1
|
Sf9 cells: a versatile model system to investigate the pharmacological properties of G protein-coupled receptors. Pharmacol Ther 2010; 128:387-418. [PMID: 20705094 DOI: 10.1016/j.pharmthera.2010.07.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 07/12/2010] [Indexed: 11/23/2022]
Abstract
The Sf9 cell/baculovirus expression system is widely used for high-level protein expression, often with the purpose of purification. However, proteins may also be functionally expressed in the defined Sf9 cell environment. According to the literature, the pharmacology of G-protein-coupled receptors (GPCRs) functionally reconstituted in Sf9 cells is similar to the receptor properties in mammalian cells. Sf9 cells express both recombinant GPCRs and G-proteins at much higher levels than mammalian cells. Sf9 cells can be grown in suspension culture, providing an inexpensive way of obtaining large protein amounts. Co-infection with various baculoviruses allows free combination of GPCRs with different G-proteins. The absence of constitutively active receptors in Sf9 cells provides an excellent signal-to background ratio in functional assays, allowing the detection of agonist-independent receptor activity and of small ligand-induced signals including partial agonistic and inverse agonistic effects. Insect cell Gα(i)-like proteins mostly do not couple productively to mammalian GPCRs. Thus, unlike in mammalian cells, Sf9 cells do not require pertussis toxin treatment to obtain a Gα(i)-free environment. Co-expression of GPCRs with Gα(i1), Gα(i2), Gα(i3) or Gα(o) in Sf9 cells allows the generation of a selectivity profile for these Gα(i/o)-isoforms. Additionally, GPCR-G-protein combinations can be compared with defined 1:1 stoichiometry by expressing GPCR-Gα fusion proteins. Sf9 cells can also be employed for ligand screening in medicinal chemistry programs, using radioligand binding assays or functional assays, like the steady-state GTPase- or [(35)S]GTPγS binding assay. This review shows that Sf9 cells are a versatile model system to investigate the pharmacological properties of GPCRs.
Collapse
|
2
|
Ionescu L, Cheung KH, Vais H, Mak DOD, White C, Foskett JK. Graded recruitment and inactivation of single InsP3 receptor Ca2+-release channels: implications for quantal [corrected] Ca2+release. J Physiol 2006; 573:645-62. [PMID: 16644799 PMCID: PMC1779751 DOI: 10.1113/jphysiol.2006.109504] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Modulation of cytoplasmic free Ca2+ concentration ([Ca2+]i) by receptor-mediated generation of inositol 1,4,5-trisphosphate (InsP3) and activation of its receptor (InsP3R), a Ca2+-release channel in the endoplasmic reticulum, is a ubiquitous signalling mechanism. A fundamental aspect of InsP3-mediated signalling is the graded release of Ca2+ in response to incremental levels of stimuli. Ca2+ release has a transient fast phase, whose rate is proportional to [InsP3], followed by a much slower one even in constant [InsP3]. Many schemes have been proposed to account for quantal Ca2+ release, including the presence of heterogeneous channels and Ca2+ stores with various mechanisms of release termination. Here, we demonstrate that mechanisms intrinsic to the single InsP3R channel can account for quantal Ca2+ release. Patch-clamp electrophysiology of isolated insect Sf9 cell nuclei revealed a consistent and high probability of detecting functional endogenous InsP3R channels, enabling InsP3-induced channel inactivation to be identified as an inevitable consequence of activation, and allowing the average number of activated channels in the membrane patch (N(A)) to be accurately quantified. InsP3-activated channels invariably inactivated, with average duration of channel activity reduced by high [Ca2+]i and suboptimal [InsP3]. Unexpectedly, N(A) was found to be a graded function of both [Ca2+]i and [InsP3]. A qualitative model involving Ca2+-induced InsP3R sequestration and inactivation can account for these observations. These results suggest that apparent heterogeneous ligand sensitivity can be generated in a homogeneous population of InsP3R channels, providing a mechanism for graded Ca2+ release that is intrinsic to the InsP3R Ca2+ release channel itself.
Collapse
Affiliation(s)
- Lucian Ionescu
- Department of Physiology, B39 Anatomy-Chemistry Building, 414 Guardian Drive, University of Pennsylvania, Philadelphia, PA 19104-6085, USA.
| | | | | | | | | | | |
Collapse
|
3
|
Abstract
Activation of glutamate receptors is known to alter the biophysical state of the cytoskeleton of neurons in the developing brain. In this study, we examined the ability of G protein-coupled metabotropic glutamate receptors (mGluRs) to inhibit the formation of processes induced by the expression of the microtubule-associated protein MAP2c. The infection of insect MG-1 cells with a recombinant baculovirus (BV) encoding MAP2c induced the formation of fine filamentous processes. The binding of MAPs to tubulin promotes tubulin polymerization and the formation of microtubules. Co-infection with BVs for the phosphoinositide (PI)-linked mGluR1a or mGluR1b receptor subtypes inhibited the formation of processes induced by MAP2c, whereas co-infection with BVs encoding the mGluR4a or mGluR4b subtypes that couple to adenylyl cyclase did not inhibit the formation of processes. The biochemical pathways responsible for producing the inhibitory effect of mGluR1 were investigated. Inhibitors of protein kinase C, calcium/calmodulin-dependent kinase, and protein tyrosine kinases did not block the inhibitory effect of mGluR1a. The calcium chelator BAPTA and the calcium depletor thapsigargin also did not affect the ability of mGluR1a to inhibit process formation. In contrast, inhibitors of phospholipase C reversed the effect of mGluR1 on process formation, suggesting that one or more metabolites in the PI pathway were responsible for the inhibitory effect. These findings indicate that PIs generated by activation of mGluRs inhibit the binding of MAPs to tubulin and reduce tubulin polymerization and microtubule stability.
Collapse
Affiliation(s)
- X P Huang
- Faculty of Pharmacy and Department of Pharmacology, University of Toronto, Ontario, Canada
| | | |
Collapse
|
4
|
Radford K, Buell G. Expression of ligand-gated ion channels using Semliki Forest virus and baculovirus. Methods Enzymol 1998; 293:459-83. [PMID: 9711624 DOI: 10.1016/s0076-6879(98)93029-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
5
|
Thomsen C, Pekhletski R, Haldeman B, Gilbert TA, O'Hara P, Hampson DR. Cloning and characterization of a metabotropic glutamate receptor, mGluR4b. Neuropharmacology 1997; 36:21-30. [PMID: 9144638 DOI: 10.1016/s0028-3908(96)00153-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An alternative spliced variant of metabotropic glutamate receptor subtype mGluR4a, termed mGluR4b was isolated from a rat cDNA library. Subtype mGluR4b was identical to the previously described mGluR4a, except for the last 64 amino acids in the C-terminal region in which were replaced by 135 new amino acids in mGluR4b. Recombinant baculoviruses coding for mGluR4a and mGluR4b were expressed in Spodoptera frugiperda, Sf-9, insect cells and characterized pharmacologically by measuring [3H]-L-2-amino-4-phosphonobutyrate ([3H]-L-AP4) binding and second messenger formation. [3H]-L-AP4 binding to membranes prepared from Sf-9 cells expressing mGluR4a and mGluR4b revealed respective affinities (Kd) of 480 and 360 nM and maximal binding densities (Bmax) of 4.2 and 0.8 pmol/mg protein. The ligand selectivity of mGluR4a and mGluR4b was similar: L-AP4 > L-serine-O-phosphate > L-glutamate > L-2-amino 2-methyl-4-phosphonobutyrate > (1S,3R)-1-aminocyclopentane-1,3-dicarboxylate > or = quisqualate. A decrease in the affinity of [3H]-L-AP4 was observed in the presence of 0.1 mM guanosine 5'-O-(3-thio)trisphosphate-gamma-S, indicating that mGluR4a and mGluR4b were functionally coupled to G-proteins in Sf-9 cells. Agonists of mGluR4 caused a minor decrease in forskolin-induced cAMP formation in Sf-9 cells expressing either mGluR4a or mGluR4b, suggesting that both receptors are coupled to adenylate cyclase in an inhibitory manner. Thus, mGluR4a and mGluR4b share a common signal transduction pathway and pharmacology when expressed in Sf-9 insect cells.
Collapse
Affiliation(s)
- C Thomsen
- Department of Molecular Pharmacology, DK-2760 Målłv, Novo Nordisk A/S, Denmark.
| | | | | | | | | | | |
Collapse
|
6
|
Heitz F, Nay C, Guenet C. Expression of functional human muscarinic M2 receptors in different insect cell lines. J Recept Signal Transduct Res 1997; 17:305-17. [PMID: 9029498 DOI: 10.3109/10799899709036611] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Human M2 receptors were expressed using the baculovirus expression system in three different insect cell lines: Sf9, Sf21 and High5. The level of expression was slightly increased in Sf21 cells versus Sf9 cells. In contrast, High5 cells were not able to produce more recombinant protein than Sf9. We also show that in both Spodoptera frugiperda cell lines a peak of expression was reached after 6 days of infection, whereas in High5 cells, the maximum of expression occurred after 3 days. Immunodetection of m2 muscarinic receptor clearly shows that the expressed protein undergoes significant proteolysis in both the Sf9 and High5 cells, whereas in the Sf21 cells this phenomenon was less detectable. Additionally, we show that in all three cell lines, the expressed recombinant receptor was functional in that it was able to stimulate GTP gamma S binding in the presence of exogenous G-proteins. Analysis of the population of G-proteins (G alpha i, G alpha o and G beta common) in Sf21 and High5 cells is provided.
Collapse
Affiliation(s)
- F Heitz
- Marion Merrell Research Institute, Strasbourg, France
| | | | | |
Collapse
|
7
|
Sydow S, Köpke AK, Blank T, Spiess J. Overexpression of a functional NMDA receptor subunit (NMDAR1) in baculovirus-infected Trichoplusia ni insect cells. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 41:228-40. [PMID: 8883956 DOI: 10.1016/0169-328x(96)00100-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
For overexpression of the N-methyl-D-aspartate (NMDA) receptor subunit 1b (NMDAR1b), its corresponding cDNA was extended by codons for six histidine residues at the 3'-end, cloned into a baculovirus transfer vector and integrated into the viral genome. Infection of Trichoplusia ni insect cells (High FiveTM cells) with recombinant baculovirus resulted in the production of 126- and 105-kDa NR 1b proteins in the cell membrane fraction. Enzymatic deglycosylation with PNGase F as well as infection of the insect cells in the presence of tunicamycin revealed that the two proteins represented the N-glycosylated and non-glycosylated forms of NMDAR1b, respectively. The recombinant NR1b protein was also identified with immunocytochemical methods employing a monoclonal antibody which recognized the six histidine residues. The affinity of this histidine tag to nickel ions was used for the purification of the NR1b protein. The glycine binding site of the subunit was successfully identified and analyzed with the specific antagonist 5,7-[3-3H]dichlorokynurenate (DCKA). The observed binding characteristics were similar to those obtained for native NMDA receptors. Whereas in electrophysiological measurements a functional NMDA receptor channel could not be found in infected insect cells, its expression was demonstrated in the Xenopus oocyte system after injection of the NMDAR1b cDNA construct.
Collapse
Affiliation(s)
- S Sydow
- Department of Molecular Neuroendocrinology, Max Planck Institute for Experimental Medicine, Göttingen, Germany.
| | | | | | | |
Collapse
|
8
|
Pickering DS, Taverna FA, Salter MW, Hampson DR. Palmitoylation of the GluR6 kainate receptor. Proc Natl Acad Sci U S A 1995; 92:12090-4. [PMID: 8618850 PMCID: PMC40302 DOI: 10.1073/pnas.92.26.12090] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The G-protein-coupled metabotropic glutamate receptor mGluR1 alpha and the ionotropic glutamate receptor GluR6 were examined for posttranslational palmitoylation. Recombinant receptors were expressed in baculovirus-infected insect cells or in human embryonic kidney cells and were metabolically labeled with [3H]palmitic acid. The metabotropic mGluR1 alpha receptor was not labeled whereas the GluR6 kainate receptor was labeled after incubation with [3H]palmitate. The [3H]palmitate labeling of GluR6 was eliminated by treatment with hydroxylamine, indicating that the labeling was due to palmitoylation at a cysteine residue via a thioester bond. Site-directed mutagenesis was used to demonstrate that palmitoylation of GluR6 occurs at two cysteine residues, C827 and C840, located in the carboxyl-terminal domain of the molecule. A comparison of the electrophysiological properties of the wild-type and unpalmitoylated mutant receptor (C827A, C840A) showed that the kainate-gated currents produced by the unpalmitoylated mutant receptor were indistinguishable from those of the wild-type GluR6. The unpalmitoylated mutant was a better substrate for protein kinase C than the wild-type GluR6 receptor. These data indicate that palmitoylation may not modulate kainate channel function directly but instead affect function indirectly by regulating the phosphorylation state of the receptor.
Collapse
MESH Headings
- Alanine
- Animals
- Autoradiography/methods
- Base Sequence
- Cell Line
- Cysteine
- DNA, Complementary
- Embryo, Mammalian
- Embryo, Nonmammalian
- Humans
- Kidney
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Oligodeoxyribonucleotides
- Open Reading Frames
- Palmitic Acid
- Palmitic Acids/metabolism
- Phosphorylation
- Point Mutation
- Protein Kinase C/metabolism
- Protein Processing, Post-Translational
- Receptors, Kainic Acid/biosynthesis
- Receptors, Kainic Acid/metabolism
- Receptors, Kainic Acid/physiology
- Receptors, Metabotropic Glutamate/biosynthesis
- Receptors, Metabotropic Glutamate/metabolism
- Receptors, Metabotropic Glutamate/physiology
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/metabolism
- Spodoptera
- Transfection
- Tritium
- GluK2 Kainate Receptor
Collapse
Affiliation(s)
- D S Pickering
- Medical Research Council Group on Nerve Cells and Synapses, University of Toronto, ON, Canada
| | | | | | | |
Collapse
|
9
|
Abstract
Determination of the structure of integral membrane proteins is a challenging task that is essential to understand how fundamental biological processes (such as photosynthesis, respiration and solute translocation) function at the atomic level. Crystallisation of membrane proteins in 3D has led to the determination of four atomic resolution structures [photosynthetic reaction centres (Allenet al. 1987; Changet al. 1991; Deisenhofer & Michel, 1989; Ermleret al. 1994); porins (Cowanet al. 1992; Schirmeret al. 1995; Weisset al. 1991); prostaglandin H2synthase (Picotet al. 1994); light harvesting complex (McDermottet al. 1995)], and crystals of membrane proteins formed in the plane of the lipid bilayer (2D crystals) have produced two more structures [bacteriorhodopsin (Hendersonet al. 1990); light harvesting complex (Kühlbrandtet al. 1994)].
Collapse
Affiliation(s)
- R Grisshammer
- Centre for Protein Engineering, MRC Centre, Cambridge, UK
| | | |
Collapse
|
10
|
Kawamoto S, Uchino S, Hattori S, Hamajima K, Mishina M, Nakajima-Iijima S, Okuda K. Expression and characterization of the zeta 1 subunit of the N-methyl-D-aspartate (NMDA) receptor channel in a baculovirus system. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1995; 30:137-48. [PMID: 7609635 DOI: 10.1016/0169-328x(95)00005-d] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Using a baculovirus expression vector system, the zeta 1 subunit of the mouse N-methyl-D-aspartate (NMDA) receptor channel was expressed in Spodoptera frugiperda insect cells. The peptide corresponding to the C-terminus of the zeta 1 subunit was synthesized by using the multiple antigen peptide (MAP) system, and an antibody to the synthetic peptide was produced. Immunoblotting using the newly developed antibody revealed the major 122-kDa and the minor 104-kDa protein bands. The effect of tunicamycin on the immunoblots and [35S]methionine/[35S]cysteine metabolic radiolabeling suggested that the two bands corresponded to glycosylated and non-N-glycosylated forms, respectively. Membranes prepared from insect cells infected with the recombinant virus had the binding activity of antagonist ligand 5,7-[3-3H]dichlorokynurenate (DCKA) of a glycine recognition domain of the receptor. Both immunofluorescence labeling and the [3H]DCKA binding assays also showed a greater level of expression (Bmax = 51 pmol/mg protein) in the insect cells. The ligand binding characteristics of the receptors expressed in insect cells suggested that the single zeta 1 subunit protein has glycine antagonist binding properties comparable to those of the native NMDA receptor channels. The lack of DCKA-binding activity of the non-N-glycosylated NMDA receptor expressed in the presence of tunicamycin suggested that N-linked oligosaccharide is essentially required for expression of a functional receptor in insect cells. This is the first report describing the importance of N-glycosylation for the acquisition of ligand binding to NMDA receptor channel subunit protein.
Collapse
Affiliation(s)
- S Kawamoto
- Department of Bacteriology, Yokohama City University School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Hattori S, Okuda K, Hamajima K, Sakimura K, Mishina M, Kawamoto S. Expression and characterization of the alpha 2 subunit of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)-selective glutamate receptor channel in a baculovirus system. Brain Res 1994; 666:43-52. [PMID: 7889366 DOI: 10.1016/0006-8993(94)90280-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Using a baculovirus expression vector system, the alpha 2 subunit of the mouse alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)-selective glutamate receptor (GluR) channel was expressed in Spodoptera frugiperda insect cells. Immunoblotting using the antibody made to the synthetic peptide corresponding to the C-terminus of GluR alpha 2 and [35S]methionine/[35S]cysteine metabolic radiolabeling revealed the major 102-kDa and the minor 98-kDa protein bands. Metabolic radiolabeling with tunicamycin suggested that the two bands correspond to glycosylated and unglycosylated forms, respectively. The recombinant GluR alpha 2 proteins expressed in insect cells were also identified by immunofluorescence staining. The results of [3H]AMPA binding assay using whole cells suggested that, in infected Sf21 cells, binding sites of the GluR alpha 2 proteins were possibly located on the extracellular side. Scatchard analysis of AMPA binding showed the following parameters: Kd = 16 nM, Bmax = 1.9 x 10(5) binding sites per cell or 1 pmol/mg protein in the total particulate fraction. The ligand binding characteristics of the receptors expressed in insect cells were examined. From the effect of various agonists on [3H]AMPA binding of the receptors expressed in insect cells, the rank order potency of agonists was quisqualate > AMPA > L-glutamate > kainate. Thus, the baculovirus-insect cell expression system provides high-efficiency expression of the receptor sufficient to permit structural and functional analyses.
Collapse
Affiliation(s)
- S Hattori
- Department of Bacteriology, Yokohama City University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|