1
|
Heiss AA, Heiss AW, Lukacs K, Kim E. The flagellar apparatus of the glaucophyte Cyanophora cuspidata. JOURNAL OF PHYCOLOGY 2017; 53:1120-1150. [PMID: 28741699 DOI: 10.1111/jpy.12569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/12/2017] [Indexed: 05/16/2023]
Abstract
Glaucophytes are a kingdom-scale lineage of unicellular algae with uniquely underived plastids. The genus Cyanophora is of particular interest because it is the only glaucophyte that is a flagellate throughout its life cycle, making its morphology more directly comparable than other glaucophytes to other eukaryote flagellates. The ultrastructure of Cyanophora has already been studied, primarily in the 1960s and 1970s. However, the usefulness of that work has been undermined by its own limitations, subsequent misinterpretations, and a recent taxonomic revision of the genus. For example, Cyanophora's microtubular roots have been widely reported as cruciate, with rotationally symmetrical wide and thin roots, although the first ultrastructural work described it as having three wide and one narrow root. We examine Cyanophora cuspidata using scanning and transmission electron microscopy, and construct a model of its cytoskeleton using serial-section TEM. We confirm the earlier model, with asymmetric roots. We describe previously unknown and unsuspected features of its microtubular roots, including (i) a rearrangement of individual microtubules within the posterior right root, (ii) a splitting of the posterior left root into two subroots, and (iii) the convergence and termination of the narrow roots against wider ones in both the anterior and posterior subsystems of the flagellar apparatus. We also describe a large complement of nonmicrotubular components of the cytoskeleton, including a substantial connective between the posterior right root and the anterior basal body. Our work should serve as the starting point for a re-examination of both internal glaucophyte diversity and morphological evolution in eukaryotes.
Collapse
Affiliation(s)
- Aaron A Heiss
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th St., New York, New York, 10024, USA
- Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th St., New York, New York, 10024, USA
| | - Alaric W Heiss
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th St., New York, New York, 10024, USA
| | - Kaleigh Lukacs
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th St., New York, New York, 10024, USA
| | - Eunsoo Kim
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th St., New York, New York, 10024, USA
- Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th St., New York, New York, 10024, USA
| |
Collapse
|
2
|
Pánek T, Simpson AG, Hampl V, Čepička I. Creneis carolina gen. et sp. nov. (Heterolobosea), a Novel Marine Anaerobic Protist with Strikingly Derived Morphology and Life Cycle. Protist 2014; 165:542-67. [DOI: 10.1016/j.protis.2014.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 05/05/2014] [Accepted: 05/28/2014] [Indexed: 11/29/2022]
|
3
|
The Microtubular Cytoskeleton of the Apusomonad Thecamonas, a Sister Lineage to the Opisthokonts. Protist 2013; 164:598-621. [DOI: 10.1016/j.protis.2013.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 04/30/2013] [Accepted: 05/31/2013] [Indexed: 01/16/2023]
|
4
|
Heiss AA, Walker G, Simpson AG. The flagellar apparatus of Breviata anathema, a eukaryote without a clear supergroup affinity. Eur J Protistol 2013; 49:354-72. [DOI: 10.1016/j.ejop.2013.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 12/21/2012] [Accepted: 01/18/2013] [Indexed: 10/27/2022]
|
5
|
Yubuki N, Leander BS. Evolution of microtubule organizing centers across the tree of eukaryotes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:230-244. [PMID: 23398214 DOI: 10.1111/tpj.12145] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 02/04/2013] [Accepted: 02/05/2013] [Indexed: 05/28/2023]
Abstract
The architecture of eukaryotic cells is underpinned by complex arrrays of microtubules that stem from an organizing center, referred to as the MTOC. With few exceptions, MTOCs consist of two basal bodies that anchor flagellar axonemes and different configurations of microtubular roots. Variations in the structure of this cytoskeletal system, also referred to as the 'flagellar apparatus', reflect phylogenetic relationships and provide compelling evidence for inferring the overall tree of eukaryotes. However, reconstructions and subsequent comparisons of the flagellar apparatus are challenging, because these studies require sophisticated microscopy, spatial reasoning and detailed terminology. In an attempt to understand the unifying features of MTOCs and broad patterns of cytoskeletal homology across the tree of eukaryotes, we present a comprehensive overview of the eukaryotic flagellar apparatus within a modern molecular phylogenetic context. Specifically, we used the known cytoskeletal diversity within major groups of eukaryotes to infer the unifying features (ancestral states) for the flagellar apparatus in the Plantae, Opisthokonta, Amoebozoa, Stramenopiles, Alveolata, Rhizaria, Excavata, Cryptophyta, Haptophyta, Apusozoa, Breviata and Collodictyonidae. We then mapped these data onto the tree of eukaryotes in order to trace broad patterns of trait changes during the evolutionary history of the flagellar apparatus. This synthesis suggests that: (i) the most recent ancestor of all eukaryotes already had a complex flagellar apparatus, (ii) homologous traits associated with the flagellar apparatus have a punctate distribution across the tree of eukaryotes, and (iii) streamlining (trait losses) of the ancestral flagellar apparatus occurred several times independently in eukaryotes.
Collapse
Affiliation(s)
- Naoji Yubuki
- The Department of Botany, Beaty Biodiversity Research Centre and Museum, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada.
| | | |
Collapse
|
6
|
Yubuki N, Simpson AG, Leander BS. Comprehensive Ultrastructure of Kipferlia bialata Provides Evidence for Character Evolution within the Fornicata (Excavata). Protist 2013; 164:423-39. [DOI: 10.1016/j.protis.2013.02.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/07/2013] [Accepted: 02/08/2013] [Indexed: 11/25/2022]
|
7
|
Yubuki N, Leander BS. Reconciling the bizarre inheritance of microtubules in complex (euglenid) microeukaryotes. PROTOPLASMA 2012; 249:859-869. [PMID: 22048637 DOI: 10.1007/s00709-011-0340-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 10/10/2011] [Indexed: 05/31/2023]
Abstract
We introduce a hypothetical model that explains how surface microtubules in euglenids are generated, integrated and inherited with the flagellar apparatus from generation to generation. The Euglenida is a very diverse group of single-celled eukaryotes unified by a complex cell surface called the "pellicle", consisting of proteinaceous strips that run along the longitudinal axis of the cell and articulate with one another along their lateral margins. The strips are positioned beneath the plasma membrane and are reinforced with subtending microtubules. Euglenids reproduce asexually, and the two daughter cells inherit pellicle strips and associate microtubules from the parent cell in a semi-conservative pattern. In preparation for cell division, nascent pellicle strips develop from the anterior end of the cell and elongate toward the posterior end between two parent (mature) strips, so that the total number of pellicle strips and underlying microtubules is doubled in the predivisional cell. Each daughter cell inherits an alternating pattern of strips consisting of half of the nascent strips and half of the parent (mature) strips. This observation combined with the fact that the microtubules underlying the strips are linked to the flagellar apparatus created a cytoskeletal riddle: how do microtubules associated with an alternating pattern of nascent strips and mature strips maintain their physical relationship to the flagellar apparatus when the parent cell divides? The model of microtubular inheritance articulated here incorporates known patterns of cytoskeletal semi-conservatism and two new inferences: (1) a multigenerational "pellicle microtubule organizing center" (pMTOC) extends from the dorsal root of the flagellar apparatus, encircles the flagellar pocket, and underpins the microtubules of the pellicle; and (2) prior to cytokinesis, nascent pellicle microtubules fall within one of two "left/right" constellations that are linked to one of the two new dorsal basal bodies.
Collapse
Affiliation(s)
- Naoji Yubuki
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, BC, Canada.
| | | |
Collapse
|
8
|
Brugerolle G, Patterson DJ. A cytological study of Aulacomonas submarina Skuja 1939, a heterotrophic flagellate with a novel ultrastructural identity. Eur J Protistol 2011. [PMID: 23195965 DOI: 10.1016/s0932-4739(11)80170-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aulacomonas submarina is a free-living freshwater heterotrophic flagellate, the ultrastructure of which is described here. It has two long, nearly equal flagella that insert apically and beat asynchronously. It engulfs prey as large as itself via a ventral groove. The nucleus is anterior and surrounded by several dictyosomes. The two flagella are similar in structure. The most external part of the transition zone is marked by a constriction of the membrane, and distal to this the periaxonemal space expands for a short distance. The two basal bodies are inclined to each other and connected by roots, in a style reminiscent of some heterokont organisms. The basal body of the dorsal flagellum (Fl) is connected to a dorsal cytoskeletal root that is comprised of 5 superimposed microtubules and which sweeps from right to left in an incomplete loop near the cell apex. This loop is reinforced near its origin by an electron-dense rootlet. Material associated with the dorsal root gives rise to cortical microtubules which form a cape covering the apical region of the cell. The ventral basal body (of flagellum F2) is connected to two microtubular and microfibrillar fibres which support the lips of the ventral groove. More distally the lips of the groove are bordered only by a ridge supported by microfibrillar material. Mitochondria have bleb-shaped tubular cristae similar to those of actinophryid heliozoa. There is no cyst. The shape of the mitochondrial cristae, and the arrangement of basal bodies suggest that this genus is distantly related to the heterokont flagellates. However, most aspects of the ultrastructure are unlike those of other flagellates, such that Aulacomonas cannot be assigned to any familiar subgroup of heterokont organisms or other group of flagellates.
Collapse
Affiliation(s)
- G Brugerolle
- Laboratoire de Zoologie et Proktologie, Université Blaise Pascal de Clermont-Ferrand, Aubière, France
| | | |
Collapse
|
9
|
Heiss AA, Walker G, Simpson AG. The Ultrastructure of Ancyromonas, a Eukaryote without Supergroup Affinities. Protist 2011; 162:373-93. [DOI: 10.1016/j.protis.2010.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 07/03/2010] [Indexed: 11/29/2022]
|
10
|
PARK JONGSOO, KOLISKO MARTIN, HEISS AARONA, SIMPSON ALASTAIRG. Light Microscopic Observations, Ultrastructure, and Molecular Phylogeny ofHicanonectes teleskoposn. g., n. sp., a Deep-Branching Relative of Diplomonads. J Eukaryot Microbiol 2009; 56:373-84. [DOI: 10.1111/j.1550-7408.2009.00412.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Walker G, Dacks JB, Martin Embley T. Ultrastructural Description of Breviata anathema, N. Gen., N. Sp., the Organism Previously Studied as "Mastigamoeba invertens". J Eukaryot Microbiol 2006; 53:65-78. [PMID: 16579808 DOI: 10.1111/j.1550-7408.2005.00087.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An understanding of large-scale eukaryotic evolution is beginning to crystallise, as molecular and morphological data demonstrate that eukaryotes fall into six major groups. However, there are several taxa of which the affinities are yet to be resolved, and for which there are only either molecular or morphological data. One of these is the amoeboid flagellate Mastigamoeba invertens. This organism was originally misidentified and studied as a pelobiont using molecular data. We present its first light microscopical and ultrastructural characterisation. We demonstrate that it does not show affinities to the amoebozoan pelobionts, because unlike the pelobionts, it has a double basal body and two flagellar roots, a classical Golgi stack, and a large branching double membrane-bound organelle. Phylogenetic analyses of small subunit ribosomal RNA suggest an affinity with the apusomonads, when a covariotide correction for rate heterogeneity is used. We suggest that previous molecular results have been subject to artefacts from an insufficient correction for rate heterogeneity. We propose a new name for the taxon, Breviata anathema; and the unranked, apomorphy-based name "Breviates" for Breviata and its close relatives.
Collapse
Affiliation(s)
- Giselle Walker
- Department of Zoology, The Natural History Museum, London SW7 5BD, UK.
| | | | | |
Collapse
|
12
|
Simpson AGB, Radek R, Dacks JB, O'Kelly CJ. How oxymonads lost their groove: an ultrastructural comparison of Monocercomonoides and excavate taxa. J Eukaryot Microbiol 2002; 49:239-48. [PMID: 12120989 DOI: 10.1111/j.1550-7408.2002.tb00529.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite being amongst the more familiar groups of heterotrophic flagellates, the evolutionary affinities of oxymonads remain poorly understood. A re-interpretation of the cytoskeleton of the oxymonad Monocercomonoides hausmanni suggests that this organism has a similar ultrastructural organisation to members of the informal assemblage 'excavate taxa'. The preaxostyle, 'R1' root, and 'R2' root of M. hausmanni are proposed to be homologous to the right, left, and anterior roots respectively of excavate taxa. The 'paracrystalline' portion of the preaxostyle, previously treated as unique to oxymonads, is proposed to be homologous to the I fibre of excavate taxa. Other non-microtubular fibres are identified that have both positional and substructural similarity to the distinctive B and C fibres of excavate taxa. A homologue to the 'singlet root', otherwise distinctive for excavate taxa, is also proposed. The preaxostyle and C fibre homologue in Monocercomonoides are most similar to the homologous structures in Trimastix. suggesting a particularly close relationship. This supports and extends recent molecular phylogenetic findings that Trimastix and oxymonads form a clade. We conclude that oxymonads have an excavate ancestry, and that the 'excavate taxa' sensu stricto form a paraphyletic assemblage.
Collapse
Affiliation(s)
- Alastair G B Simpson
- Canadian Institute for Advanced Research, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | | | | | |
Collapse
|
13
|
Mikrjukov KA, Mylnikov AP. The fine structure of a carnivorous multiflagellar protist Multicilia marina Cienkowski, 1881 (flagellata incertae sedis). Eur J Protistol 1998. [DOI: 10.1016/s0932-4739(98)80008-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
|
15
|
Simpson AG, Bernard C, Fenchel T, Patterson DJ. The organisation of Mastigamoeba schizophrenia n. sp.: More evidence of ultrastructural idiosyncrasy and simplicity in pelobiont protists. Eur J Protistol 1997. [DOI: 10.1016/s0932-4739(97)80024-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
O'Kelly CJ, Patterson DJ. The flagellar apparatus of Cafeteria roenbergensis Fenchel & Patterson, 1988 (Bicosoecales = Bicosoecida). Eur J Protistol 1996. [DOI: 10.1016/s0932-4739(96)80021-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
17
|
Verhagen FJ, Zölffel M, Brugerolle G, Patterson DJ. Adriamonas peritocrescens gen. nov., sp. nov., a new free-living soil flagellate (Protista, Pseudodendromonadidae Incertae Sedis). Eur J Protistol 1994. [DOI: 10.1016/s0932-4739(11)80076-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
O'KELLY CHARLESJ. The Jakobid Flagellates: Structural Features of Jakoba, Reclinomonas and Histiona and Implications for the Early Diversification of Eukaryotes. J Eukaryot Microbiol 1993. [DOI: 10.1111/j.1550-7408.1993.tb06120.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Flavin M, Nerad TA. Reclinomonas americana N. G., N. Sp., a new freshwater heterotrophic flagellate. J Eukaryot Microbiol 1993; 40:172-9. [PMID: 8461890 DOI: 10.1111/j.1550-7408.1993.tb04900.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A new heterotrophic flagellate has been discovered from sites in Maryland, Michigan and Wyoming. The flagellate resides within a lorica constructed of a meshwork of intertwined fibrils with the outer surface invested with nail-shaped spines. The organism "reclines" within the lorica with its ventral aspect directed upward, and has two heterodynamic flagella, neither of which bears mastigonemes. One flagellum is directed upward and the other is arched over the ventral aspect of the body. Ingestion of bacteria takes place at the left posterior half of the cell. The organism is anchored to the lorica on the right posterior side by a series of regularly spaced cytoplasmic bridges and at the left anterior of the cell by a cytoplasmic appendage similar to the "languette cytoplasmique" found in some bicosoecids. The right side of the cell is raised into a flattened lip with the outer margin reinforced by a ribbon of microtubules. The new flagellate has mitochondria with tubular cristae and lacks a Golgi. A new genus is created to accommodate both the new flagellate described herein and Histiona campanula Penard. A new family is proposed to include the new genus and Histiona.
Collapse
Affiliation(s)
- M Flavin
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
20
|
|
21
|
Corliss JO. Protistan diversity and origins of multicellular/multitissued organisms∗. ACTA ACUST UNITED AC 1989. [DOI: 10.1080/11250008909355646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|