1
|
Falcón J, Torriglia A, Attia D, Viénot F, Gronfier C, Behar-Cohen F, Martinsons C, Hicks D. Exposure to Artificial Light at Night and the Consequences for Flora, Fauna, and Ecosystems. Front Neurosci 2020; 14:602796. [PMID: 33304237 PMCID: PMC7701298 DOI: 10.3389/fnins.2020.602796] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/22/2020] [Indexed: 12/22/2022] Open
Abstract
The present review draws together wide-ranging studies performed over the last decades that catalogue the effects of artificial-light-at-night (ALAN) upon living species and their environment. We provide an overview of the tremendous variety of light-detection strategies which have evolved in living organisms - unicellular, plants and animals, covering chloroplasts (plants), and the plethora of ocular and extra-ocular organs (animals). We describe the visual pigments which permit photo-detection, paying attention to their spectral characteristics, which extend from the ultraviolet into infrared. We discuss how organisms use light information in a way crucial for their development, growth and survival: phototropism, phototaxis, photoperiodism, and synchronization of circadian clocks. These aspects are treated in depth, as their perturbation underlies much of the disruptive effects of ALAN. The review goes into detail on circadian networks in living organisms, since these fundamental features are of critical importance in regulating the interface between environment and body. Especially, hormonal synthesis and secretion are often under circadian and circannual control, hence perturbation of the clock will lead to hormonal imbalance. The review addresses how the ubiquitous introduction of light-emitting diode technology may exacerbate, or in some cases reduce, the generalized ever-increasing light pollution. Numerous examples are given of how widespread exposure to ALAN is perturbing many aspects of plant and animal behaviour and survival: foraging, orientation, migration, seasonal reproduction, colonization and more. We examine the potential problems at the level of individual species and populations and extend the debate to the consequences for ecosystems. We stress, through a few examples, the synergistic harmful effects resulting from the impacts of ALAN combined with other anthropogenic pressures, which often impact the neuroendocrine loops in vertebrates. The article concludes by debating how these anthropogenic changes could be mitigated by more reasonable use of available technology - for example by restricting illumination to more essential areas and hours, directing lighting to avoid wasteful radiation and selecting spectral emissions, to reduce impact on circadian clocks. We end by discussing how society should take into account the potentially major consequences that ALAN has on the natural world and the repercussions for ongoing human health and welfare.
Collapse
Affiliation(s)
- Jack Falcón
- Laboratoire Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), MNHN, CNRS FRE 2030, SU, IRD 207, UCN, UA, Paris, France
| | - Alicia Torriglia
- Centre de Recherche des Cordeliers, INSERM U 1138, Ophtalmopole Hôpital Cochin, Assistance Publique - Hôpitaux de Paris, Université de Paris - SU, Paris, France
| | - Dina Attia
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Maisons-Alfort, France
| | | | - Claude Gronfier
- Lyon Neuroscience Research Center (CRNL), Waking Team, Inserm UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Lyon, France
| | - Francine Behar-Cohen
- Centre de Recherche des Cordeliers, INSERM U 1138, Ophtalmopole Hôpital Cochin, Assistance Publique - Hôpitaux de Paris, Université de Paris - SU, Paris, France
| | | | - David Hicks
- Inserm, CNRS, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
2
|
Hofstetter JR, Hofstetter AR, Hughes AM, Mayeda AR. Intermittent long-wavelength red light increases the period of daily locomotor activity in mice. J Circadian Rhythms 2005; 3:8. [PMID: 15927074 PMCID: PMC1173135 DOI: 10.1186/1740-3391-3-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Accepted: 05/31/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We observed that a dim, red light-emitting diode (LED) triggered by activity increased the circadian periods of lab mice compared to constant darkness. It is known that the circadian period of rats increases when vigorous wheel-running triggers full-spectrum lighting; however, spectral sensitivity of photoreceptors in mice suggests little or no response to red light. Thus, we decided to test the following hypotheses: dim red light illumination triggered by activity (LEDfb) increases the circadian period of mice compared to constant dark (DD); covering the LED prevents the effect on period; and DBA2/J mice have a different response to LEDfb than C57BL6/J mice. METHODS The irradiance spectra of the LEDs were determined by spectrophotometer. Locomotor activity of C57BL/6J and DBA/2J mice was monitored by passive-infrared sensors and circadian period was calculated from the last 10 days under each light condition. For constant dark (DD), LEDs were switched off. For LED feedback (LEDfb), the red LED came on when the mouse was active and switched off seconds after activity stopped. For taped LED the red LED was switched on but covered with black tape. Single and multifactorial ANOVAs and post-hoc t-tests were done. RESULTS The circadian period of mice was longer under LEDfb than under DD. Blocking the light eliminated the effect. There was no difference in period change in response to LEDfb between C57BL/6 and DBA/2 mice. CONCLUSION An increase in mouse circadian period due to dim far-red light (1 lux at 652 nm) exposure was unexpected. Since blocking the light stopped the response, sound from the sensor's electronics was not the impetus of the response. The results suggest that red light as background illumination should be avoided, and indicator diodes on passive infrared motion sensors should be switched off.
Collapse
Affiliation(s)
- John R Hofstetter
- Roudebush VA Medical Center, 1481 W. 10St., Indianapolis, IN, 46202, USA
| | | | - Amanda M Hughes
- Richmond-upon-Thames College, Egerton Road, Twickenham, Middlesex, UK
| | - Aimee R Mayeda
- Roudebush VA Medical Center, 1481 W. 10St., Indianapolis, IN, 46202, USA
| |
Collapse
|
3
|
Roberts D, Okimoto DK, Parsons C, Straume M, Stetson MH. Development of rhythmic melatonin secretion from the pineal gland of embryonic mummichog (Fundulus heteroclitus). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, COMPARATIVE EXPERIMENTAL BIOLOGY 2003; 296:56-62. [PMID: 12589691 DOI: 10.1002/jez.a.10241] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The pineal gland of vertebrates produces and secretes the hormone melatonin in response to changes in the light-dark cycle, with high production at night and low production during the day. Melatonin is thought to play an important role in synchronizing daily and/or seasonal physiological, behavioral, and developmental rhythms in vertebrates. In this study, the functional development of the pineal melatonin-generating system was examined in the mummichog, Fundulus heteroclitus, an euryhaline teleost. In this species, the pineal gland contains an endogenous oscillator, ultimately responsible for timing the melatonin rhythm. Oocytes from gravid females were collected and fertilized in vitro from sperm collected from mature males. Skull caps containing attached pineal glands were obtained from F. heteroclitus embryos at different embryonic stages and placed in static or perfusion culture under various photoperiodic regimes. Rhythmic melatonin secretion from pineal glands of embryonic F. heteroclitus embryos exposed to a 12L:12D cycle in static culture was observed at five days post-fertilization. The ontogeny of circadian-controlled melatonin production from F. heteroclitus pineal glands exposed to constant darkness for five days was also seen at day five post-fertilization. These data show that early development of the pineal melatonin-generating system in this teleost occurs prior to hatching. Pre-hatching development of the melatonin-generating system may confer some selective advantage in this species in its interactions with the environment.
Collapse
Affiliation(s)
- Debra Roberts
- Boston University School of Medicine, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
4
|
Kazimi N, Cahill GM. Development of a circadian melatonin rhythm in embryonic zebrafish. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 117:47-52. [PMID: 10536231 DOI: 10.1016/s0165-3806(99)00096-6] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the time course of circadian system development in zebrafish and the role of environmental light cycles in this process, using a rhythm in melatonin content of embryos and larvae as a marker of circadian function. When zebrafish were raised in a cycle of 14 h light and 10 h dark at 28.5 degrees C, nocturnal increases in melatonin content were detectable beginning on the second night post-fertilization (PF). When embryos were transferred to constant darkness (DD) at the end of the second light period, a circadian rhythm of melatonin content persisted for at least three cycles. However, when embryos were transferred from light to DD at 14 h PF, no rhythm was detectable in the population. Phase-locked circadian melatonin rhythms were measurable after embryos were exposed to a transition from constant light (LL) to darkness at 26 or 32 h PF, but not at 20 h. These data indicate that a circadian oscillator that regulates melatonin synthesis becomes functional and responsive by light between 20 and 26 h PF. At this stage, pineal photoreceptors have begun to differentiate, but retinal photoreceptors have not, suggesting that the first circadian melatonin rhythms are of pineal origin. The absence of melatonin rhythms in populations of embryos exposed to DD beginning at earlier stages indicates that there is no timed developmental event that sets the circadian clock in the absence of environmental input. Exposure to DD starting at 14 or 20 h PF did not retard overall development as determined by gross morphological staging criteria, and did not prevent later synchronization of melatonin rhythms by light-dark (LD) cycles.
Collapse
Affiliation(s)
- N Kazimi
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5513, USA
| | | |
Collapse
|
5
|
Abstract
Daily rhythms are a fundamental feature of all living organisms; most are synchronized by the 24 hr light/dark (LD) cycle. In most species, these rhythms are generated by a circadian system, and free run under constant conditions with a period close to 24 hr. To function properly the system needs a pacemaker or clock, an entrainment pathway to the clock, and one or more output signals. In vertebrates, the pineal hormone melatonin is one of these signals which functions as an internal time-keeping molecule. Its production is high at night and low during day. Evidence indicates that each melatonin producing cell of the pineal constitutes a circadian system per se in non-mammalian vertebrates. In addition to the melatonin generating system, they contain the clock as well as the photoreceptive unit. This is despite the fact that these cells have been profoundly modified from fish to birds. Modifications include a regression of the photoreceptive capacities, and of the ability to transmit a nervous message to the brain. The ultimate stage of this evolutionary process leads to the definitive loss of both the direct photosensitivity and the clock, as observed in the pineal of mammals. This review focuses on the functional properties of the cellular circadian clocks of non-mammalian vertebrates. How functions the clock? How is the photoreceptive unit linked to it and how is the clock linked to its output signal? These questions are addressed in light of past and recent data obtained in vertebrates, as well as invertebrates and unicellulars.
Collapse
Affiliation(s)
- J Falcón
- CNRS UMR 6558, Département des Neurosciences, Université de Poitiers, France.
| |
Collapse
|
6
|
Okimoto DK, Stetson MH. Properties of the melatonin-generating system of the sailfin molly, Poecilia velifera. Gen Comp Endocrinol 1999; 114:293-303. [PMID: 10208778 DOI: 10.1006/gcen.1999.7258] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The properties of the melatonin-generating system of a tropical teleost, the sailfin molly (Poecilia velifera), were investigated in vitro in a series of experiments using static or perifusion culture techniques. The properties examined included photic entrainment, circadian rhythmicity under continuous light (LL) and continuous darkness (DD), functionality of the melatonin-generating system at birth, and presence of multiple circadian oscillators in the molly pineal. Pineal glands or skull caps with the pineal gland firmly attached were dissected from adult and new-born fishes, respectively, and placed into static or perifusion culture at constant temperature (27 degrees C) depending upon the experiment. Melatonin release in samples was quantified by RIA. Rhythmic melatonin release was observed from isolated adult pineals under 12L:12D and 14L:10D, with low amounts of melatonin released during the light and high amounts during the dark. Melatonin release was inhibited by LL. However, under DD, melatonin release was robust and rhythmic with a circadian period (Tau) that ranged between 21.3 and 27.0 h (n = 21). Pineals from new-born (1-day old) mollies released melatonin rhythmically under a light:dark cycle and DD in both static and perifusion culture. Melatonin release from half and quarter pineals of adult mollies under DD was robust and rhythmic with circadian periods that ranged between 22.5 and 29.0 h (n = 19). Taken together, these data show that the molly pineal is photosensitive, fully functional from birth, and contains multiple circadian oscillators (at least four) regulating melatonin production.
Collapse
Affiliation(s)
- D K Okimoto
- Department of Biological Sciences, University of Delaware, Newark, Delaware, 19716, USA
| | | |
Collapse
|
7
|
Barrera-Mera B, Barrera-Calva E. The Cartesian clock metaphor for pineal gland operation pervades the origin of modern chronobiology. Neurosci Biobehav Rev 1998; 23:1-4. [PMID: 9861610 DOI: 10.1016/s0149-7634(97)00062-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In theoretical descriptions formulated during the 1600s, R. Descartes attributed a clock-like role to the pineal gland. He established the belief that pineal function underlies the laws of the universe that determine the cyclic sleep-awake states in man. Recent reports about pineal circadian pacemakers now validate the brilliant accuracy of Cartesian thought, in relation to the relevant role of the pineal gland.
Collapse
Affiliation(s)
- B Barrera-Mera
- Dpto. de Fisiologia, Facultad de Medicina UNAM, Mexico, D.F., Mexico
| | | |
Collapse
|
8
|
Csernus V, Ghosh M, Mess B. Development and control of the circadian pacemaker for melatonin release in the chicken pineal gland. Gen Comp Endocrinol 1998; 110:19-28. [PMID: 9514840 DOI: 10.1006/gcen.1997.7039] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
UNLABELLED Melatonin (MT) release from explanted pineal glands of 3- to 20-week-old chicken was investigated in a 5-day perifusion system. Both the chicken and the explanted glands were exposed to various environmental lighting regimens. OBSERVATIONS (1) The explanted chicken pineal is sensitive to direct light. Continuous illumination during the in vitro period abolishes the circadian rhythm of the MT secretion in 3 days. Continuous darkness has limited effect. (2) Reverse illumination completely reverses the MT cycle in 2 days. (3) Rhythmic illumination with short (6-h) periods only slightly modulates the MT release pattern: the basic, 24-h periodicity is preserved. (4) The circadian MT pacemaker develops normally and becomes synchronized to the day even if the chicken has never experienced alteration in the environmental illumination (those hatched and bred under continuous illumination). The explanted pineal from these chickens exhibits normal MT cycle and light sensitivity. Conclusion, Chicken pineal contains a complete, genetically coded circadian pacemaker with a fixed frequency. The pacemaker is synchronized to the day by the altered environmental illumination and by at least one other, unknown environmental factor. With altered illumination, in vitro, the 24-h periodicity of the pacemaker cannot be changed significantly, but its phase can be shifted. In contrast to conclusions obtained from in vivo observation in mammals, light seems to stimulate MT secretion from the avian pineal in vitro. For development and daily synchronization of the circadian MT pacemaker in the chicken pineal gland, periodic changes in the environmental illumination are not necessary.
Collapse
Affiliation(s)
- V Csernus
- Department of Anatomy, University Medical School, Pécs, Szigeti út 12, Pécs, H-7643, Hungary
| | | | | |
Collapse
|
9
|
Bégay V, Falcón J, Cahill GM, Klein DC, Coon SL. Transcripts encoding two melatonin synthesis enzymes in the teleost pineal organ: circadian regulation in pike and zebrafish, but not in trout. Endocrinology 1998; 139:905-12. [PMID: 9492019 DOI: 10.1210/endo.139.3.5790] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this report the photosensitive teleost pineal organ was studied in three teleosts, in which melatonin production is known to exhibit a daily rhythm with higher levels at night; in pike and zebrafish this increase is driven by a pineal clock, whereas in trout it occurs exclusively in response to darkness. Here we investigated the regulation of messenger RNA (mRNA) encoding serotonin N-acetyltransferase (AA-NAT), the penultimate enzyme in melatonin synthesis, which is thought to be primarily responsible for changes in melatonin production. AA-NAT mRNA was found in the pineal organ of all three species and in the zebrafish retina. A rhythm in AA-NAT mRNA occurs in vivo in the pike pineal organ in a light/dark (L/D) lighting environment, in constant lighting (L/L), or in constant darkness (D/D) and in vitro in the zebrafish pineal organ in L/D and L/L, indicating that these transcripts are regulated by a circadian clock. In contrast, trout pineal AA-NAT mRNA levels are stable in vivo and in vitro in L/D, L/L, and D/D. Analysis of mRNA encoding the first enzyme in melatonin synthesis, tryptophan hydroxylase, reveals that the in vivo abundance of this transcript changes on a circadian basis in pike, but not in trout. A parsimonious hypothesis to explain the absence of circadian rhythms in both AA-NAT and tryptophan hydroxylase mRNAs in the trout pineal is that one circadian system regulates the expression of both genes and that this system has been disrupted by a single mutation in this species.
Collapse
Affiliation(s)
- V Bégay
- Département des Neurosciences, CNRS-UMR 6558, Faculté des Sciences, Poitiers, France
| | | | | | | | | |
Collapse
|
10
|
Affiliation(s)
- T Roenneberg
- Institute for Medical Psychology, Ludwig-Maximilian University, Munich, Germany.
| | | |
Collapse
|
11
|
Bolliet V, Bégay V, Taragnat C, Ravault JP, Collin JP, Falcón J. Photoreceptor cells of the pike pineal organ as cellular circadian oscillators. Eur J Neurosci 1997; 9:643-53. [PMID: 9153571 DOI: 10.1111/j.1460-9568.1997.tb01413.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the pike pineal, the rhythm of melatonin (MEL) secretion is driven by a population of cellular circadian oscillators, synchronized by the 24 h light/dark (LD) cycle. Because the pineal photoreceptor contains both the input and output pathways of the clock, this cell is likely to be a cellular circadian system by itself. To support this idea, we have dissociated and cultured pike pineal cells as well as purified photoreceptors. In culture, the pineal cells reassociated in follicles, surrounded by collagen fibres. At the electron microscopic level, they appeared well preserved. Total cells consisted mainly of photoreceptors and glia. Purified cells corresponded exclusively to photoreceptors. Under LD, MEL production was rhythmic. Under constant darkness (DD), the rhythm was well sustained for at least six 24 h cycles (tau = 24/27 h) with 1 x 10(6) total cells/well or below; with 2 x 10(6) total cells/well, a strong damping occurred towards high levels as soon as after the second cycle. At the density of 0.5 x 10(6) cells/well, purified photoreceptors produced less MEL than an equivalent amount of total cells. However, the pattern of the oscillations was similar to that observed with 2 x 10(6) total cells, i.e. a damping occurred rapidly. Decreasing the density to 0.125 x 10(6) photoreceptors/well resulted in a loss of homogeneity among replicates. The production of melatonin by single photoreceptors was monitored by means of the reverse haemolytic plaque assay. Both under LD and under DD, the number of photoreceptors releasing melatonin was higher during the (subjective) dark than during the (subjective) light. The results provide strong support to the idea that the pike pineal photoreceptor is a cellular circadian system. Expression of the oscillations seemed to depend on several factors, including cell to cell contacts between photoreceptors. There is indication that also MEL and glia might be involved.
Collapse
Affiliation(s)
- V Bolliet
- Laboratoire de Neurobiologie et Neuroendocrinologie Cellulaires, UMR CNRS 6558, Université de Poitiers, France
| | | | | | | | | | | |
Collapse
|
12
|
Bolliet V, Ali MA, Lapointe FJ, Falcón J. Rhythmic melatonin secretion in different teleost species: an in vitro study. J Comp Physiol B 1996; 165:677-83. [PMID: 8882513 DOI: 10.1007/bf00301136] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The rhythmic production of melatonin is governed by intrapineal oscillators in all fish species so far investigated except the rainbow trout. To determine whether the latter represents an exception among fish, we measured in vitro melatonin secretion in pineal organs of nine wild freshwater and six marine teleost species cultured at constant temperature and under different photic conditions. The results demonstrate that pineal organs of all species maintain a rhythmic secretion of melatonin under light:dark cycles and complete darkness, and strongly suggest that most fish possess endogenous intrapineal oscillators driving the rhythm of melatonin production, with the exception of the rainbow trout.
Collapse
Affiliation(s)
- V Bolliet
- Département de Sciences Biologiques, Université de Montréal, Canada
| | | | | | | |
Collapse
|
13
|
Abstract
Circadian rhythms are a cardinal feature of living organisms. The stereotypical organization of homeostatic, endocrine and behavioural variables around the 24-hour cycle constitutes one of the most conserved attributes among species. It is now well established that circadian rhythmicity is not a learned behaviour, but is genetically transmitted and therefore subject to genetic manipulations. Recent advances in the circadian field have demonstrated that circadian oscillations are cell autonomous, that the circadian mechanism operates through a negative feedback loop and that a growing number of genes is under circadian control. Furthermore, single-gene mutations have been isolated in mammals that have profound effects on circadian behaviour. The production and mapping of one of these mutations in the mouse, an organism about which there exists a wealth of genetic information, should accelerate the elucidation of the molecular events involved in the generation of circadian rhythms in mammals.
Collapse
Affiliation(s)
- J C Florez
- NSF Center for Biological Timing, Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208, USA
| | | |
Collapse
|