Science, No. 1 Beigou Xiangshan, Beijing 100093, China
- College
of Bioengineering, Henan University of Technology, No. 100 of Science Road, Zhengzhou 450001, China
| | - Yue Hao
- Institute
of Apicultural Research, Chinese Academy of Agricultural Science, No. 1 Beigou Xiangshan, Beijing 100093, China
| | - Bin Han
- Institute
of Apicultural Research, Chinese Academy of Agricultural Science, No. 1 Beigou Xiangshan, Beijing 100093, China
| | - Yu Fang
- Institute
of Apicultural Research, Chinese Academy of Agricultural Science, No. 1 Beigou Xiangshan, Beijing 100093, China
| | - Mao Feng
- Institute
of Apicultural Research, Chinese Academy of Agricultural Science, No. 1 Beigou Xiangshan, Beijing 100093, China
| | - Ziyou Cui
- Institute
of Apicultural Research, Chinese Academy of Agricultural Science, No. 1 Beigou Xiangshan, Beijing 100093, China
- Department
of Pediatrics, Medical School, and Lillehei Heart Institute, University of Minnesota, Twin Cities 4-240 CCRB, 2231 Sixth Street SE, Minneapolis, Minnesota 55455, United States
| | - Jianke Li
- Institute
of Apicultural Research, Chinese Academy of Agricultural Science, No. 1 Beigou Xiangshan, Beijing 100093, China
| |
Collapse
|
6
|
ZHANG JIANZHENG, LIU ZHI, LIU JIA, REN JIXIN, SUN TIANSHENG. Mitochondrial DNA induces inflammation and increases TLR9/NF-κB expression in lung tissue. Int J Mol Med 2014; 33:817-24. [PMID: 24535292 PMCID: PMC3976143 DOI: 10.3892/ijmm.2014.1650] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 01/30/2014] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial DNA (mtDNA) contains unmethylated CpG motifs that exhibit immune stimulatory capacities. The aim of this study was to investigate whether mtDNA activates the Toll-like receptor 9 (TLR9)/nuclear factor-κB (NF-κB) pathway, thereby contributing to post-traumatic systemic inflammatory response syndrome (SIRS) and lung injury in rats. The effects of mtDNA on macrophage culture were examined in order to elucidate the putative cellular mechanisms. Rats and macrophage cultures were treated with phosphate-buffered saline, nuclear DNA, or mtDNA for 2, 4, 8 and 24 h. Histological analysis of lung tissue was undertaken following hematoxylin and eosin staining, and cytokine levels were assessed by ELISA. NF-κB and IκB-α phosphorylation levels, as well as TLR9 protein expression were determined by western blot analysis; NF-κB, IκB-α and TLR9 mRNA levels were analyzed by RT-PCR. A greater degree of inflammation and lung injury was observed in response to mtDNA. In addition, mtDNA increased serum tumor necrosis factor-α, interleukin (IL)-6 and IL-10 levels in vivo and increased their secretion by cultured macrophages (p<0.05). In lung tissue, mtDNA increased NF-κB, IκB-α and TLR9 mRNA levels (p<0.05); it also increased phosphorylated NF-κB p65 and TLR9 protein levels in the macrophage cultures. Thus, mtDNA may be part of the danger-associated molecular patterns, contributing to the initiation of sterile SIRS through the activation of the TLR9/NF-κB pathway and the induction of pro-inflammatory cytokine production.
Collapse
Affiliation(s)
- JIAN-ZHENG ZHANG
- Department of Orthopedics, Beijing Army General Hospital, Dongcheng, Beijing 100700, P.R. China
| | - ZHI LIU
- Department of Orthopedics, Beijing Army General Hospital, Dongcheng, Beijing 100700, P.R. China
| | - JIA LIU
- Department of Orthopedics, Beijing Army General Hospital, Dongcheng, Beijing 100700, P.R. China
| | - JI-XIN REN
- Department of Orthopedics, Beijing Army General Hospital, Dongcheng, Beijing 100700, P.R. China
| | - TIAN-SHENG SUN
- Department of Orthopedics, Beijing Army General Hospital, Dongcheng, Beijing 100700, P.R. China
| |
Collapse
|
7
|
Schmidt H, Greshake B, Feldmeyer B, Hankeln T, Pfenninger M. Genomic basis of ecological niche divergence among cryptic sister species of non-biting midges. BMC Genomics 2013; 14:384. [PMID: 23758757 PMCID: PMC3685581 DOI: 10.1186/1471-2164-14-384] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/30/2013] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND There is a lack of understanding the evolutionary forces driving niche segregation of closely related organisms. In addition, pinpointing the genes driving ecological divergence is a key goal in molecular ecology. Here, larval transcriptome sequences obtained by next-generation-sequencing are used to address these issues in a morphologically cryptic sister species pair of non-biting midges (Chironomus riparius and C. piger). RESULTS More than eight thousand orthologous open reading frames were screened for interspecific divergence and intraspecific polymorphisms. Despite a small mean sequence divergence of 1.53% between the sister species, 25.1% of 18,115 observed amino acid substitutions were inferred by α statistics to be driven by positive selection. Applying McDonald-Kreitman tests to 715 alignments of gene orthologues identified eleven (1.5%) genes driven by positive selection. CONCLUSIONS Three candidate genes were identified as potentially responsible for the observed niche segregation concerning nitrite concentration, habitat temperature and water conductivity. Additionally, signs of positive selection in the hydrogen sulfide detoxification pathway were detected, providing a new plausible hypothesis for the species' ecological differentiation. Finally, a divergently selected, nuclear encoded mitochondrial ribosomal protein may contribute to reproductive isolation due to cytonuclear coevolution.
Collapse
Affiliation(s)
- Hanno Schmidt
- Molecular Ecology Group, Biodiversity and Climate Research Centre (BiK-F) by Senckenberg Gesellschaft für Naturforschung and Goethe University, Biocampus Siesmayerstraße, Frankfurt am Main, 60054, Germany
- Institute of Molecular Genetics, Biosafety Research and Consulting, Johannes Gutenberg-University, Becherweg 30a, Mainz, 55128, Germany
| | - Bastian Greshake
- Molecular Ecology Group, Biodiversity and Climate Research Centre (BiK-F) by Senckenberg Gesellschaft für Naturforschung and Goethe University, Biocampus Siesmayerstraße, Frankfurt am Main, 60054, Germany
| | - Barbara Feldmeyer
- Molecular Ecology Group, Biodiversity and Climate Research Centre (BiK-F) by Senckenberg Gesellschaft für Naturforschung and Goethe University, Biocampus Siesmayerstraße, Frankfurt am Main, 60054, Germany
- Current address: Department of Evolutionary Biology, Johannes Gutenberg-University, Johannes-von-Müller-Weg 6, Mainz, 55128, Germany
| | - Thomas Hankeln
- Institute of Molecular Genetics, Biosafety Research and Consulting, Johannes Gutenberg-University, Becherweg 30a, Mainz, 55128, Germany
| | - Markus Pfenninger
- Molecular Ecology Group, Biodiversity and Climate Research Centre (BiK-F) by Senckenberg Gesellschaft für Naturforschung and Goethe University, Biocampus Siesmayerstraße, Frankfurt am Main, 60054, Germany
| |
Collapse
|
8
|
Jancura P, Mavridou E, Carrillo-de Santa Pau E, Marchiori E. A methodology for detecting the orthology signal in a PPI network at a functional complex level. BMC Bioinformatics 2012; 13 Suppl 10:S18. [PMID: 22759423 PMCID: PMC3314571 DOI: 10.1186/1471-2105-13-s10-s18] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Stable evolutionary signal has been observed in a yeast protein-protein interaction (PPI) network. These finding suggests more connected regions of a PPI network to be potential mediators of evolutionary information. Because more connected regions of PPI networks contain functional complexes, we are motivated to exploit the orthology relation for identifying complexes that can be clearly attributed to such evolutionary signal. RESULTS We proposed a computational methodology for detecting the orthology signal present in a PPI network at a functional complex level. Specifically, we examined highly functionally coherent putative protein complexes as detected by a clustering technique in the complete yeast PPI network, in the yeast sub-network which spans only ortholog proteins as determined by a given second organism, and in yeast sub-networks induced by a set of proteins randomly selected. We proposed a filtering technique for extracting orthology-driven clusters with unique functionalities, that is, neither enriched by clusters identified using the complete yeast PPI network nor identified using random sampling. Moreover, we extracted functional categories that can be clearly attributed to the presence of evolutionary signal as described by these clusters. CONCLUSIONS Application of the proposed methodology to the yeast PPI network indicated that evolutionary information at a functional complex level can be retrieved from the structure of the network. In particular, we detected protein complexes whose functionality could be uniquely attributed to the evolutionary signal. Moreover, we identified functions that are over-represented in these complexes due the evolutionary signal.
Collapse
Affiliation(s)
- Pavol Jancura
- Institute for Computing and Information Sciences, Radboud University Nijmegen, Nijmegen, 6500 GL, The Netherlands.
| | | | | | | |
Collapse
|
9
|
Affiliation(s)
- H J Pel
- Department of Molecular Cell Biology, University of Amsterdam, The Netherlands
| | | |
Collapse
|
10
|
Shi X, Chen DH, Suyama Y. A nuclear tRNA gene cluster in the protozoan Leishmania tarentolae and differential distribution of nuclear-encoded tRNAs between the cytosol and mitochondria. Mol Biochem Parasitol 1994; 65:23-37. [PMID: 7935626 DOI: 10.1016/0166-6851(94)90112-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
All mitochondrial tRNAs in the protozoan Leishmania are believed to be encoded in the nuclear genome and imported selectively into the mitochondria by an as yet unknown mechanism. Previously, we reported that two tRNAs whose genes are tightly linked were imported by mitochondria. In contrast, a tRNA encoded by a lone tRNA gene was not detectable in mitochondria. The lone tRNA gene had flanking sequences that were different from the linked genes. These studies implied a possible correlation between tRNA gene organization and gene flanking sequence, and selective tRNA import into mitochondria. Here, we report the identification of a cluster of 10 tRNA genes and show the distribution of the corresponding tRNAs in cytosolic and mitochondrial fractions. tRNA(leu)(CAG) and tRNA2(arg)(TCG) are abundant in the cytosol, but relatively scarce in mitochondria. Conversely, tRNA(ile)(TAT) and tRNA1(lys)(TTT) are abundant in mitochondria, but relatively scarce in the cytosol. tRNA(val)(TAC) and tRNA2(thr)(TGT) are barely detectable in either cellular compartment, while tRNA(gln)(TTG), tRNA1(arg)(ACG), tRNA(gly)(TCC), and tRNA(trp)(CCA) are detected in approximately equal levels in both compartments. Sequencing of the 2600 bp that comprise the tRNA gene cluster also encoding the genes for 5S RNA and URNAB RNA indicates that nucleotide composition, length, and location of genes within the cluster do not clearly correlate with import characteristics. The unexpected presence of the tRNA(trp)(CCA)-gene transcript in mitochondria is also reported. Evidence suggests that this tRNA may have unidentified base modifications at the anticodon triplet.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cell Nucleus/metabolism
- Cytosol/metabolism
- DNA, Protozoan/chemistry
- DNA, Protozoan/genetics
- Genes, Protozoan
- Histocytochemistry
- Leishmania/genetics
- Leishmania/metabolism
- Mitochondria/metabolism
- Molecular Sequence Data
- Multigene Family
- Nucleic Acid Conformation
- RNA, Protozoan/genetics
- RNA, Protozoan/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer, Amino Acid-Specific/chemistry
- RNA, Transfer, Amino Acid-Specific/genetics
- RNA, Transfer, Leu/genetics
Collapse
Affiliation(s)
- X Shi
- Department of Biology, University of Pennsylvania, Philadelphia 19104
| | | | | |
Collapse
|
11
|
Abstract
Guide RNAs are encoded in maxicircle and minicircle DNA of trypanosome mitochondria. They play a pivotal role in RNA editing, a process during which the nucleotide sequence of mitochondrial RNAs is altered by U-insertion and deletion. Guide RNAs vary in length from 35 to 78 nucleotides, which correlates with the variation in length of the three functionally important regions of which they are composed: (i) a 4-14 nucleotide 'anchor' sequence embedded in the 5' region, which is complementary to a target sequence on the pre-edited RNA downstream of an editing domain, (ii) a middle part containing the editing information, which ranges from guiding the insertion of just one U into one site to that of the insertion of 32 Us into 10 sites, and (iii) a 5-24 nucleotide 3' terminal oligo [U] extension. Moreover, a variable uridylation site creates gRNAs containing a varying segment of editing information for the same domain. Comparison of different guide RNAs demonstrates that, besides the U-tail, they have no obvious common primary and secondary sequence motifs, each particular sequence being unique. The occurrence in vivo and the synthesis in vitro of chimeric molecules, in which a guide RNA is covalently linked through its 3' U-tail to an editing site of a pre-edited RNA, suggests that RNA editing occurs by consecutive transesterification reactions and is evidence that the guide RNAs not only provide the genetic information, but also the Us themselves.
Collapse
Affiliation(s)
- R Benne
- E.C. Slater Institute for Biochemical Research, University of Amsterdam, The Netherlands
| |
Collapse
|
12
|
Bolotin-Fukuhara M, Grivell LA. Genetic approaches to the study of mitochondrial biogenesis in yeast. Antonie Van Leeuwenhoek 1992; 62:131-53. [PMID: 1444332 DOI: 10.1007/bf00584467] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In contrast to most other organisms, the yeast Saccharomyces cerevisiae can survive without functional mitochondria. This ability has been exploited in genetic approaches to the study of mitochondrial biogenesis. In the last two decades, mitochondrial genetics have made major contributions to the identification of genes on the mitochondrial genome, the mapping of these genes and the establishment of structure-function relationships in the products they encode. In parallel, more than 200 complementation groups, corresponding to as many nuclear genes necessary for mitochondrial function or biogenesis have been described. Many of the latter are required for post-transcriptional events in mitochondrial gene expression, including the processing of mitochondrial pre-RNAs, the translation of mitochondrial mRNAs, or the assembly of mitochondrial translation products into the membrane. The aim of this review is to describe the genetic approaches used to unravel the intricacies of mitochondrial biogenesis and to summarize recent insights gained from their application.
Collapse
Affiliation(s)
- M Bolotin-Fukuhara
- Laboratoire de Génétique Moléculaire, Université Paris-Sud, Orsay, France
| | | |
Collapse
|
13
|
Feagin JE, Werner E, Gardner MJ, Williamson DH, Wilson RJ. Homologies between the contiguous and fragmented rRNAs of the two Plasmodium falciparum extrachromosomal DNAs are limited to core sequences. Nucleic Acids Res 1992; 20:879-87. [PMID: 1542578 PMCID: PMC312032 DOI: 10.1093/nar/20.4.879] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Plasmodium falciparum contains two extrachromosomal DNAs, a 6 kb linear element and a 35 kb circular DNA; both encode rDNA sequences. The 6 kb element rDNAs comprise fragments of both large and small subunit rRNAs. Comparison of these with corresponding rDNA sequences from the 35 kb DNA and E. coli show that sequences conserved between the three are largely confined to highly conserved core regions; in fact, most of the 6 kb rDNA sequences correspond to core regions. Both the 6 kb element and 35 kb rDNAs show less conservation to each other than to E. coli sequences, suggesting that the two extrachromosomal DNAs of P. falciparum are not closely related. The characteristics of the fragmented rRNAs from the 6 kb element suggest they are functional, possibly in mitochondrial ribosomes.
Collapse
Affiliation(s)
- J E Feagin
- Seattle Biomedical Research Institute, WA 98109-1651
| | | | | | | | | |
Collapse
|
14
|
Affiliation(s)
- M W Gray
- Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
15
|
Affiliation(s)
- D J Cummings
- Department of Microbiology and Immunology, University of Colorado School of Medicine, Denver 80262
| |
Collapse
|
16
|
Van de Peer Y, Neefs JM, De Wachter R. Small ribosomal subunit RNA sequences, evolutionary relationships among different life forms, and mitochondrial origins. J Mol Evol 1990; 30:463-76. [PMID: 2111858 DOI: 10.1007/bf02101118] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A tree was constructed from a structurally conserved area in an alignment of 83 small ribosomal subunit sequences of eukaryotic, archaebacterial, eubacterial, plastidial, and mitochondrial origin. The algorithm involved computation and optimization of a dissimilarity matrix. According to the tree, only plant mitochondria belong to the eubacterial primary kingdom, whereas animal, fungal, algal, and ciliate mitochondria branch off from an internal node situated between the tree primary kingdoms. This result is at variance with a parsimony tree of similar size published by Cedergren et al. (J Mol Evol 28:98-112, 1988), which postulates the mitochondria to be monophyletic and to belong to the eubacterial primary kingdom. The discrepancy does not follow from the use of conflicting sequence alignments, hence it must be due to the use of different treeing algorithms. We tested our algorithm on a set of sequences resulting from a simulated evolution and found it capable of faithfully reconstructing a branching topology that involved very unequal evolutionary rates. The use of more limited or more extended areas of the complete sequence alignment, comprising only very conserved or also more variable portions of the small ribosomal subunit structure, does have some influence on the tree topology. In all cases, however, the nonplant mitochondria seem to branch off before the emergence of eubacteria, and the differences are limited to the branching pattern among different types of mitochondria.
Collapse
Affiliation(s)
- Y Van de Peer
- Departement Biochemie, Universiteit Antwerpen, Belgium
| | | | | |
Collapse
|
17
|
Desjardins P, Morais R. Sequence and gene organization of the chicken mitochondrial genome. A novel gene order in higher vertebrates. J Mol Biol 1990; 212:599-634. [PMID: 2329578 DOI: 10.1016/0022-2836(90)90225-b] [Citation(s) in RCA: 582] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The 16,775 base-pair mitochondrial genome of the white Leghorn chicken has been cloned and sequenced. The avian genome encodes the same set of genes (13 proteins, 2 rRNAs and 22 tRNAs) as do other vertebrate mitochondrial DNAs and is organized in a very similar economical fashion. There are very few intergenic nucleotides and several instances of overlaps between protein or tRNA genes. The protein genes are highly similar to their mammalian and amphibian counterparts and are translated according to the same variant genetic code. Despite these highly conserved features, the chicken mitochondrial genome displays two distinctive characteristics. First, it exhibits a novel gene order, the contiguous tRNA(Glu) and ND6 genes are located immediately adjacent to the displacement loop region of the molecule, just ahead of the contiguous tRNA(Pro), tRNA(Thr) and cytochrome b genes, which border the displacement loop region in other vertebrate mitochondrial genomes. This unusual gene order is conserved among the galliform birds. Second, a light-strand replication origin, equivalent to the conserved sequence found between the tRNA(Cys) and tRNA(Asn) genes in all vertebrate mitochondrial genomes sequenced thus far, is absent in the chicken genome. These observations indicate that galliform mitochondrial genomes departed from their mammalian and amphibian counterparts during the course of evolution of vertebrate species. These unexpected characteristics represent useful markers for investigating phylogenetic relationships at a higher taxonomic level.
Collapse
Affiliation(s)
- P Desjardins
- Département de Biochimie, Faculté de Médecine, Université de Montréal, Québec, Canada
| | | |
Collapse
|
18
|
Jones EP, Mahendran R, Spottswood MR, Yang YC, Miller DL. Mitochondrial DNA of Physarum polycephalum: physical mapping, cloning and transcription mapping. Curr Genet 1990; 17:331-7. [PMID: 2340593 DOI: 10.1007/bf00314881] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mitochondrial DNA (mtDNA) has been isolated from four strains of Physarum polycephalum and a restriction site map has been determined using nine restriction enzymes. The restriction site maps of the four strains are similar but each strain is distinguished by insertions, deletions and restriction enzyme site polymorphisms. The sum of the restriction fragments gives mitochondrial genome sizes which vary from about 56 kb to 62 kb. In all four strains the composite map of the restriction enzyme sites for the mtDNA is circular. Knowledge of the restriction enzyme map has enabled cloning of mtDNA fragments representing the entire mtDNA of strain M3. The cloned fragments have been used to create a transcription map of the mtDNA.
Collapse
Affiliation(s)
- E P Jones
- Cell and Molecular Biology Program, University of Texas, Dallas, Richardson 75083-0688
| | | | | | | | | |
Collapse
|
19
|
Pritchard AE, Seilhamer JJ, Mahalingam R, Sable CL, Venuti SE, Cummings DJ. Nucleotide sequence of the mitochondrial genome of Paramecium. Nucleic Acids Res 1990; 18:173-80. [PMID: 2308823 PMCID: PMC330218 DOI: 10.1093/nar/18.1.173] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The nucleotide sequence for 40,469 bp of the linear Paramecium aurelia mitochondrial (mt) genome is presented with the locations of the known genes, presumed ORFs, and their transcripts. Many of the genes commonly encoded in mt DNA of other organisms have been identified in the Paramecium mt genome but several unusual genes have been found. Ribosomal protein genes rps14, rps12, and rpl2 are clustered in a region that also contains two other genes usually found in chloroplasts, but rpl14 is over 16 kbp away. The ATP synthase gene, atp9, is encoded in this mt genome, but the atp6, atp8, and COIII genes have not been identified. All of the identified genes are transcribed. Many mono- and poly- cistronic transcripts have been detected which cover most of the genome, including large regions where genes have yet to be identified. Based on sequence comparisons with known tRNAs, only those for phe, trp, and tyr are encoded in Paramecium mt DNA.
Collapse
Affiliation(s)
- A E Pritchard
- Department of Microbiology and Immunology, University of Colorado Health Sciences Center, Denver 80262. 80262
| | | | | | | | | | | |
Collapse
|
20
|
Simpson AM, Suyama Y, Dewes H, Campbell DA, Simpson L. Kinetoplastid mitochondria contain functional tRNAs which are encoded in nuclear DNA and also contain small minicircle and maxicircle transcripts of unknown function. Nucleic Acids Res 1989; 17:5427-45. [PMID: 2762144 PMCID: PMC318168 DOI: 10.1093/nar/17.14.5427] [Citation(s) in RCA: 161] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The mitochondrion of Leishmania tarentolae contains approximately 35-40 tRNAs many of which comigrate with cytoplasmic tRNAs. Both mitochondrial (KtRNA) and cytoplasmic (CtRNA) tRNAs are functional, as they could be acylated either by mitochondrial or cytoplasmic synthetase extracts. There are two methionyl tRNA species in the cytoplasmic and mitochondrial fractions, one of which is unique to each fraction, indicating that the KtRNA fraction is free of CtRNA contamination. Leucyl and glycyl tRNAs were identified by hybridization with a genomic clone from Trypanosoma brucei. KtRNA hybridizes with nuclear chromosomes, but not with minicircle or maxicircle DNA. KtRNA isolated by DEAE chromatography or agarose gel electrophoresis contains additional small RNAs which hybridize with both minicircle and maxicircle DNA. These transcripts do not migrate like tRNAs in acrylamide gels and their functions is unknown. We suggest that most if not all mitochondrial tRNAs in L. tarentolae are nuclear-encoded and imported into the mitochondrion.
Collapse
Affiliation(s)
- A M Simpson
- Department of Biology, University of California, Los Angeles 90024
| | | | | | | | | |
Collapse
|
21
|
Grivell LA. Nucleo-mitochondrial interactions in yeast mitochondrial biogenesis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 182:477-93. [PMID: 2666128 DOI: 10.1111/j.1432-1033.1989.tb14854.x] [Citation(s) in RCA: 178] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- L A Grivell
- Department of Molecular Cell Biology, University of Amsterdam, The Netherlands
| |
Collapse
|
22
|
Affiliation(s)
- L Simpson
- Department of Biology, University of California, Los Angeles 90024
| | | |
Collapse
|
23
|
Boer PH, Gray MW. Transfer RNA genes and the genetic code in Chlamydomonas reinhardtii mitochondria. Curr Genet 1988; 14:583-90. [PMID: 3242866 DOI: 10.1007/bf00434084] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Only three tRNA genes are present within a sequenced 12.35 kbp region of the 15.8 kbp mtDNA of Chlamydomonas reinhardtii, a unicellular green alga. The corresponding tRNAs, whose anticodons are specific for TGG (Trp), CAA/G (Gln) and ATG (Met) codons, all display conventional secondary structures. The tRNA(Met) gene encodes an elongator rather than initiator species. The standard genetic code is used in C. reinhardtii mitochondria, but codon distribution is highly biased: in a collection of six identified protein coding genes, nine codons (including TGA) are not used at all, while four other sense codons occur very infrequently. In spite of the absence of certain codons, a minimum of 23 tRNAs (assuming separate initiator and elongator tRNAs(Met) are used) is needed to translate the C. reinhardtii mitochondrial genetic code. It appears unlikely that this minimal tRNA set is encoded by C. reinhardtii mtDNA.
Collapse
Affiliation(s)
- P H Boer
- Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|