1
|
Wang K, Han G, Hao R. Advances in the study of the influence of photoreceptors on the development of myopia. Exp Eye Res 2024; 245:109976. [PMID: 38897270 DOI: 10.1016/j.exer.2024.109976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/12/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
This review examines the pivotal role of photoreceptor cells in ocular refraction development, focusing on dopamine (DA) as a key neurotransmitter. Contrary to the earlier view favoring cone cells, recent studies have highlighted the substantial contributions of both rod and cone cells to the visual signaling pathways that influence ocular refractive development. Notably, rod cells appeared to play a central role. Photoreceptor cells interact intricately with circadian rhythms, color vision pathways, and other neurotransmitters, all of which are crucial for the complex mechanisms driving the development of myopia. This review emphasizes that ocular refractive development results from a coordinated interplay between diverse cell types, signaling pathways, and neurotransmitters. This perspective has significant implications for unraveling the complex mechanisms underlying myopia and aiding in the development of more effective prevention and treatment strategies.
Collapse
Affiliation(s)
- Kailei Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, PR China; Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin Eye Hospital, Tianjin, 300020, PR China
| | - Guoge Han
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, PR China; Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin Eye Hospital, Tianjin, 300020, PR China; Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, 300020, PR China.
| | - Rui Hao
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, PR China; Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin Eye Hospital, Tianjin, 300020, PR China; Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, 300020, PR China.
| |
Collapse
|
2
|
Clark AM, Yu D, Neiswanger G, Zhu D, Zou J, Maschek JA, Burgoyne T, Yang J. Disruption of CFAP418 interaction with lipids causes widespread abnormal membrane-associated cellular processes in retinal degenerations. JCI Insight 2024; 9:e162621. [PMID: 37971880 PMCID: PMC10906455 DOI: 10.1172/jci.insight.162621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/15/2023] [Indexed: 11/19/2023] Open
Abstract
Syndromic ciliopathies and retinal degenerations are large heterogeneous groups of genetic diseases. Pathogenic variants in the CFAP418 gene may cause both disorders, and its protein sequence is evolutionarily conserved. However, the disease mechanism underlying CFAP418 mutations has not been explored. Here, we apply quantitative lipidomic, proteomic, and phosphoproteomic profiling and affinity purification coupled with mass spectrometry to address the molecular function of CFAP418 in the retina. We show that CFAP418 protein binds to the lipid metabolism precursor phosphatidic acid (PA) and mitochondrion-specific lipid cardiolipin but does not form a tight and static complex with proteins. Loss of Cfap418 in mice disturbs membrane lipid homeostasis and membrane-protein associations, which subsequently causes mitochondrial defects and membrane-remodeling abnormalities across multiple vesicular trafficking pathways in photoreceptors, especially the endosomal sorting complexes required for transport (ESCRT) pathway. Ablation of Cfap418 also increases the activity of PA-binding protein kinase Cα in the retina. Overall, our results indicate that membrane lipid imbalance is a pathological mechanism underlying syndromic ciliopathies and retinal degenerations which is associated with other known causative genes of these diseases.
Collapse
Affiliation(s)
- Anna M. Clark
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, and
| | - Dongmei Yu
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, and
| | - Grace Neiswanger
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, and
| | - Daniel Zhu
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, and
| | - Junhuang Zou
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, and
| | - J. Alan Maschek
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA
| | - Thomas Burgoyne
- UCL Institute of Ophthalmology, University College of London, London, United Kingdom
| | - Jun Yang
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, and
- Department of Otolaryngology, and
- Department of Neurobiology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
3
|
Shrestha AP, Rameshkumar N, Boff JM, Rajmanna R, Chandrasegaran T, Frederick CE, Zenisek D, Vaithianathan T. The Effects of Aging on Rod Bipolar Cell Ribbon Synapses. Cells 2023; 12:2385. [PMID: 37830599 PMCID: PMC10572008 DOI: 10.3390/cells12192385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
The global health concern posed by age-related visual impairment highlights the need for further research focused on the visual changes that occur during the process of aging. To date, multiple sensory alterations related to aging have been identified, including morphological and functional changes in inner hair cochlear cells, photoreceptors, and retinal ganglion cells. While some age-related morphological changes are known to occur in rod bipolar cells in the retina, their effects on these cells and on their connection to other cells via ribbon synapses remain elusive. To investigate the effects of aging on rod bipolar cells and their ribbon synapses, we compared synaptic calcium currents, calcium dynamics, and exocytosis in zebrafish (Danio rerio) that were middle-aged (MA,18 months) or old-aged (OA, 36 months). The bipolar cell terminal in OA zebrafish exhibited a two-fold reduction in number of synaptic ribbons, an increased ribbon length, and a decrease in local Ca2+ signals at the tested ribbon location, with little change in the overall magnitude of the calcium current or exocytosis in response to brief pulses. Staining of the synaptic ribbons with antibodies specific for PKCa revealed shortening of the inner nuclear and plexiform layers (INL and IPL). These findings shed light on age-related changes in the retina that are related to synaptic ribbons and calcium signals.
Collapse
Affiliation(s)
- Abhishek P. Shrestha
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Nirujan Rameshkumar
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Johane M. Boff
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Rhea Rajmanna
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | - Courtney E. Frederick
- Department of Molecular and Cellular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA (D.Z.)
| | - David Zenisek
- Department of Molecular and Cellular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA (D.Z.)
| | - Thirumalini Vaithianathan
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Ophthalmology, Hamilton Eye Institute, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
4
|
Uchiyama H, Matsutani S, Ohno H, Yamaoka S, Mizokami T, Sugimoto S, Hirashima Y. Bipolar cells containing protein kinase Cα mediate attentional facilitation of the avian retinal ganglion cells by the retinopetal signal. J Comp Neurol 2023. [PMID: 37130818 DOI: 10.1002/cne.25491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 05/04/2023]
Abstract
Birds have a well-developed retinopetal system projecting from the midbrain to the contralateral retina. The signal sent to the retina through the retinopetal system facilitates visual responses of the retinal ganglion cells (RGCs), and the retinopetal signals function as attentional signals during visual search. Thus, the retinopetal signal somehow reaches and facilitates visual responses of the RGCs. However, the tertiary neuron of the retinopetal system, the isthmo-optic target cell (IOTC), is unlikely to contact most RGCs directly, because the IOTCs form axon terminals localized in the outermost sublayer (lamina 1) of the inner plexiform layer (IPL) where few RGC dendrites terminate. Therefore, some other intrinsic retinal neurons must be involved in the centrifugal attentional enhancement of visual responses of the RGCs. We investigated connections of the target cells of the IOTCs in chicken and quail, using light and electron microscopic immunohistochemistry. We show that axon terminals of the IOTC make synaptic contacts with protein kinase Cα (PKCα)-immunoreactive (ir) bipolar cells (PKCα-BCs) in lamina 1 of the IPL. Furthermore, with prolonged electrical stimulation of the isthmo-optic nucleus (ION) on one side, whose neurons send their axons to the contralateral retina and make synaptic contacts there with IOTCs, phosphorylation of cAMP response element-binding protein was observed in the PKCα-BCs in the contralateral retina, but not in the ipsilateral retina. This suggests that electrical stimulation of ION activated PKCα-BCs through synapses from IOTCs to PKCα-BCs, thus stimulating transcription in PKCα-BCs. Thus, centrifugal attentional signals may facilitate visual responses of RGCs via the PKCα-BCs.
Collapse
Affiliation(s)
- Hiroyuki Uchiyama
- Department of Information Science and Biomedical Engineering, Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| | - Shinji Matsutani
- Department of Functional Morphology, School of Nursing, Kitasato University, Sagamihara, Japan
| | - Hiroshi Ohno
- Department of Information Science and Biomedical Engineering, Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| | - Seiya Yamaoka
- Department of Information Science and Biomedical Engineering, Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| | - Takuya Mizokami
- Department of Information Science and Biomedical Engineering, Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| | - Shiho Sugimoto
- Department of Information Science and Biomedical Engineering, Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| | - Yasuhiro Hirashima
- Department of Information Science and Biomedical Engineering, Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
5
|
Roy S, Wang D, Rudzite AM, Perry B, Scalabrino ML, Thapa M, Gong Y, Sher A, Field GD. Large-scale interrogation of retinal cell functions by 1-photon light-sheet microscopy. CELL REPORTS METHODS 2023; 3:100453. [PMID: 37159670 PMCID: PMC10163030 DOI: 10.1016/j.crmeth.2023.100453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/05/2023] [Accepted: 03/24/2023] [Indexed: 05/11/2023]
Abstract
Visual processing in the retina depends on the collective activity of large ensembles of neurons organized in different layers. Current techniques for measuring activity of layer-specific neural ensembles rely on expensive pulsed infrared lasers to drive 2-photon activation of calcium-dependent fluorescent reporters. We present a 1-photon light-sheet imaging system that can measure the activity in hundreds of neurons in the ex vivo retina over a large field of view while presenting visual stimuli. This allows for a reliable functional classification of different retinal cell types. We also demonstrate that the system has sufficient resolution to image calcium entry at individual synaptic release sites across the axon terminals of dozens of simultaneously imaged bipolar cells. The simple design, large field of view, and fast image acquisition make this a powerful system for high-throughput and high-resolution measurements of retinal processing at a fraction of the cost of alternative approaches.
Collapse
Affiliation(s)
- Suva Roy
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Depeng Wang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Andra M. Rudzite
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Benjamin Perry
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Miranda L. Scalabrino
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | - Mishek Thapa
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | - Yiyang Gong
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Alexander Sher
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Greg D. Field
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA 90024, USA
| |
Collapse
|
6
|
Sinha T, Ikelle L, Makia MS, Crane R, Zhao X, Kakakhel M, Al-Ubaidi MR, Naash MI. Riboflavin deficiency leads to irreversible cellular changes in the RPE and disrupts retinal function through alterations in cellular metabolic homeostasis. Redox Biol 2022; 54:102375. [PMID: 35738087 PMCID: PMC9233280 DOI: 10.1016/j.redox.2022.102375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 10/25/2022] Open
Abstract
Ariboflavinosis is a pathological condition occurring as a result of riboflavin deficiency. This condition is treatable if detected early enough, but it lacks timely diagnosis. Critical symptoms of ariboflavinosis include neurological and visual manifestations, yet the effects of flavin deficiency on the retina are not well investigated. Here, using a diet induced mouse model of riboflavin deficiency, we provide the first evidence of how retinal function and metabolism are closely intertwined with riboflavin homeostasis. We find that diet induced riboflavin deficiency causes severe decreases in retinal function accompanied by structural changes in the neural retina and retinal pigment epithelium (RPE). This is preceded by increased signs of cellular oxidative stress and metabolic disorder, in particular dysregulation in lipid metabolism, which is essential for both photoreceptors and the RPE. Though many of these deleterious phenotypes can be ameliorated by riboflavin supplementation, our data suggests that some patients may continue to suffer from multiple pathologies at later ages. These studies provide an essential cellular and mechanistic foundation linking defects in cellular flavin levels with the manifestation of functional deficiencies in the visual system and paves the way for a more in-depth understanding of the cellular consequences of ariboflavinosis.
Collapse
Affiliation(s)
- Tirthankar Sinha
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Larissa Ikelle
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Mustafa S Makia
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Ryan Crane
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Xue Zhao
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Mashal Kakakhel
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Muayyad R Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA.
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
7
|
Wright P, Rodgers J, Wynne J, Bishop PN, Lucas RJ, Milosavljevic N. Viral Transduction of Human Rod Opsin or Channelrhodopsin Variants to Mouse ON Bipolar Cells Does Not Impact Retinal Anatomy or Cause Measurable Death in the Targeted Cells. Int J Mol Sci 2021; 22:ijms222313111. [PMID: 34884916 PMCID: PMC8658283 DOI: 10.3390/ijms222313111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
The viral gene delivery of optogenetic actuators to the surviving inner retina has been proposed as a strategy for restoring vision in advanced retinal degeneration. We investigated the safety of ectopic expression of human rod opsin (hRHO), and two channelrhodopsins (enhanced sensitivity CoChR-3M and red-shifted ReaChR) by viral gene delivery in ON bipolar cells of the mouse retina. Adult Grm6Cre mice were bred to be retinally degenerate or non-retinally degenerate (homozygous and heterozygous for the rd1Pde6b mutation, respectively) and intravitreally injected with recombinant adeno-associated virus AAV2/2(quad Y-F) serotype containing a double-floxed inverted transgene comprising one of the opsins of interest under a CMV promoter. None of the opsins investigated caused changes in retinal thickness; induced apoptosis in the retina or in transgene expressing cells; or reduced expression of PKCα (a specific bipolar cell marker). No increase in retinal inflammation at the level of gene expression (IBA1/AIF1) was found within the treated mice compared to controls. The expression of hRHO, CoChR or ReaChR under a strong constitutive promoter in retinal ON bipolar cells following intravitreal delivery via AAV2 does not cause either gross changes in retinal health, or have a measurable impact on the survival of targeted cells.
Collapse
|
8
|
Excitatory Amino Acid Transporter EAAT5 Improves Temporal Resolution in the Retina. eNeuro 2021; 8:ENEURO.0406-21.2021. [PMID: 34772693 PMCID: PMC8670604 DOI: 10.1523/eneuro.0406-21.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/16/2021] [Indexed: 11/21/2022] Open
Abstract
Excitatory amino acid transporters (EAATs) remove glutamate from the synaptic cleft. In the retina, EAAT1 and EAAT2 are considered the major glutamate transporters. However, it has not yet been possible to determine how EAAT5 shapes the retinal light responses because of the lack of a selective EAAT5 blocker or EAAT5 knock-out (KO) animal model. In this study, EAAT5 was found to be expressed in a punctate manner close to release sites of glutamatergic synapses in the mouse retina. Light responses from retinae of wild-type (WT) and of a newly generated model with a targeted deletion of EAAT5 (EAAT5-/-) were recorded in vitro using multielectrode arrays (MEAs). Flicker resolution was considerably lower in EAAT5-/- retinae than in WT retinae. The close proximity to the glutamate release site makes EAAT5 an ideal tool to improve temporal information processing in the retina by controlling information transfer at glutamatergic synapses.
Collapse
|
9
|
Heinbockel T, Straiker A. Cannabinoids Regulate Sensory Processing in Early Olfactory and Visual Neural Circuits. Front Neural Circuits 2021; 15:662349. [PMID: 34305536 PMCID: PMC8294086 DOI: 10.3389/fncir.2021.662349] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/11/2021] [Indexed: 12/25/2022] Open
Abstract
Our sensory systems such as the olfactory and visual systems are the target of neuromodulatory regulation. This neuromodulation starts at the level of sensory receptors and extends into cortical processing. A relatively new group of neuromodulators includes cannabinoids. These form a group of chemical substances that are found in the cannabis plant. Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are the main cannabinoids. THC acts in the brain and nervous system like the chemical substances that our body produces, the endogenous cannabinoids or endocannabinoids, also nicknamed the brain's own cannabis. While the function of the endocannabinoid system is understood fairly well in limbic structures such as the hippocampus and the amygdala, this signaling system is less well understood in the olfactory pathway and the visual system. Here, we describe and compare endocannabinoids as signaling molecules in the early processing centers of the olfactory and visual system, the olfactory bulb, and the retina, and the relevance of the endocannabinoid system for synaptic plasticity.
Collapse
Affiliation(s)
- Thomas Heinbockel
- Department of Anatomy, Howard University College of Medicine, Washington, DC, United States
| | - Alex Straiker
- The Gill Center for Biomolecular Science and the Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| |
Collapse
|
10
|
Campbell JR, Li H, Wang Y, Kozhemyakin M, Hunt AJ, Liu X, Janz R, Heidelberger R. Phosphorylation of the Retinal Ribbon Synapse Specific t-SNARE Protein Syntaxin3B Is Regulated by Light via a Ca 2 +-Dependent Pathway. Front Cell Neurosci 2020; 14:587072. [PMID: 33192329 PMCID: PMC7606922 DOI: 10.3389/fncel.2020.587072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/11/2020] [Indexed: 12/27/2022] Open
Abstract
Neurotransmitter release at retinal ribbon-style synapses utilizes a specialized t-SNARE protein called syntaxin3B (STX3B). In contrast to other syntaxins, STX3 proteins can be phosphorylated in vitro at T14 by Ca2+/calmodulin-dependent protein kinase II (CaMKII). This modification has the potential to modulate SNARE complex formation required for neurotransmitter release in an activity-dependent manner. To determine the extent to which T14 phosphorylation occurs in vivo in the mammalian retina and characterize the pathway responsible for the in vivo phosphorylation of T14, we utilized quantitative immunofluorescence to measure the levels of STX3 and STX3 phosphorylated at T14 (pSTX3) in the synaptic terminals of mouse retinal photoreceptors and rod bipolar cells (RBCs). Results demonstrate that STX3B phosphorylation at T14 is light-regulated and dependent upon the elevation of intraterminal Ca2+. In rod photoreceptor terminals, the ratio of pSTX3 to STX3 was significantly higher in dark-adapted mice, when rods are active, than in light-exposed mice. By contrast, in RBC terminals, the ratio of pSTX3 to STX3 was higher in light-exposed mice, when these terminals are active, than in dark-adapted mice. These results were recapitulated in the isolated eyecup preparation, but only when Ca2+ was included in the external medium. In the absence of external Ca2+, pSTX3 levels remained low regardless of light/dark exposure. Using the isolated RBC preparation, we next showed that elevation of intraterminal Ca2+ alone was sufficient to increase STX3 phosphorylation at T14. Furthermore, both the non-specific kinase inhibitor staurosporine and the selective CaMKII inhibitor AIP inhibited the Ca2+-dependent increase in the pSTX3/STX3 ratio in isolated RBC terminals, while in parallel experiments, AIP suppressed RBC depolarization-evoked exocytosis, measured using membrane capacitance measurements. Our data support a novel, illumination-regulated modulation of retinal ribbon-style synapse function in which activity-dependent Ca2+ entry drives the phosphorylation of STX3B at T14 by CaMKII, which in turn, modulates the ability to form SNARE complexes required for exocytosis.
Collapse
Affiliation(s)
- Joseph R Campbell
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Hongyan Li
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yanzhao Wang
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Maxim Kozhemyakin
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Albert J Hunt
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Xiaoqin Liu
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Roger Janz
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, TX, United States.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Ruth Heidelberger
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, TX, United States.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
11
|
Chan CSY, Lonfat N, Zhao R, Davis AE, Li L, Wu MR, Lin CH, Ji Z, Cepko CL, Wang S. Cell type- and stage-specific expression of Otx2 is regulated by multiple transcription factors and cis-regulatory modules in the retina. Development 2020; 147:dev187922. [PMID: 32631829 PMCID: PMC7406324 DOI: 10.1242/dev.187922] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/22/2020] [Indexed: 12/22/2022]
Abstract
Transcription factors (TFs) are often used repeatedly during development and homeostasis to control distinct processes in the same and/or different cellular contexts. Considering the limited number of TFs in the genome and the tremendous number of events that need to be regulated, re-use of TFs is necessary. We analyzed how the expression of the homeobox TF, orthodenticle homeobox 2 (Otx2), is regulated in a cell type- and stage-specific manner during development in the mouse retina. We identified seven Otx2 cis-regulatory modules (CRMs), among which the O5, O7 and O9 CRMs mark three distinct cellular contexts of Otx2 expression. We discovered that Otx2, Crx and Sox2, which are well-known TFs regulating retinal development, bind to and activate the O5, O7 or O9 CRMs, respectively. The chromatin status of these three CRMs was found to be distinct in vivo in different retinal cell types and at different stages. We conclude that retinal cells use a cohort of TFs with different expression patterns and multiple CRMs with different chromatin configurations to regulate the expression of Otx2 precisely.
Collapse
Affiliation(s)
- Candace S Y Chan
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA 94304, USA
| | - Nicolas Lonfat
- Departments of Genetics and Ophthalmology, Blavatnik Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Rong Zhao
- Departments of Genetics and Ophthalmology, Blavatnik Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Alexander E Davis
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA 94304, USA
| | - Liang Li
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA 94304, USA
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Man-Ru Wu
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA 94304, USA
| | - Cheng-Hui Lin
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA 94304, USA
| | - Zhe Ji
- Department of Bioengineering, Northwestern University, Evanston, IL 60208, USA
| | - Constance L Cepko
- Departments of Genetics and Ophthalmology, Blavatnik Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Sui Wang
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA 94304, USA
| |
Collapse
|
12
|
Gupta CL, Nag TC, Jha KA, Kathpalia P, Maurya M, Kumar P, Gupta S, Roy TS. Changes in the Inner Retinal Cells after Intense and Constant Light Exposure in Sprague-Dawley Rats. Photochem Photobiol 2020; 96:1061-1073. [PMID: 32112401 DOI: 10.1111/php.13244] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022]
Abstract
Light insult causes photoreceptor death. Few studies reported that continuous exposure to light affects horizontal, Müller and ganglion cells. We aimed to see the effect of constant light exposure on bipolar and amacrine cells. Adult Sprague-Dawley rats were exposed to 300 or 3000 lux for 7 days in 12-h light: 12-h dark cycles (12L:12D). The latter group was then exposed to 24L:0D for 48 h to induce significant damage. The same animals were reverted to 300 lux and reared for 15 days in 12L:12D cycles. They were sacrificed on different days to find the degree of retinal recovery, if any, from light injury. Besides photoreceptor death, continuous light for 48 h resulted in downregulation of parvalbumin in amacrine cells and recoverin in cone bipolar cells (CBC). Rod bipolar cells (RBC) maintained an unaltered pattern of PKC-α expression. Upon reversal, there were increased expressions of parvalbumin in amacrine cells and recoverin in CBC, while RBC showed an increasing trend of PKC-α expression. The data show that damage in bipolar and amacrine cells after exposure to intense, continuous light can be ameliorated upon reversal to normal LD cycles to which the animals were initially acclimated to.
Collapse
Affiliation(s)
- Chandan L Gupta
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Tapas C Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Kumar Abhiram Jha
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Poorti Kathpalia
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Meenakshi Maurya
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Pankaj Kumar
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Sneha Gupta
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Tara S Roy
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
13
|
Shen Y, Luo X, Liu S, Shen Y, Nawy S, Shen Y. Rod bipolar cells dysfunction occurs before ganglion cells loss in excitotoxin-damaged mouse retina. Cell Death Dis 2019; 10:905. [PMID: 31787761 PMCID: PMC6885518 DOI: 10.1038/s41419-019-2140-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/29/2019] [Accepted: 11/07/2019] [Indexed: 11/16/2022]
Abstract
Progressive degeneration of retinal ganglion cells (RGCs) will cause a blinding disease. Most of the study is focusing on the RGCs itself. In this study, we demonstrate a decline of the presynaptic rod bipolar cells (RBCs) response precedes RGCs loss and a decrease of protein kinase Cα (PKCα) protein expression in RBCs dendrites, using whole-cell voltage-clamp, electroretinography (ERG) measurements, immunostaining and co-immunoprecipitation. We present evidence showing that N-methyl D-aspartate receptor subtype 2B (NR2B)/protein interacting with C kinase 1 (PICK1)-dependent degradation of PKCα protein in RBCs contributes to RBCs functional loss. Mechanistically, NR2B forms a complex with PKCα and PICK1 to promote the degradation of PKCα in a phosphorylation- and proteasome-dependent manner. Similar deficits in PKCα expression and response sensitivity were observed in acute ocular hypertension and optic never crush models. In conclusion, we find that three separate experimental models of neurodegeneration, often used to specifically target RGCs, disrupt RBCs function prior to the loss of RGCs. Our findings provide useful information for developing new diagnostic tools and treatments for retinal ganglion cells degeneration disease.
Collapse
Affiliation(s)
- Yumeng Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Xue Luo
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Shiliang Liu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei Province, China
| | - Ying Shen
- Medical School, Zhejiang University, Hangzhou, 310053, Zhejiang Province, China
| | - Scott Nawy
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, 94720, CA, USA
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, Hubei Province, China.
| |
Collapse
|
14
|
Hall LM, Hellmer CB, Koehler CC, Ichinose T. Bipolar Cell Type-Specific Expression and Conductance of Alpha-7 Nicotinic Acetylcholine Receptors in the Mouse Retina. Invest Ophthalmol Vis Sci 2019; 60:1353-1361. [PMID: 30934054 PMCID: PMC6738513 DOI: 10.1167/iovs.18-25753] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Purpose Motion detection is performed by a unique neural network in the mouse retina. Starburst amacrine cells (SACs), which release acetylcholine and gamma-aminobutyric acid (GABA) into the network, are key neurons in the motion detection pathway. Although GABA contributions to the network have been extensively studied, the role of acetylcholine is minimally understood. Acetylcholine receptors are present in a subset of bipolar, amacrine, and ganglion cells. We focused on α7-nicotinic acetylcholine receptor (α7-nAChR) expression in bipolar cells, and investigated which types of bipolar cells possess α7-nAChRs. Methods Retinal slice sections were prepared from C57BL/6J and Gus8.4-GFP mice. Specific expression of α7-nAChRs in bipolar cells was examined using α-bungarotoxin (αBgTx)-conjugated Alexa dyes co-labeled with specific bipolar cell markers. Whole-cell recordings were conducted from bipolar cells in retinal slice sections. A selective α7-nAChR agonist, PNU282987, was applied by a puff and responses were recorded. Results αBgTx fluorescence was observed primarily in bipolar cell somas. We found that α7-nAChRs were expressed by the majority of type 1, 2, 4, and 7 bipolar cells. Whole-cell recordings revealed that type 2 and 7 bipolar cells depolarized by PNU application. In contrast, α7-nAChRs were not detected in most of type 3, 5, 6, and rod bipolar cells. Conclusions We found that α7-nAChRs are present in bipolar cells in a type-specific manner. Because these bipolar cells provide synaptic inputs to SACs and direction selective ganglion cells, α7-nAChRs may play a role in direction selectivity by modulating these bipolar cells' outputs.
Collapse
Affiliation(s)
- Leo M Hall
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Chase B Hellmer
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Christina C Koehler
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Tomomi Ichinose
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
15
|
Haug MF, Berger M, Gesemann M, Neuhauss SCF. Differential expression of PKCα and -β in the zebrafish retina. Histochem Cell Biol 2019; 151:521-530. [PMID: 30604284 DOI: 10.1007/s00418-018-1764-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2018] [Indexed: 01/08/2023]
Abstract
The retina is a complex neural circuit, which processes and transmits visual information from light perceiving photoreceptors to projecting retinal ganglion cells. Much of the computational power of the retina rests on signal integrating interneurons, such as bipolar cells. Commercially available antibodies against bovine and human conventional protein kinase C (PKC) α and -β are frequently used as markers for retinal ON-bipolar cells in different species, despite the fact that it is not known which bipolar cell subtype(s) they actually label. In zebrafish (Danio rerio) five prkc genes (coding for PKC proteins) have been identified. Their expression has not been systematically determined. While prkcg is not expressed in retinal tissue, the other four prkc (prkcaa, prkcab, prkcba, prkcbb) transcripts were found in different parts of the inner nuclear layer and some as well in the retinal ganglion cell layer. Immunohistochemical analysis in adult zebrafish retina using fluorescent in situ hybridization and PKC antibodies showed an overlapping immunolabeling of ON-bipolar cells that are most likely of the BON s6 and BON s6L or RRod type. However, comparison of transcript expression with immunolabeling, implies that these antibodies are not specific for one single zebrafish conventional PKC, but rather detect a combination of PKC -α and -β variants.
Collapse
Affiliation(s)
- Marion F Haug
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Manuela Berger
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Matthias Gesemann
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Stephan C F Neuhauss
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
16
|
Abstract
The mouse retina has a layered structure that is composed of five classes of neurons supported by Müller glial and pigment epithelial cells. Recent studies have made progress in the classification of bipolar and ganglion cells, and also in the wiring of rod-driven signaling, color coding, and directional selectivity. Molecular biological techniques, such as genetic manipulation, transcriptomics, and fluorescence imaging, have contributed a lot to these advancements. The mouse retina has consistently been an important experimental system for both basic and clinical neurosciences.
Collapse
Affiliation(s)
- Yoshihiko Tsukamoto
- Department of Biology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan.
| |
Collapse
|
17
|
The TRPM1 Channel Is Required for Development of the Rod ON Bipolar Cell-AII Amacrine Cell Pathway in the Retinal Circuit. J Neurosci 2017; 37:9889-9900. [PMID: 28899920 DOI: 10.1523/jneurosci.0824-17.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 12/28/2022] Open
Abstract
Neurotransmission plays an essential role in neural circuit formation in the central nervous system (CNS). Although neurotransmission has been recently clarified as a key modulator of retinal circuit development, the roles of individual synaptic transmissions are not yet fully understood. In the current study, we investigated the role of neurotransmission from photoreceptor cells to ON bipolar cells in development using mutant mouse lines of both sexes in which this transmission is abrogated. We found that deletion of the ON bipolar cation channel TRPM1 results in the abnormal contraction of rod bipolar terminals and a decreased number of their synaptic connections with amacrine cells. In contrast, these histological alterations were not caused by a disruption of total glutamate transmission due to loss of the ON bipolar glutamate receptor mGluR6 or the photoreceptor glutamate transporter VGluT1. In addition, TRPM1 deficiency led to the reduction of total dendritic length, branch numbers, and cell body size in AII amacrine cells. Activated Goα, known to close the TRPM1 channel, interacted with TRPM1 and induced the contraction of rod bipolar terminals. Furthermore, overexpression of Channelrhodopsin-2 partially rescued rod bipolar cell development in the TRPM1-/- retina, whereas the rescue effect by a constitutively closed form of TRPM1 was lower than that by the native form. Our results suggest that TRPM1 channel opening is essential for rod bipolar pathway establishment in development.SIGNIFICANCE STATEMENT Neurotransmission has been recognized recently as a key modulator of retinal circuit development in the CNS. However, the roles of individual synaptic transmissions are not yet fully understood. In the current study, we focused on neurotransmission between rod photoreceptor cells and rod bipolar cells in the retina. We used genetically modified mouse models which abrogate each step of neurotransmission: presynaptic glutamate release, postsynaptic glutamate reception, or transduction channel function. We found that the TRPM1 transduction channel is required for the development of rod bipolar cells and their synaptic formation with subsequent neurons, independently of glutamate transmission. This study advances our understanding of neurotransmission-mediated retinal circuit refinement.
Collapse
|
18
|
Neuillé M, Morgans CW, Cao Y, Orhan E, Michiels C, Sahel JA, Audo I, Duvoisin RM, Martemyanov KA, Zeitz C. LRIT3 is essential to localize TRPM1 to the dendritic tips of depolarizing bipolar cells and may play a role in cone synapse formation. Eur J Neurosci 2015; 42:1966-75. [PMID: 25997951 DOI: 10.1111/ejn.12959] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 04/30/2015] [Accepted: 05/17/2015] [Indexed: 02/06/2023]
Abstract
Mutations in LRIT3 lead to complete congenital stationary night blindness (cCSNB). The exact role of LRIT3 in ON-bipolar cell signaling cascade remains to be elucidated. Recently, we have characterized a novel mouse model lacking Lrit3 [no b-wave 6, (Lrit3(nob6/nob6) )], which displays similar abnormalities to patients with cCSNB with LRIT3 mutations. Here we compare the localization of components of the ON-bipolar cell signaling cascade in wild-type and Lrit3(nob6/nob6) retinal sections by immunofluorescence confocal microscopy. An anti-LRIT3 antibody was generated. Immunofluorescent staining of LRIT3 in wild-type mice revealed a specific punctate labeling in the outer plexiform layer (OPL), which was absent in Lrit3(nob6/nob6) mice. LRIT3 did not co-localize with ribeye or calbindin but co-localized with mGluR6. TRPM1 staining was severely decreased at the dendritic tips of all depolarizing bipolar cells in Lrit3(nob6/nob6) mice. mGluR6, GPR179, RGS7, RGS11 and Gβ5 immunofluorescence was absent at the dendritic tips of cone ON-bipolar cells in Lrit3(nob6/nob6) mice, while it was present at the dendritic tips of rod bipolar cells. Furthermore, peanut agglutinin (PNA) labeling was severely reduced in the OPL in Lrit3(nob6/nob6) mice. This study confirmed the localization of LRIT3 at the dendritic tips of depolarizing bipolar cells in mouse retina and demonstrated the dependence of TRPM1 localization on the presence of LRIT3. As tested components of the ON-bipolar cell signaling cascade and PNA revealed disrupted localization, an additional function of LRIT3 in cone synapse formation is suggested. These results point to a possibly different regulation of the mGluR6 signaling cascade between rod and cone ON-bipolar cells.
Collapse
Affiliation(s)
- Marion Neuillé
- INSERM, U968, Paris, F-75012, France.,CNRS, UMR_7210, Paris, F-75012, France.,Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, F-75012, France
| | - Catherine W Morgans
- Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Yan Cao
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Elise Orhan
- INSERM, U968, Paris, F-75012, France.,CNRS, UMR_7210, Paris, F-75012, France.,Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, F-75012, France
| | - Christelle Michiels
- INSERM, U968, Paris, F-75012, France.,CNRS, UMR_7210, Paris, F-75012, France.,Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, F-75012, France
| | - José-Alain Sahel
- INSERM, U968, Paris, F-75012, France.,CNRS, UMR_7210, Paris, F-75012, France.,Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, F-75012, France.,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, DHU ViewMaintain, INSERM-DHOS CIC, 1423, Paris, F-75012, France.,Institute of Ophthalmology, University College of London, London, EC1V 9EL, UK.,Fondation Ophtalmologique Adolphe de Rothschild, Paris, F-75019, France.,Académie des Sciences-Institut de France, Paris, F-75006, France
| | - Isabelle Audo
- INSERM, U968, Paris, F-75012, France.,CNRS, UMR_7210, Paris, F-75012, France.,Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, F-75012, France.,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, DHU ViewMaintain, INSERM-DHOS CIC, 1423, Paris, F-75012, France.,Institute of Ophthalmology, University College of London, London, EC1V 9EL, UK
| | - Robert M Duvoisin
- Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Kirill A Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Christina Zeitz
- INSERM, U968, Paris, F-75012, France.,CNRS, UMR_7210, Paris, F-75012, France.,Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, F-75012, France
| |
Collapse
|
19
|
Tooker RE, Vigh J. Light-evoked S-nitrosylation in the retina. J Comp Neurol 2015; 523:2082-110. [PMID: 25823749 DOI: 10.1002/cne.23780] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/05/2015] [Accepted: 03/23/2015] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) synthesis in the retina is triggered by light stimulation. NO has been shown to modulate visual signal processing at multiple sites in the vertebrate retina, via activation of the most sensitive target of NO signaling, soluble guanylate cyclase. NO can also alter protein structure and function and exert biological effects directly by binding to free thiol groups of cysteine residues in a chemical reaction called S-nitrosylation. However, in the central nervous system, including the retina, this reaction has not been considered to be significant under physiological conditions. Here we provide immunohistochemical evidence for extensive S-nitrosylation that takes place in the goldfish and mouse retinas under physiologically relevant light intensities, in an intensity-dependent manner, with a strikingly similar pattern in both species. Pretreatment with N-ethylmaleimide (NEM), which occludes S-nitrosylation, or with 1-(2-trifluromethylphenyl)imidazole (TRIM), an inhibitor of neuronal NO synthase, eliminated the light-evoked increase in S-nitrosylated protein immunofluorescence (SNI) in the retinas of both species. Similarly, light did not increase SNI, above basal levels, in retinas of transgenic mice lacking neuronal NO synthase. Qualitative analysis of the light-adapted mouse retina with mass spectrometry revealed more than 300 proteins that were S-nitrosylated upon illumination, many of which are known to participate directly in retinal signal processing. Our data strongly suggest that in the retina light-evoked NO production leads to extensive S-nitrosylation and that this process is a significant posttranslational modification affecting a wide range of proteins under physiological conditions.
Collapse
Affiliation(s)
- Ryan E Tooker
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, 80523
| | - Jozsef Vigh
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, 80523
| |
Collapse
|
20
|
Huh YJ, Choi JS, Jeon CJ. Localization of Rod Bipolar Cells in the Mammalian Retina Using an Antibody Against the α1c L-type Ca(2+) Channel. Acta Histochem Cytochem 2015; 48:47-52. [PMID: 26019373 PMCID: PMC4427564 DOI: 10.1267/ahc.14049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 03/16/2015] [Indexed: 11/22/2022] Open
Abstract
Bipolar cells transmit stimuli via graded changes in membrane potential and neurotransmitter release is modulated by Ca2+ influx through L-type Ca2+ channels. The purpose of this study was to determine whether the α1c subunit of L-type voltage-gated Ca2+ channel (α1c L-type Ca2+ channel) colocalizes with protein kinase C alpha (PKC-α), which labels rod bipolar cells. Retinal whole mounts and vertical sections from mouse, hamster, rabbit, and dog were immunolabeled with antibodies against PKC-α and α1c L-type Ca2+ channel, using fluorescein isothiocyanate (FITC) and Cy5 as visualizing agents. PKC-α-immunoreactive cells were morphologically identical to rod bipolar cells as previously reported. Their cell bodies were located within the inner nuclear layer, dendritic processes branched into the outer plexiform layer, and axons extended into the inner plexiform layer. Immunostaining showed that α1c L-type Ca2+ channel colocalized with PKC-α in rod bipolar cells. The identical expression of PKC-α and α1c L-type Ca2+ channel indicates that the α1c L-type Ca2+ channel has a specific role in rod bipolar cells, and the antibody against the α1c L-type Ca2+ channel may be a useful marker for studying the distribution of rod bipolar cells in mouse, hamster, rabbit, and dog retinas.
Collapse
Affiliation(s)
- Yu-Jin Huh
- Department of Biology, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University
| | - Jae-Sik Choi
- Department of Biology, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University
| | - Chang-Jin Jeon
- Department of Biology, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University
| |
Collapse
|
21
|
Pérez de Sevilla Müller L, Sargoy A, Fernández-Sánchez L, Rodriguez A, Liu J, Cuenca N, Brecha N. Expression and cellular localization of the voltage-gated calcium channel α2δ3 in the rodent retina. J Comp Neurol 2015; 523:1443-60. [PMID: 25631988 DOI: 10.1002/cne.23751] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 01/21/2015] [Accepted: 01/24/2015] [Indexed: 12/11/2022]
Abstract
High-voltage-activated calcium channels are hetero-oligomeric protein complexes that mediate multiple cellular processes, including the influx of extracellular Ca(2+), neurotransmitter release, gene transcription, and synaptic plasticity. These channels consist of a primary α(1) pore-forming subunit, which is associated with an extracellular α(2)δ subunit and an intracellular β auxiliary subunit, which alter the gating properties and trafficking of the calcium channel. The cellular localization of the α(2)δ(3) subunit in the mouse and rat retina is unknown. In this study using RT-PCR, a single band at ∼ 305 bp corresponding to the predicted size of the α(2)δ(3) subunit fragment was found in mouse and rat retina and brain homogenates. Western blotting of rodent retina and brain homogenates showed a single 123-kDa band. Immunohistochemistry with an affinity-purified antibody to the α(2)δ(3) subunit revealed immunoreactive cell bodies in the ganglion cell layer and inner nuclear layer and immunoreactive processes in the inner plexiform layer and the outer plexiform layer. α(2)δ(3) immunoreactivity was localized to multiple cell types, including ganglion, amacrine, and bipolar cells and photoreceptors, but not horizontal cells. The expression of the α(2)δ(3) calcium channel subunit to multiple cell types suggests that this subunit participates widely in Ca-channel-mediated signaling in the retina.
Collapse
Affiliation(s)
- Luis Pérez de Sevilla Müller
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, 90095
| | - Allison Sargoy
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, 90095.,Department of Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, 90095.,Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, 90095
| | | | - Allen Rodriguez
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, 90095
| | - Janelle Liu
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, 90095
| | - Nicolás Cuenca
- Physiology, Genetics and Microbiology, University of Alicante, 03690, Alicante, Spain
| | - Nicholas Brecha
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, 90095.,Department of Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, 90095.,Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, 90095.,CURE-Digestive Diseases Research Center, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, 90095.,Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California, 90073
| |
Collapse
|
22
|
Butz E, Peichl L, Müller B. Cone bipolar cells in the retina of the microbat Carollia perspicillata. J Comp Neurol 2015; 523:963-81. [PMID: 25521284 DOI: 10.1002/cne.23726] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 11/22/2014] [Accepted: 12/03/2014] [Indexed: 11/08/2022]
Abstract
We studied the retinal cone bipolar cells of Carollia perspicillata, a microchiropteran bat of the phyllostomid family. Microchiroptera are strongly nocturnal, with small eyes and rod-dominated retinae. However, they also possess a significant cone population (2-4%) comprising two spectral types, which are hence the basis for daylight and color vision. We used antibodies against the calcium-binding protein recoverin and the carbohydrate epitope 15 (CD15) as reliable markers for certain cone bipolar cells. Dye injections of recoverin- or CD15-prelabeled cone bipolar cells in vertical slices revealed the morphology of the axon terminal system of individual bipolar cells. Seven distinct cone bipolar cell types were identified. They differed in the morphology and stratification level of their axon terminal system in the inner plexiform layer and in immunoreactivity for recoverin and/or CD15. Additional immunocytochemical markers were used to assess the functional ON/OFF subdivision of the inner plexiform layer. In line with the extended thickness of the ON sublayer of the inner plexiform layer in the microbat retina, more ON than OFF cone bipolar cell types were found, namely, four versus three. Most likely, in the bats' predominantly dark environment, ON signals have greater importance for contrast perception. We conclude that the microbat retina conforms to the general mammalian blueprint, in which light signals of intensities above rod sensitivity are detected by cones and transmitted to various types of ON and OFF cone bipolar cells.
Collapse
Affiliation(s)
- Elisabeth Butz
- Max Planck Institute for Brain Research, 60438, Frankfurt am Main, Germany
| | | | | |
Collapse
|
23
|
Cécyre B, Monette M, Beudjekian L, Casanova C, Bouchard JF. Localization of diacylglycerol lipase alpha and monoacylglycerol lipase during postnatal development of the rat retina. Front Neuroanat 2014; 8:150. [PMID: 25565975 PMCID: PMC4266045 DOI: 10.3389/fnana.2014.00150] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/22/2014] [Indexed: 12/12/2022] Open
Abstract
In recent decades, there has been increased interest in the physiological roles of the endocannabinoid (eCB) system and its receptors, the cannabinoid receptor types 1 (CB1R) and 2 (CB2R). Exposure to cannabinoids during development results in neurofunctional alterations, which implies that the eCB system is involved in the developmental processes of the brain. Because of their lipophilic nature, eCBs are synthesized on demand and are not stored in vesicles. Consequently, the enzymes responsible for their synthesis and degradation are key regulators of their physiological actions. Therefore, knowing the localization of these enzymes during development is crucial for a better understanding of the role played by eCBs during the formation of the central nervous system. In this study, we investigated the developmental protein localization of the synthesizing and catabolic enzymes of the principal eCB, 2-arachidonoylglycerol (2-AG) in the retinas of young and adult rats. The distribution of the enzymes responsible for the synthesis (DAGLα) and the degradation (MAGL) of 2-AG was determined for every retinal cell type from birth to adulthood. Our results indicate that DAGLα is present early in postnatal development. It is highly expressed in photoreceptor, horizontal, amacrine, and ganglion cells. MAGL appears later during the development of the retina and its presence is limited to amacrine and Müller cells. Overall, these results suggest that 2-AG is strongly present in early retinal development and might be involved in the regulation of the structural and functional maturation of the retina.
Collapse
Affiliation(s)
- Bruno Cécyre
- Laboratoire de Neuropharmacologie, École d'Optométrie, Université de Montréal Montréal, QC, Canada ; Laboratoire des Neurosciences de la vision, École d'Optométrie, Université de Montréal Montréal, QC, Canada
| | - Marjorie Monette
- Laboratoire de Neuropharmacologie, École d'Optométrie, Université de Montréal Montréal, QC, Canada
| | - Liza Beudjekian
- Laboratoire de Neuropharmacologie, École d'Optométrie, Université de Montréal Montréal, QC, Canada
| | - Christian Casanova
- Laboratoire des Neurosciences de la vision, École d'Optométrie, Université de Montréal Montréal, QC, Canada
| | - Jean-François Bouchard
- Laboratoire de Neuropharmacologie, École d'Optométrie, Université de Montréal Montréal, QC, Canada
| |
Collapse
|
24
|
Sherry DM, Blackburn BA. P-Rex2, a Rac-guanine nucleotide exchange factor, is expressed selectively in ribbon synaptic terminals of the mouse retina. BMC Neurosci 2013; 14:70. [PMID: 23844743 PMCID: PMC3716592 DOI: 10.1186/1471-2202-14-70] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 07/10/2013] [Indexed: 12/16/2022] Open
Abstract
Background Phosphatidylinositol (3,4,5)-trisphosphate-dependent Rac Exchanger 2 (P-Rex2) is a guanine nucleotide exchange factor (GEF) that specifically activates Rac GTPases, important regulators of actin cytoskeleton remodeling. P-Rex2 is known to modulate cerebellar Purkinje cell architecture and function, but P-Rex2 expression and function elsewhere in the central nervous system is unclear. To better understand potential roles for P-Rex2 in neuronal cytoskeletal remodeling and function, we performed widefield and confocal microscopy of specimens double immunolabeled for P-Rex2 and cell- and synapse-specific markers in the mouse retina. Results P-Rex2 was restricted to the plexiform layers of the retina and colocalized extensively with Vesicular Glutamate Transporter 1 (VGluT1), a specific marker for photoreceptor and bipolar cell terminals. Double labeling for P-Rex2 and peanut agglutinin, a cone terminal marker, confirmed that P-Rex2 was present in both rod and cone terminals. Double labeling with markers for specific bipolar cell types showed that P-Rex2 was present in the terminals of rod bipolar cells and multiple ON- and OFF-cone bipolar cell types. In contrast, P-Rex2 was not expressed in the processes or conventional synapses of amacrine or horizontal cells. Conclusions P-Rex2 is associated specifically with the glutamatergic ribbon synaptic terminals of photoreceptors and bipolar cells that transmit visual signals vertically through the retina. The Rac-GEF function of P-Rex2 implies a specific role for P-Rex2 and Rac-GTPases in regulating the actin cytoskeleton in glutamatergic ribbon synaptic terminals of retinal photoreceptors and bipolar cells and appears to be ideally positioned to modulate the adaptive plasticity of these terminals.
Collapse
Affiliation(s)
- David M Sherry
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 Stanton L Young Blvd, BMSB-553, Oklahoma City, OK 73104, USA.
| | | |
Collapse
|
25
|
Zabouri N, Haverkamp S. Calcium channel-dependent molecular maturation of photoreceptor synapses. PLoS One 2013; 8:e63853. [PMID: 23675510 PMCID: PMC3652833 DOI: 10.1371/journal.pone.0063853] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 04/08/2013] [Indexed: 01/08/2023] Open
Abstract
Several studies have shown the importance of calcium channels in the development and/or maturation of synapses. The CaV1.4(α1F) knockout mouse is a unique model to study the role of calcium channels in photoreceptor synapse formation. It features abnormal ribbon synapses and aberrant cone morphology. We investigated the expression and targeting of several key elements of ribbon synapses and analyzed the cone morphology in the CaV1.4(α1F) knockout retina. Our data demonstrate that most abnormalities occur after eye opening. Indeed, scaffolding proteins such as Bassoon and RIM2 are properly targeted at first, but their expression and localization are not maintained in adulthood. This indicates that either calcium or the CaV1.4 channel, or both are necessary for the maintenance of their normal expression and distribution in photoreceptors. Other proteins, such as Veli3 and PSD-95, also display abnormal expression in rods prior to eye opening. Conversely, vesicle related proteins appear normal. Our data demonstrate that the CaV1.4 channel is important for maintaining scaffolding proteins in the ribbon synapse but less vital for proteins related to vesicular release. This study also confirms that in adult retinae, cones show developmental features such as sprouting and synaptogenesis. Overall we present evidence that in the absence of the CaV1.4 channel, photoreceptor synapses remain immature and are unable to stabilize.
Collapse
Affiliation(s)
- Nawal Zabouri
- Neuroanatomy, Max-Planck-Institute for Brain Research, Frankfurt am Main, Germany.
| | | |
Collapse
|
26
|
Star EN, Zhu M, Shi Z, Liu H, Pashmforoush M, Sauve Y, Bruneau BG, Chow RL. Regulation of retinal interneuron subtype identity by the Iroquois homeobox gene Irx6. Development 2013; 139:4644-55. [PMID: 23172916 DOI: 10.1242/dev.081729] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Interneuronal subtype diversity lies at the heart of the distinct molecular properties and synaptic connections that shape the formation of the neuronal circuits that are necessary for the complex spatial and temporal processing of sensory information. Here, we investigate the role of Irx6, a member of the Iroquois homeodomain transcription factor family, in regulating the development of retinal bipolar interneurons. Using a knock-in reporter approach, we show that, in the mouse retina, Irx6 is expressed in type 2 and 3a OFF bipolar interneurons and is required for the expression of cell type-specific markers in these cells, likely through direct transcriptional regulation. In Irx6 mutant mice, presumptive type 3a bipolar cells exhibit an expansion of their axonal projection domain to the entire OFF region of the inner plexiform layer, and adopt molecular features of both type 2 and 3a bipolar cells, highlighted by the ectopic upregulation of neurokinin 3 receptor (Nk3r) and Vsx1. These findings reveal Irx6 as a key regulator of type 3a bipolar cell identity that prevents these cells from adopting characteristic features of type 2 bipolar cells. Analysis of the Irx6;Vsx1 double null retina suggests that the terminal differentiation of type 2 bipolar cells is dependent on the combined expression of the transcription factors Irx6 and Vsx1, but also points to the existence of Irx6;Vsx1-independent mechanisms in regulating OFF bipolar subtype-specific gene expression. This work provides insight into the generation of neuronal subtypes by revealing a mechanism in which opposing, yet interdependent, transcription factors regulate subtype identity.
Collapse
Affiliation(s)
- Erin N Star
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Batcha AH, Greferath U, Jobling AI, Vessey KA, Ward MM, Nithianantharajah J, Hannan AJ, Kalloniatis M, Fletcher EL. Retinal dysfunction, photoreceptor protein dysregulation and neuronal remodelling in the R6/1 mouse model of Huntington's disease. Neurobiol Dis 2011; 45:887-96. [PMID: 22198376 DOI: 10.1016/j.nbd.2011.12.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 10/26/2011] [Accepted: 12/04/2011] [Indexed: 11/15/2022] Open
Abstract
Huntington's disease (HD) is a progressive neurological disease characterised by motor dysfunction, cognitive impairment and personality changes. Previous work in HD patients and animal models of the disease has also highlighted retinal involvement. This study characterised the changes in retinal structure and function early within the progression of disease using the R6/1 mouse model of HD. The retinal phenotype was observed to occur at the same time in the disease process as other neurological deficits such as motor dysfunction (by 13 weeks of age). There was a specific functional deficit in cone response to the electroretinogram and using immunocytochemical techniques, this dysfunction was found to be likely due to a progressive and complete loss of cone opsin and transducin protein expression by 20 weeks of age. In addition, there was an increase in Müller cell gliosis and the presence of ectopic rod photoreceptor terminals. This retinal remodelling is also observed in downstream neurons, namely the rod and cone bipolar cells. While R6/1 mice exhibit significant retinal pathology simultaneously with other more classical HD alterations, this doesn't lead to extensive cell loss. These findings suggest that in HD, cone photoreceptors are initially targeted, possibly via dysregulation of protein expression or trafficking and that this process is subsequently accompanied by increased retinal stress and neuronal remodelling also involving the rod pathway. As retinal structure and connectivity are well characterised, the retina may provide a useful model tissue in which to characterise the mechanisms important in the development of neuronal pathology in HD.
Collapse
Affiliation(s)
- Abrez Hussain Batcha
- Department of Anatomy and Cell Biology, The University of Melbourne, Parkville 3010, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Pajovic S, Corson TW, Spencer C, Dimaras H, Orlic-Milacic M, Marchong MN, To KH, Thériault B, Auspitz M, Gallie BL. The TAg-RB murine retinoblastoma cell of origin has immunohistochemical features of differentiated Muller glia with progenitor properties. Invest Ophthalmol Vis Sci 2011; 52:7618-24. [PMID: 21862643 DOI: 10.1167/iovs.11-7989] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
PURPOSE Human retinoblastoma arises from an undefined developing retinal cell after inactivation of RB1. This is emulated in a murine retinoblastoma model by inactivation of pRB by retinal-specific expression of simian virus 40 large T-antigen (TAg-RB). Some mutational events after RB1 loss in humans are recapitulated at the expression level in TAg-RB, supporting preclinical evidence that this model is useful for comparative studies between mouse and human. Here, the characteristics of the TAg-RB cell of origin are defined. METHODS TAg-RB mice were killed at ages from embryonic day (E)18 to postnatal day (P)35. Tumors were analyzed by immunostaining, DNA copy number PCR, or real-time quantitative RT-PCR for TAg protein, retinal cell type markers, and retinoblastoma-relevant genes. RESULTS TAg expression began at P8 in a row of inner nuclear layer cells that increased in number through P21 to P28, when clusters reminiscent of small tumors emerged from cells that escaped a wave of apoptosis. Early TAg-expressing cells coexpressed the developmental marker Chx10 and glial markers CRALBP, clusterin, and carbonic anhydrase II (Car2), but not TuJ1, an early neuronal marker. Emerging tumors retained expression of only Chx10 and carbonic anhydrase II. As with human retinoblastoma, TAg-RB tumors showed decreased Cdh11 DNA copy number and gain of Kif14 and Mycn. It was confirmed that TAg-RB tumors lose expression of tumor suppressor cadherin-11 and overexpress oncogenes Kif14, Dek, and E2f3. CONCLUSIONS TAg-RB tumors displayed molecular similarity to human retinoblastoma and origin in a cell with features of differentiated Müller glia with progenitor properties.
Collapse
Affiliation(s)
- Sanja Pajovic
- Division of Applied Molecular Oncology, Ontario Cancer Institute/Princess Margaret Hospital, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Fatty acid amide hydrolase expression during retinal postnatal development in rats. Neuroscience 2011; 195:145-65. [PMID: 21867744 DOI: 10.1016/j.neuroscience.2011.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 07/12/2011] [Accepted: 08/03/2011] [Indexed: 01/01/2023]
Abstract
The endocannabinoid (eCB) system is thought to participate in developmental processes in the CNS. The rodent retina represents a valuable model to study CNS development because it contains well-identified cell types with established developmental timelines. The distribution of cannabinoid receptor type 1 (CB1R) was recently revealed in the developing retina; however, the expression patterns of other elements of this system remain unknown. In this study, we investigated the expression pattern of the degradative enzyme fatty acid amide hydrolase (FAAH), a key regulator of the eCB system, in the rat retina during postnatal development. To identify the cells expressing the enzyme, co-stainings were carried out for FAAH and retinal cell type markers. FAAH was expressed at postnatal day (P) 1 in ganglion and cholinergic amacrine cells. In the course of development, it appeared in cones, horizontal, and bipolar cells. For most cell types (horizontal, cholinergic amacrine cells, and cone bipolar cells), FAAH was transiently expressed, suggesting an important redistribution of the enzyme during postnatal development and thus a potential role of the eCB system in developmental processes. Our results also indicated that, in the adult retina, FAAH is expressed in cones, rod bipolar cells, and some retinal ganglion cells. The presence of FAAH in adult animals supports the hypothesis that the eCB system is involved in retinal functions. Overall these results indicate that, as shown in other structures of the brain, the eCB system could play an instrumental role in the development and function of the retina.
Collapse
|
30
|
Zabouri N, Bouchard JF, Casanova C. Cannabinoid receptor type 1 expression during postnatal development of the rat retina. J Comp Neurol 2011; 519:1258-80. [DOI: 10.1002/cne.22534] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
McMains E, Krishnan V, Prasad S, Gleason E. Expression and localization of CLC chloride transport proteins in the avian retina. PLoS One 2011; 6:e17647. [PMID: 21408174 PMCID: PMC3049779 DOI: 10.1371/journal.pone.0017647] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 02/06/2011] [Indexed: 11/19/2022] Open
Abstract
Members of the ubiquitously expressed CLC protein family of chloride channels and transporters play important roles in regulating cellular chloride and pH. The CLCs that function as Cl−/H+ antiporters, ClCs 3–7, are essential in particular for the acidification of endosomal compartments and protein degradation. These proteins are broadly expressed in the nervous system, and mutations that disrupt their expression are responsible for several human genetic diseases. Furthermore, knock-out of ClC3 and ClC7 in the mouse result in the degeneration of the hippocampus and the retina. Despite this evidence of their importance in retinal function, the expression patterns of different CLC transporters in different retinal cell types are as yet undescribed. Previous work in our lab has shown that in chicken amacrine cells, internal Cl− can be dynamic. To determine whether CLCs have the potential to participate, we used PCR and immunohistochemical techniques to examine CLC transporter expression in the chicken retina. We observed a high level of variation in the retinal expression levels and patterns among the different CLC proteins examined. These findings, which represent the first systematic investigation of CLC transporter expression in the retina, support diverse functions for the different CLCs in this tissue.
Collapse
Affiliation(s)
- Emily McMains
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Vijai Krishnan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Sujitha Prasad
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Evanna Gleason
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
32
|
Hu SSJ, Arnold A, Hutchens JM, Radicke J, Cravatt BF, Wager-Miller J, Mackie K, Straiker A. Architecture of cannabinoid signaling in mouse retina. J Comp Neurol 2010; 518:3848-66. [PMID: 20653038 DOI: 10.1002/cne.22429] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cannabinoid receptors and their ligands constitute an endogenous signaling system that is found throughout the body, including the eye. This system can be activated by Delta(9)-tetrahydrocannabinol, a major drug of abuse. Cannabinoids offer considerable therapeutic potential in modulating ocular immune and inflammatory responses and in regulating intraocular pressure. The location of cannabinoid receptor 1 (CB(1)) in the retina is known, but recently a constellation of proteins has been identified that produce and break down endocannabinoids (eCBs) and modulate CB(1) function. Localization of these proteins is critical to defining specific cannabinoid signaling circuitry in the retina. Here we show the localization of diacylglycerol lipase-alpha and -beta (DGLalpha/beta), implicated in the production of the eCB 2-arachidonoyl glycerol (2-AG); monoacylglycerol lipase (MGL) and alpha/beta-hydrolase domain 6 (ABHD6), both implicated in the breakdown of 2-AG; cannabinoid receptor-interacting protein 1a (CRIP1a), a protein that may modulate CB(1) function; and fatty acid amide hydrolase (FAAH) and N-acylethanolamine-hydrolyzing acid amidase (NAAA), which have been shown to break down the eCB anandamide and related acyl amides. Our most prominent finding was that DGLalpha is present in postsynaptic type 1 OFF cone bipolar cells juxtaposed to CB(1)-containing cone photoreceptor terminals. CRIP1a is reliably presynaptic to DGLalpha, consistent with a possible role in cannabinoid signaling, and NAAA is restricted to retinal pigment epithelium, whereas DGLbeta is limited to retinal blood vessels. These results taken together with previous anatomical and functional studies define specific cannabinoid circuitry likely to modulate eCB signaling at the first synapse of the retina as well as in the inner plexiform layer.
Collapse
Affiliation(s)
- Sherry Shu-Jung Hu
- The Gill Center for Biomolecular Science and the Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Zanazzi G, Matthews G. Enrichment and differential targeting of complexins 3 and 4 in ribbon-containing sensory neurons during zebrafish development. Neural Dev 2010; 5:24. [PMID: 20809954 PMCID: PMC2941751 DOI: 10.1186/1749-8104-5-24] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 09/01/2010] [Indexed: 12/01/2022] Open
Abstract
Background In sensory systems with broad bandwidths, polarized receptor cells utilize highly specialized organelles in their apical and basolateral compartments to transduce and ultimately transmit signals to the rest of the nervous system. While progress has been made in elucidating the assembly of the transduction apparatus, the development of synaptic ribbon-containing terminals remains poorly understood. To begin to delineate the targeting of the exocytotic machinery specifically in ribbon-containing neurons, we have examined the expression of complexins 3 and 4 in the zebrafish visual and acousticolateral systems during the first week of development. Results We have identified five members of the complexin 3/4 subfamily in zebrafish that show 50 to 75% amino acid identity with mammalian complexins 3 and 4. Utilizing a polyclonal antibody that recognizes all five orthologs, we demonstrate that these proteins are enriched in ribbon-containing sensory neurons. Complexin 3/4 is rapidly targeted to presynaptic terminals in the pineal organ and retina concomitantly with RIBEYE b, a component of ribbons. In hair cells of the inner ear and lateral line, however, complexin 3/4 immunoreactivity clusters on the apical surfaces of hair cells, among their stereocilia, rather than along the basolateral plasma membrane with RIBEYE b. A complexin 4a-specific antibody selectively labels the presynaptic terminals of visual system ribbon-containing neurons. Conclusions These results provide evidence for the concurrent transport and/or assembly of multiple components of the active zone in developing ribbon terminals. Members of the complexin 3/4 subfamily are enriched in these terminals in the visual system and in hair bundles of the acousticolateral system, suggesting that these proteins are differentially targeted and may have multiple roles in ribbon-containing sensory neurons.
Collapse
Affiliation(s)
- George Zanazzi
- Graduate Program in Neuroscience, State University of New York, Stony Brook, NY 11794, USA
| | | |
Collapse
|
34
|
Abstract
Gap junctions are frequently observed in the adult vertebrate retina. It has been shown that gap junctions function as passive electrotonic pathways and play various roles, such as noise reduction, synchronization of electrical activities, regulation of the receptive field size, and transmission of rod signals to cone pathways. The presence of gap junctions between bipolar cells has been reported in various species but their functions are not known. In the present study, we applied dual whole-cell clamp techniques to the adult goldfish retina to elucidate the functions of gap junctions between ON-type bipolar cells with a giant axon terminal (Mb1-BCs). Electrophysiological and immunohistochemical experiments revealed that Mb1-BCs were coupled with each other through gap junctions that were located at the distal dendrites. The coupling conductance between Mb1-BCs under light-adapted conditions was larger than that under dark-adapted conditions. The gap junctions showed neither rectification nor voltage dependence, and behaved as a low-pass filter. Mb1-BCs could generate Ca(2+) spikes in response to depolarization, especially under dark-adapted conditions. The Ca(2+) spike evoked electrotonic depolarization through gap junctions in neighboring Mb1-BCs, and the depolarization in turn could trigger Ca(2+) spikes with a time lag. A brief depolarizing pulse applied to an Mb1-BC evoked a long-lasting EPSC in the postsynaptic ganglion cell. The EPSC was shortened in duration when gap junctions were pharmacologically or mechanically impaired. These results suggest that the spread of Ca(2+) spikes through gap junctions between bipolar cells may play a key role in lateral interactions in the adult retina.
Collapse
|
35
|
Ritchey ER, Bongini RE, Code KA, Zelinka C, Petersen-Jones S, Fischer AJ. The pattern of expression of guanine nucleotide-binding protein beta3 in the retina is conserved across vertebrate species. Neuroscience 2010; 169:1376-91. [PMID: 20538044 DOI: 10.1016/j.neuroscience.2010.05.081] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 05/28/2010] [Accepted: 05/29/2010] [Indexed: 01/25/2023]
Abstract
Guanine nucleotide-binding protein beta3 (GNB3) is an isoform of the beta subunit of the heterotrimeric G protein second messenger complex that is commonly associated with transmembrane receptors. The presence of GNB3 in photoreceptors, and possibly bipolar cells, has been confirmed in murine, bovine and primate retinas [Lee RH, Lieberman BS, Yamane HK, Bok D, Fung BK (1992) J Biol Chem 267:24776-24781; Peng YW, Robishaw JD, Levine MA, Yau KW (1992) Proc Natl Acad Sci U S A 89:10882-10886; Huang L, Max M, Margolskee RF, Su H, Masland RH, Euler T (2003) J Comp Neurol 455:1-10]. Studies have indicated that a mutation in the GNB3 gene causes progressive retinopathy and globe enlargement (RGE) in chickens. The goals of this study were to (1) examine the expression pattern of GNB3 in wild-type and RGE mutant chickens, (2) characterize the types of bipolar cells that express GNB3 and (3) examine whether the expression of GNB3 in the retina is conserved across vertebrate species. We find that chickens homozygous for the RGE allele completely lack GNB3 protein. We find that the pattern of expression of GNB3 in the retina is highly conserved across vertebrate species, including teleost fish (Carassius auratus), frogs (Xenopus laevis), chickens (Gallus domesticus), mice (Mus musculata), guinea-pigs (Cavia porcellus), dogs (Canis familiaris) and non-human primates (Macaca fasicularis). Regardless of the species, we find that GNB3 is expressed by Islet1-positive cone ON-bipolar cells and by cone photoreceptors. In some vertebrates, GNB3-immunoreactivity was observed in both rod and cone photoreceptors. A protein-protein alignment of GNB3 across different vertebrates, from fish to humans, indicates a high degree (>92%) of sequence conservation. Given that analogous types of retinal neurons express GNB3 in different species, we propose that the functions and the mechanisms that regulate the expression of GNB3 are highly conserved.
Collapse
Affiliation(s)
- E R Ritchey
- College of Optometry, The Ohio State University, 338 West 10th Avenue, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
36
|
Lee H, Brecha NC. Immunocytochemical evidence for SNARE protein-dependent transmitter release from guinea pig horizontal cells. Eur J Neurosci 2010; 31:1388-401. [PMID: 20384779 DOI: 10.1111/j.1460-9568.2010.07181.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Horizontal cells are lateral interneurons that participate in visual processing in the outer retina but the cellular mechanisms underlying transmitter release from these cells are not fully understood. In non-mammalian horizontal cells, GABA release has been shown to occur by a non-vesicular mechanism. However, recent evidence in mammalian horizontal cells favors a vesicular mechanism as they lack plasmalemmal GABA transporters and some soluble NSF attachment protein receptor (SNARE) core proteins have been identified in rodent horizontal cells. Moreover, immunoreactivity for GABA and the molecular machinery to synthesize GABA have been found in guinea pig horizontal cells, suggesting that if components of the SNARE complex are expressed they could contribute to the vesicular release of GABA. In this study we investigated whether these vesicular and synaptic proteins are expressed by guinea pig horizontal cells using immunohistochemistry with well-characterized antibodies to evaluate their cellular distribution. Components of synaptic vesicles including vesicular GABA transporter, synapsin I and synaptic vesicle protein 2A were localized to horizontal cell processes and endings, along with the SNARE core complex proteins, syntaxin-1a, syntaxin-4 and synaptosomal-associated protein 25 (SNAP-25). Complexin I/II, a cytosolic protein that stabilizes the activated SNARE fusion core, strongly immunostained horizontal cell soma and processes. In addition, the vesicular Ca(2+)-sensor, synaptotagmin-2, which is essential for Ca(2+)-mediated vesicular release, was also localized to horizontal cell processes and somata. These morphological findings from guinea pig horizontal cells suggest that mammalian horizontal cells have the capacity to utilize a regulated Ca(2+)-dependent vesicular pathway to release neurotransmitter, and that this mechanism may be shared among many mammalian species.
Collapse
Affiliation(s)
- Helen Lee
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095-1763, USA.
| | | |
Collapse
|
37
|
Abstract
An open issue of retinal organization and function is the comprehension of the different tasks specifically performed by bipolar cells, the neurons that collect information from photoreceptors in the outer retina and convey the signal to the inner plexiform layer. Particularly interesting is to understand the unique contribution to the visual signal brought by cone bipolar cells, neurons typical of the mammalian retina and especially dedicated to receive synaptic input from cones. In all the species studied so far, it has been shown that cone bipolar cells occur in about ten different types, which form distinct clusters identified with a panel of both classical and modern genetic methods. Reviewed here is current literature illustrating the occurrence of morphological, molecular and architectural features that confer to each bipolar cell type exclusive fingerprints, ultimately predicting the emergence of similarly unique, albeit still partially unraveled, functional properties. Thus, differences among cone bipolar cells lay the ground for the genesis in the outer retina of parallel channels, which convey to the inner retina separate information, among others, about contrast, chromatic features and temporal properties of the visual signal.
Collapse
Affiliation(s)
- Enrica Strettoi
- CNR Neuroscience Institute, Area della Ricerca CNR, Via Giuseppe Moruzzi 1, 56100 Pisa, Italy.
| | | | | | | | | |
Collapse
|
38
|
Wurm A, Erdmann I, Bringmann A, Reichenbach A, Pannicke T. Expression and function of P2Y receptors on Müller cells of the postnatal rat retina. Glia 2009; 57:1680-90. [PMID: 19373936 DOI: 10.1002/glia.20883] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In the postnatal and mature retina, many processes are controlled by the action of nucleotides. Their effects are partly mediated via activation of metabotropic P2Y receptors. However, little is known about the developmental regulation and cellular localization of P2Y receptor subtypes. Combining immunohistochemical and neurophysiological methods, we investigated the developmental expression of P2Y receptors on Müller cells, the principal macroglial cells of the retina. The P2Y(1) and the P2Y(4) receptors, but no other subtypes, were unequivocally localized on Müller cells. P2Y(1) was expressed from postnatal day 5 (P5) on and mediated a calcium response to ATP in Müller cells as well as a volume regulatory signaling cascade preventing Müller cells from swelling under hypotonic conditions. Differentiation of Müller cells was accompanied by a change of the calcium response pattern; the calcium responses in Müller cell endfeet persisted, but ATP responsiveness of Müller cell somata disappeared. P2Y(4) immunoreactivity was observed in Müller cell endfeet and synaptic terminals of rod bipolar cells from P20 on. Activated protein kinases were detected by immunohistochemistry; p-ERK occurred in Müller cells and amacrine cells, whereas p-Akt was detected in bipolar cells. Our data indicate that purinergic signaling via P2Y(1) and P2Y(4) receptors might contribute to differentiation processes in the postnatal retina.
Collapse
Affiliation(s)
- Antje Wurm
- Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany.
| | | | | | | | | |
Collapse
|
39
|
Expression of connexin 35/36 in retinal horizontal and bipolar cells of carp. Neuroscience 2009; 164:1161-9. [DOI: 10.1016/j.neuroscience.2009.09.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2008] [Revised: 09/16/2009] [Accepted: 09/16/2009] [Indexed: 11/23/2022]
|
40
|
Synaptic connections of calbindin-immunoreactive cone bipolar cells in the inner plexiform layer of rabbit retina. Cell Tissue Res 2009; 339:311-20. [PMID: 19937346 DOI: 10.1007/s00441-009-0895-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 10/06/2009] [Indexed: 10/20/2022]
Abstract
In the mammalian retina, information concerning various aspects of an image is transferred in parallel, and cone bipolar cells are thought to play a major role in this parallel processing. We have examined the synaptic connections of calbindin-immunoreactive (IR) ON cone bipolar cells in the inner plexiform layer (IPL) of rabbit retina and have compared these synaptic connections with those that we have previously described for neurokinin 1 (NK1) receptor-IR cone bipolar cells. A total of 325 synapses made by calbindin-IR bipolar axon terminals have been identified in sublamina b of the IPL. The axons of calbindin-IR bipolar cells receive synaptic inputs from amacrine cells through conventional synapses and are coupled to putative AII amacrine cells via gap junctions. The major output from calbindin-IR bipolar cells is to amacrine cell processes. These data resemble our findings for NK1 receptor-IR bipolar cells. However, the incidences of output synapses to ganglion cell dendrites of calbindin-IR bipolar cells are higher compared with the NK1-receptor-IR bipolar cells. On the basis of stratification level and synaptic connections, calbindin-IR ON cone bipolar cells might thus play an important role in the processing of various visual aspects, such as contrast, orientation, and approach sensing, and in transferring rod signals to the ON cone pathway.
Collapse
|
41
|
Whitaker CM, Cooper NGF. Differential distribution of exchange proteins directly activated by cyclic AMP within the adult rat retina. Neuroscience 2009; 165:955-67. [PMID: 19883736 DOI: 10.1016/j.neuroscience.2009.10.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 10/09/2009] [Accepted: 10/27/2009] [Indexed: 12/15/2022]
Abstract
The recently discovered exchange protein directly activated by cAMP (Epac), a guanine exchange factor for the G-protein RAP-1, is directly activated by cAMP independently of protein kinase A (PKA). While cAMP is known to be an important second messenger in the retina, the presence of Epac has not been investigated in this tissue. The goal of the present study was to determine if the Epac1 and Epac2 genes are present and to characterize their location within the retina. Western blot analysis revealed that Epac1 and Epac2 proteins are expressed within the retina, and the presence of mRNA was demonstrated with the aid of reverse transcriptase polymerase chain reaction (RT-PCR). Additionally, we used immunofluorescence and confocal microscopy to demonstrate that Epac1 and Epac2 have overlapping as well as unique distributions within the retina. Both are present within horizontal cells, rod and cone bipolar cells, cholinergic amacrine cells, retrograde labeled retinal ganglion cells, and Müller cells. Uniquely, Epac2 was expressed by cone photoreceptor inner and outer segments, cell bodies, and synaptic terminals. In contrast, Epac1 was expressed in vesicular glutamate transporter 1 (VGlut1) and C-terminal binding protein 2 (CtBP2) positive photoreceptor synaptic terminals. Together, these results provide evidence that Epac1 and Epac2 are differentially expressed within the retina and provide the framework for further functional studies of cAMP pathways within the retina.
Collapse
Affiliation(s)
- C M Whitaker
- Departments of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | | |
Collapse
|
42
|
Nagashima M, Mawatari K, Tanaka M, Higashi T, Saito H, Muramoto KI, Matsukawa T, Koriyama Y, Sugitani K, Kato S. Purpurin is a key molecule for cell differentiation during the early development of zebrafish retina. Brain Res 2009; 1302:54-63. [PMID: 19748496 DOI: 10.1016/j.brainres.2009.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 08/20/2009] [Accepted: 09/04/2009] [Indexed: 01/12/2023]
Abstract
Recently, we cloned purpurin cDNA as an upregulated gene in the axotomized fish retina. The retina-specific protein was secreted from photoreceptors to ganglion cell layer during an early stage of optic nerve regeneration in zebrafish retina. The purpurin worked as a trigger molecule for axonal regrowth in adult injured fish retina. During zebrafish development, purpurin mRNA first appeared in ventral retina at 2 days post-fertilization (dpf) and spread out to the outer nuclear layer at 3 dpf. Here, we investigated the role of purpurin for zebrafish retinal development using morpholino gene knockdown technique. Injection of purpurin morpholino into the 1-2 cell stage of embryos significantly inhibited the transcriptional and translational expression of purpurin at 3 dpf. In the purpurin morphant, the eyeball was significantly smaller and retinal lamination of nuclear and plexiform layers was not formed at 3 dpf. Retinal cells of purpurin morphants were still proliferative and undifferentiated at 3 dpf. The visual function of purpurin morphant estimated by optomotor response was also suppressed at 5 dpf. By contrast, the control morphants with random sequence morpholino showed retinal lamination with distinct layers and differentiated cells at 3 dpf. These results strongly suggest that purpurin is a key molecule for not only optic nerve regeneration in adult but also cell differentiation during early development in embryo.
Collapse
Affiliation(s)
- Mikiko Nagashima
- Division of Health Sciences, Graduate School of Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Saino-Saito S, Nourani RM, Iwasa H, Kondo H, Owada Y. Discrete localization of various fatty-acid-binding proteins in various cell populations of mouse retina. Cell Tissue Res 2009; 338:191-201. [PMID: 19763623 DOI: 10.1007/s00441-009-0862-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 08/11/2009] [Indexed: 10/20/2022]
Abstract
Various fatty acids (FAs) are involved as an energy source in many different functions in the organism. They are also essential ingredients of membranous lipids and act as intracellular signaling molecules. Intracellular fatty-acid-binding proteins (FABPs) comprise a family of soluble lipid-binding proteins with low molecular masses and solubilize long-chain FAs to allow intracellular translocation in the aqueous cytosol. To clarify the functions of FABPs in the retina, which is remarkably rich in polyunsaturated FAs, we have investigated the localization of B (brain type)-, H (heart type)-, E (epidermal type)-, and A (adipocyte type)-FABPs in adult mouse retinae by immunohistochemistry. In order to determine the possible involvement of FABPs in retinal degenerative diseases, we have also examined changes in FABP expression in light-induced photoreceptor cell degeneration (photic injury). The discrete localization of B-, H-, E-, and A-FABP species in various cell populations of the retina has been clarified: B-FABP is mainly localized in the cone photoreceptor cells, H-FABP in some populations of amacrine/bipolar/horizontal interneurons, and E-FABP in ganglion cells, with A-FABP-like immunoreactivity being located in resident microglia of normal retinae. E-FABP has further been localized in invasive macrophages in damaged retinae following photic injury, allowing discrete identification of the resident microglia and invasive macrophages by A- and E-FABP immunoreactivity, respectively.
Collapse
Affiliation(s)
- Sachiko Saino-Saito
- Division of Histology, Department of Cell Biology, Tohoku University Graduate School of Medical Sciences, 980-8575, Sendai, Japan
| | | | | | | | | |
Collapse
|
44
|
Rod bipolar cells in the retina of the capuchin monkey (Cebus apella): Characterization and distribution. Vis Neurosci 2009; 26:389-96. [DOI: 10.1017/s0952523809990186] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractRod bipolar cells in Cebus apella monkey retina were identified by an antibody against the alpha isoform of protein kinase C (PKCα), which has been shown to selectively identify rod bipolars in two other primates and various mammals. Vertical sections were used to confirm the identity of these cells by their characteristic morphology of dendrites and axons. Their topographic distribution was assessed in horizontal sections; counts taken along the dorsal, ventral, nasal, and temporal quadrants. The density of rod bipolar cells increased from 500 to 2900 cells/mm2 at 1 mm from the fovea to reach a peak of 10,000–12,000 cells/mm2 at 4 mm, approximately 5 deg of eccentricity, and then gradually decreased toward retinal periphery to values of 5000 cells/mm2 or less. Rod to rod bipolar density ratio remained between 10 and 20 across most of the retinal extension. The number of rod bipolar cells per retina was 6,360,000 ± 387,433 (mean ± s.d., n = 6). The anti-PKCα antibody has shown to be a good marker of rod bipolar cells of Cebus, and the cell distribution is similar to that described for other primates. In spite of the difference in the central retina, the density variation of rod bipolar cells in the Cebus and Macaca as well as the convergence from rod to rod bipolar cells are generally similar, suggesting that both retinae stabilize similar sensitivity (as measured by rod density) and convergence.
Collapse
|
45
|
Whitaker CM, Cooper NGF. The novel distribution of phosphodiesterase-4 subtypes within the rat retina. Neuroscience 2009; 163:1277-91. [PMID: 19638302 DOI: 10.1016/j.neuroscience.2009.07.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 07/21/2009] [Accepted: 07/21/2009] [Indexed: 01/01/2023]
Abstract
Phosphodiesterases (PDEs) are important regulators of signal transduction processes. While much is known about the function of cyclic GMP-specific PDEs in the retina, much less is known about the closely related, cyclic AMP-specific PDEs. The purpose of the present study is to characterize and localize PDE4 within the adult rat retina. We have used Western blotting, RT-PCR, and immunohistochemistry together with retrograde labeling to determine the presence and location of each PDE4 subtype. Western blot analysis revealed that multiple isoforms of PDE4A, B, and D subtypes are present within the retina, whereas the PDE4C subtype was absent. These data were confirmed by RT-PCR. Using immunohistochemistry we show that all three PDE4s are abundantly expressed within the retina where they all colocalize with retrograde-labeled retinal ganglion cells, as well as bipolar cells, horizontal cells, and cholinergic amacrine cells, whereas Müller cells lack PDE4 expression. Uniquely, PDE4B was expressed by the inner and outer segments of rod photoreceptors as well as their terminals within the outer plexiform layer. Collectively, our results demonstrate that PDE4s are abundantly expressed throughout the rodent retina and this study provides the framework for further functional studies.
Collapse
Affiliation(s)
- C M Whitaker
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | | |
Collapse
|
46
|
Yevseyenkov VV, Das S, Lin D, Willard L, Davidson H, Sitaramayya A, Giblin FJ, Dang L, Takemoto DJ. Loss of protein kinase Cgamma in knockout mice and increased retinal sensitivity to hyperbaric oxygen. ACTA ACUST UNITED AC 2009; 127:500-6. [PMID: 19365031 DOI: 10.1001/archophthalmol.2009.31] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVE To determine if loss of protein kinase Cgamma (PKCgamma) results in increased structural damage to the retina by hyperbaric oxygen (HBO), a treatment used for several ocular disorders. METHODS Six-week-old mice were exposed in vivo to 100% HBO 3 times a week for 8 weeks. Eyes were dissected, fixed, embedded in Epon, sectioned, stained with toluidine blue O, and examined by light microscopy. RESULTS The thicknesses of the inner nuclear and ganglion cell layers were increased. Destruction of the outer plexiform layer was observed in the retinas of the PKCgamma-knockout mice relative to control mice. Exposure to HBO caused significant degradation of the retina in knockout mice compared with control mice. Damage to the outer segments of the photoreceptor layer and ganglion cell layer was apparent in central retinas of HBO-treated knockout mice. CONCLUSIONS Protein kinase Cgamma-knockout mice had increased retinal sensitivity to HBO. Results demonstrate that PKCgamma protects retinas from HBO damage. CLINICAL RELEVANCE Care should be taken in treating patients with HBO, particularly if they have a genetic disease, such as spinocerebellar ataxia type 14, a condition in which the PKCgamma is mutated and nonfunctional.
Collapse
Affiliation(s)
- Vladimir V Yevseyenkov
- Department of Biochemistry, 141 Chalmers Hall, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Downie LE, Vessey K, Miller A, Ward MM, Pianta MJ, Vingrys AJ, Wilkinson-Berka JL, Fletcher EL. Neuronal and glial cell expression of angiotensin II type 1 (AT1) and type 2 (AT2) receptors in the rat retina. Neuroscience 2009; 161:195-213. [PMID: 19298848 DOI: 10.1016/j.neuroscience.2009.02.084] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2008] [Revised: 02/27/2009] [Accepted: 02/28/2009] [Indexed: 10/21/2022]
Abstract
The bio-active peptide, angiotensin II (Ang II), has been suggested to exert a neuromodulatory effect on inner retinal neurons. In this study, we examined the distribution of angiotensin receptors (ATRs) in the developing and mature rat retina and optic nerve using immunofluorescence immunocytochemistry. Double-labeling experiments were performed with established markers to identify different retinal cell populations. In adult retinae, ATRs were observed on neurons involved in "ON" pathways of neurotransmission. Angiotensin II type 1 receptors (AT(1)Rs) were expressed by a sub-population of "ON" cone bipolar cells that also labeled for G alpha(0) and islet-1. Extra-neuronal expression of AT(1)Rs was evident on retinal astrocytes, Müller cells and blood vessels. Immunoreactivity for the angiotensin II type 2 receptor (AT(2)R) was observed on conventional and displaced GABAergic amacrine cells. Co-localization studies showed that AT(2)R-expressing amacrine cells constituted at least two separate sub-populations. Cell counts revealed that all wide-field amacrine cells expressing protein kinase C-alpha were also AT(2)R-positive; a further subset of amacrine cells expressing AT(2)Rs and stratifying in sublamina "b" of the inner plexiform layer (IPL) was identified. Developmental expression of AT(1)Rs was dynamic, involving multiple inner neuronal classes. At postnatal day 8 (P8), AT(1)R immunoreactivity was observed on putative ganglion cells. The characteristic bipolar cell labeling observed in adults was not evident until P13. In contrast, AT(2)Rs were detected as early as P2 and localized specifically to amacrine cells from this age onward. These data provide further evidence for the potential role of angiotensin II in the modulation of retinal neurons and glia. The differential pattern of expression of these receptors across these cell types is similar to that observed in the brain and suggests that a similar functional role for Ang II may also exist within the retina.
Collapse
Affiliation(s)
- L E Downie
- Department of Anatomy and Cell Biology, The University of Melbourne, Grattan Street, Parkville 3010, Victoria, Australia 3010
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Nakajima Y, Moriyama M, Hattori M, Minato N, Nakanishi S. Isolation of ON bipolar cell genes via hrGFP-coupled cell enrichment using the mGluR6 promoter. J Biochem 2009; 145:811-8. [PMID: 19270057 DOI: 10.1093/jb/mvp038] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
mGluR6 expression is a characteristic property of retinal ON bipolar cells. mGluR6 is also the causal gene for a form of congenital night blindness. To elucidate physiological and pathological functions of ON bipolar cells and mGluR6, we thought it important to identify genes specifically expressed in them. We thus made transgenic mouse lines expressing humanized Renilla reniformis green fluorescent protein (hrGFP), under the control of the mGluR6 promoter. From their retina, we isolated hrGFP-positive cells by cell sorting, and analysed the gene-expression profile of these cells by using DNA microarray. Further analysis revealed that about half of the initially selected ON bipolar cell genes were expressed in the expected retinal layer. We confirmed previously ambiguous retinal localization of regulator of G-protein signalling 11 (RGS11) and transient receptor potential cation channel, subfamily M, member 1 (TRPM1). In addition, we showed the expression of calcium channel, voltage-dependent, alpha2/delta subunit 3 (Cacna2d3) in ON bipolar cells for the first time. Although we could not completely exclude the possibility that a small population of hrGFP-positive cells might not be ON bipolar cells, these mice as well as our strategy would be highly valuable for the further analysis of ON bipolar cells.
Collapse
Affiliation(s)
- Yoshiaki Nakajima
- Department of Biological Sciences, Faculty of Medicine, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan.
| | | | | | | | | |
Collapse
|
49
|
Wässle H, Puller C, Müller F, Haverkamp S. Cone contacts, mosaics, and territories of bipolar cells in the mouse retina. J Neurosci 2009; 29:106-17. [PMID: 19129389 PMCID: PMC6664901 DOI: 10.1523/jneurosci.4442-08.2009] [Citation(s) in RCA: 317] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 11/13/2008] [Accepted: 11/26/2008] [Indexed: 11/21/2022] Open
Abstract
We report a quantitative analysis of the different bipolar cell types of the mouse retina. They were identified in wild-type mice by specific antibodies or in transgenic mouse lines by specific expression of green fluorescent protein or Clomeleon. The bipolar cell densities, their cone contacts, their dendritic coverage, and their axonal tiling were measured in retinal whole mounts. The results show that each and all cones are contacted by at least one member of any given type of bipolar cell (not considering genuine blue cones). Consequently, each cone feeds its light signals into a minimum of 10 different bipolar cells. Parallel processing of an image projected onto the retina, therefore, starts at the first synapse of the retina, the cone pedicle. The quantitative analysis suggests that our proposed catalog of 11 cone bipolar cells and one rod bipolar cell is complete, and all major bipolar cell types of the mouse retina appear to have been discovered.
Collapse
Affiliation(s)
- Heinz Wässle
- Department of Neuroanatomy, Max Planck Institute for Brain Research, D-60528 Frankfurt, Germany.
| | | | | | | |
Collapse
|
50
|
Aggarwal P, Nag TC, Wadhwa S. Age-related decrease in rod bipolar cell density of the human retina: an immunohistochemical study. J Biosci 2008; 32:293-8. [PMID: 17435321 DOI: 10.1007/s12038-007-0029-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
During normal ageing, the rods (and other neurones) undergo a significant decrease in density in the human retina from the fourth decade of life onward.Since the rods synapse with the rod bipolar cells in the outer plexiform layer, a decline in rod density (mainly due to death)may ultimately cause an associated decline of the neurones which,like the rod bipolar cells,are connected to them.The rod bipolar cells are selectively stained with antibodies to protein kinase C-alpha.This study examined if rod bipolar cell density changes with ageing of the retina, utilizing donor human eyes (age: 6-91 years).The retinas were fixed and their temporal parts from the macula to the mid-periphery sectioned and processed for protein kinase C-alpha immunohistochemistry.The density of the immunopositive rod bipolar cells was estimated in the mid-peripheral retina (eccentricity: 3-5 mm)along the horizontal temporal axis.The results show that while there is little change in the density of the rod bipolar cells from 6 to 35 years (2.2%), the decline during the period from 35 to 62 years is about 21% and between seventh and tenth decades,it is approximately 27%.
Collapse
Affiliation(s)
- P Aggarwal
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| | | | | |
Collapse
|