1
|
Nakaya M, Wakamatsu M, Motegi H, Tanaka A, Sutherland K, Ishikawa M, Ozaki M, Shirato H, Hamada K, Hamada T. A real-time measurement system for gene expression rhythms from deep tissues of freely moving mice under light-dark conditions. Biochem Biophys Rep 2022; 32:101344. [PMID: 36160030 PMCID: PMC9489493 DOI: 10.1016/j.bbrep.2022.101344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 10/24/2022] Open
|
2
|
Doyle SE, Feng H, Garber G, Menaker M, Lynch WJ. Effects of circadian disruption on methamphetamine consumption in methamphetamine-exposed rats. Psychopharmacology (Berl) 2015; 232:2169-79. [PMID: 25543849 PMCID: PMC4433617 DOI: 10.1007/s00213-014-3845-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 01/06/2023]
Abstract
RATIONALE A substantial number of clinical studies indicate associations between sleep abnormalities and drug abuse; however, the role played by the circadian system in the development of addiction is largely unknown. OBJECTIVE The aim of this study was to examine the effects of experimentally induced chronic jet lag on methamphetamine consumption in a rat model of methamphetamine drinking. METHODS Male Sprague-Dawley rats (n = 32) were housed in running wheel cages in a 12:12 h light:dark cycle. One group of rats (n = 16) was given 2 weeks of forced methamphetamine consumption (0.01 % in drinking water; meth pre-exposed) while a second group (n = 16, not pre-exposed) received water only. This was followed by a 2-week abstinence period during which half of the animals from each group were exposed to four consecutive 6-h advancing phase shifts of the light:dark cycle, while the other half remained on the original light:dark cycle. Methamphetamine consumption was assessed in all rats following the deprivation period using a two-bottle choice paradigm. RESULTS Methamphetamine consumption was initially lower in methamphetamine pre-exposed versus not pre-exposed rats. However, during the second week following abstinence, consumption was significantly higher in phase-shifted rats of the methamphetamine pre-exposed group compared to all other groups. CONCLUSIONS These data reveal an effect of circadian rhythm disturbance on methamphetamine consumption and suggest that dysregulation of the circadian system be considered in the etiology of relapse and addiction.
Collapse
Affiliation(s)
- Susan E. Doyle
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA 22904, USA
| | - Hanting Feng
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Garrett Garber
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA 22904, USA
| | - Michael Menaker
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Wendy J. Lynch
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
3
|
Evaluation of the effects of duloxetine and escitalopram on 24-hour heart rate variability: a mechanistic study using heart rate variability as a pharmacodynamic measure. J Clin Psychopharmacol 2013; 33:236-9. [PMID: 23422380 DOI: 10.1097/jcp.0b013e31828567b6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A decrease in heart rate variability (HRV) can indicate increased sympathetic nervous system activity and possibly increased norepinephrine levels. In this randomized, placebo- and escitalopram (ESC)-controlled, subject-blind, 2-period, crossover study, 26 healthy subjects 50 to 65 years old received duloxetine (DLX) 60 mg once daily or ESC 20 mg once daily for 11 days, each in sequential study periods separated by a 10-day or more washout period. Continuous electrocardiogram recordings were obtained by Holter monitoring (baseline, day 9, and day 10 of treatment). Duloxetine and ESC did not produce any clinically significant effects on standard measures of HRV, which included SD of normal R-R intervals and the root mean square difference among successive R-R normal intervals index values, mean change in SD of normal R-R intervals, and frequency domain analysis. However, treatment with DLX was associated with significantly less change from baseline in total beats per 24 hours than ESC, which was an unexpected finding compared with previous observations in which vital signs were measured at a specific time point while awake. In conclusion, in healthy adults exposed to DLX or ESC, no clinically significant effects on HRV were observed.
Collapse
|
4
|
Natsubori A, Honma KI, Honma S. Differential responses of circadian Per2 expression rhythms in discrete brain areas to daily injection of methamphetamine and restricted feeding in rats. Eur J Neurosci 2012; 37:251-8. [PMID: 23106436 DOI: 10.1111/ejn.12034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 09/13/2012] [Accepted: 09/24/2012] [Indexed: 11/26/2022]
Abstract
Behavioral rhythms induced by methamphetamine (MAP) and daily restricted feeding (RF) in rats are independent of the circadian pacemaker in the suprachiasmatic nucleus (SCN), and have been regarded to share a common oscillatory mechanism. In the present study, in order to examine the responses of brain oscillatory systems to MAP and RF, circadian rhythms in clock gene, Period2, expression were measured in several brain areas in rats. Transgenic rats carrying a bioluminescence reporter of Period2-dLuciferase were subjected to either daily injection of MAP or RF of 2 h at a fixed time of day for 14 days. As a result, spontaneous movement and wheel-running activity were greatly enhanced following MAP injection and prior to daily meal under RF. Circadian Per2 rhythms were measured in the cultured brain tissues containing one of the following structures: the olfactory bulb; caudate-putamen; parietal cortex; substantia nigra; and SCN. Except for the SCN, the circadian Per2 rhythms in the brain tissues were significantly phase-delayed by 1.9 h on average in MAP-injected rats as compared with the saline-controls. On the other hand, the circadian rhythms outside the SCN were significantly phase-advanced by 6.3 h on average in rats under RF as compared with those under ad libitum feeding. These findings indicate that the circadian rhythms in specific brain areas of the central dopaminergic system respond differentially to MAP injection and RF, suggesting that different oscillatory mechanisms in the brain underlie the MAP-induced behavior and pre-feeding activity under RF.
Collapse
Affiliation(s)
- Akiyo Natsubori
- Department of Chronomedicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | |
Collapse
|
5
|
Gillman AG, Leffel JK, Kosobud AEK, Timberlake W. Fentanyl, but not haloperidol, entrains persisting circadian activity episodes when administered at 24- and 31-h intervals. Behav Brain Res 2009; 205:102-14. [PMID: 19595707 PMCID: PMC2755526 DOI: 10.1016/j.bbr.2009.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 06/30/2009] [Accepted: 07/02/2009] [Indexed: 02/01/2023]
Abstract
Administration of several drugs of abuse on a 24-h schedule has been shown to entrain both pre-drug (anticipatory) and post-drug (evoked) circadian activity episodes that persist for several days when the drug is withheld. The present study tested the entrainment effects of fentanyl, an opioid agonist with a noted abuse liability, and haloperidol, an anti-psychotic dopamine antagonist without apparent abuse liability. Adult female Sprague-Dawley rats housed under constant light in cages with attached running wheels received repeated low, medium, or high doses of either fentanyl or haloperidol on a 24-h administration schedule followed by a 31-h schedule (Experiment 1) or solely on a 31-h schedule (Experiment 2). The results showed that all three doses of fentanyl entrained both pre-drug and post-drug episodes of wheel running when administered every 24h, and the combined pre- and post-fentanyl activity episodes persisted for at least 3 days when the drug was withheld during test days. On the 31-h schedule, fentanyl produced an "ensuing" activity episode approximately 24h post-administration, but failed to produce an anticipatory episode 29-31h post-administration. In contrast, haloperidol injections failed to produce both pre-drug episodes on the 24-h schedule and circadian ensuing episodes on the 31-h schedule, and post-haloperidol suppression of activity appeared to mask the free-running activity rhythm. Taken together, these results provide additional evidence that drugs of abuse share a common ability to entrain circadian activity episodes.
Collapse
Affiliation(s)
- Andrea G Gillman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, United States.
| | | | | | | |
Collapse
|
6
|
Abstract
The circadian system in mammals consists of the central clock in the hypothalamic suprachiasmatic nucleus (SCN) and the peripheral clocks in a variety of tissues and organs. The SCN clock entrains to a light-dark cycle and resets the peripheral clocks. In addition, there are at least two other clocks in the circadian domain which are independent of the SCN and which entrain to nonphotic time cues: methamphetamine (MAP)-induced and restricted daily feeding (RF)-induced clocks. Neither the site nor the mechanism of SCN-independent clocks is known. Canonical clock genes for circadian oscillation are not required for the expression of either SCN-independent rhythm. The central catecholaminergic system is probably involved in the expression of the SCN-independent rhythms, especially of the MAP-induced rhythm. MAP-induced activity rhythms in rats and the sleep-wake cycles in humans share unique phenomena such as spontaneous internal desynchronization, circabidian rhythm and nonphotic entrainment, suggesting overlapping oscillatory mechanisms. The SCN-independent clock is an adaptation that regulates behavior in response to nonphotic time cues, and seems to be closely related to the arousal mechanism.
Collapse
Affiliation(s)
- Ken-ichi Honma
- Department of Physiology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan.
| | | |
Collapse
|
7
|
Li SX, Liu LJ, Jiang WG, Lu L. Morphine withdrawal produces circadian rhythm alterations of clock genes in mesolimbic brain areas and peripheral blood mononuclear cells in rats. J Neurochem 2009; 109:1668-79. [PMID: 19383088 DOI: 10.1111/j.1471-4159.2009.06086.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Previous studies have shown that clock genes are expressed in the suprachiasmatic nucleus (SCN) of the hypothalamus, other brain regions, and peripheral tissues. Various peripheral oscillators can run independently of the SCN. However, no published studies have reported changes in the expression of clock genes in the rat central nervous system and peripheral blood mononuclear cells (PBMCs) after withdrawal from chronic morphine treatment. Rats were administered with morphine twice daily at progressively increasing doses for 7 days; spontaneous withdrawal signs were recorded 14 h after the last morphine administration. Then, brain and blood samples were collected at each of eight time points (every 3 h: ZT 9; ZT 12; ZT 15; ZT 18; ZT 21; ZT 0; ZT 3; ZT 6) to examine expression of rPER1 and rPER2 and rCLOCK. Rats presented obvious morphine withdrawal signs, such as teeth chattering, shaking, exploring, ptosis, and weight loss. In morphine-treated rats, rPER1 and rPER2 expression in the SCN, basolateral amygdala, and nucleus accumbens shell showed robust circadian rhythms that were essentially identical to those in control rats. However, robust circadian rhythm in rPER1 expression in the ventral tegmental area was completely phase-reversed in morphine-treated rats. A blunting of circadian oscillations of rPER1 expression occurred in the central amygdala, hippocampus, nucleus accumbens core, and PBMCs and rPER2 expression occurred in the central amygdala, prefrontal cortex, nucleus accumbens core, and PBMCs in morphine-treated rats compared with controls. rCLOCK expression in morphine-treated rats showed no rhythmic change, identical to control rats. These findings indicate that withdrawal from chronic morphine treatment resulted in desynchronization from the SCN rhythm, with blunting of rPER1 and rPER2 expression in reward-related neurocircuits and PBMCs.
Collapse
Affiliation(s)
- Su-xia Li
- National Institute on Drug Dependence, Peking University, Beijing, China
| | | | | | | |
Collapse
|
8
|
Gillman AG, Kosobud AEK, Timberlake W. Pre- and post-nicotine circadian activity rhythms can be differentiated by a paired environmental cue. Physiol Behav 2007; 93:337-50. [PMID: 17961611 DOI: 10.1016/j.physbeh.2007.09.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 09/14/2007] [Accepted: 09/17/2007] [Indexed: 12/01/2022]
Abstract
Previous studies have shown that addictive drugs presented daily at fixed times produce circadian (oscillator-driven) anticipatory and evoked activity rhythms in rats. Other studies have shown that environmental cues paired with addictive drugs produce tolerance to drug effects and elicit craving behavior when presented without the drug. The present study tested these circadian entrainment and paired-cue conditioning effects together. This study compared the ability of daily nicotine and saline injections at different fixed times to entrain pre-injection (anticipatory) and post-injection (evoked) circadian activity rhythms in two groups of female Sprague-Dawley rats. One group (Paired) had an environmental cue (a tone) paired with the effects of the nicotine injection, and the second group (Unpaired) had the tone paired with the effects of the saline injection. The rats were housed singly for 56 days in chambers with attached wheels under constant dim light and rate-limited food access. During three separate injection phases, nicotine and saline were administered daily at different fixed times, and the tone was presented at the second injection time. Three multi-day test phases examined circadian activity (a) without injections or tone, (b) with the tone alone at normal and novel times, and (c) with the tone absent and with injections occurring at normal and at novel times. The results showed that nicotine entrained both pre- and post-injection circadian oscillators, and the nicotine-paired tone interfered with pre-injection anticipatory activity.
Collapse
Affiliation(s)
- Andrea G Gillman
- Department of Psychological and Brain Sciences, Indiana University Bloomington, United States.
| | | | | |
Collapse
|
9
|
Masubuchi S, Honma S, Abe H, Ishizaki K, Namihira M, Ikeda M, Honma KI. Clock genes outside the suprachiasmatic nucleus involved in manifestation of locomotor activity rhythm in rats. Eur J Neurosci 2000. [DOI: 10.1046/j.1460-9568.2000.01313.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Masubuchi S, Honma S, Abe H, Ishizaki K, Namihira M, Ikeda M, Honma KI. Clock genes outside the suprachiasmatic nucleus involved in manifestation of locomotor activity rhythm in rats. Eur J Neurosci 2000. [DOI: 10.1111/j.1460-9568.2000.01313.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Nikaido T, Moriya T, Takabayashi R, Akigama M, Shibata S. Sensitization of methamphetamine-induced disorganization of daily locomotor activity rhythm in male rats. Brain Res 1999; 845:112-6. [PMID: 10529451 DOI: 10.1016/s0006-8993(99)01955-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Methamphetamine (MAP) was administered to rats through drinking water repeatedly (three sessions, one session:administration for 60 days followed by withdrawal of 30 days) in order to examine whether or not MAP-induced disorganization of daily activity rhythm is sensitized. Each session (60 days) was divided into six blocks of 10 days. In the 1st session, daily locomotor activity rhythm of rats became disorganized around at 40 days (4th block) after the start of MAP drinking. However, MAP-induced disorganization of daily activity rhythm appeared at 20 days (2nd block) in the 2nd session and at 10 days (1st block) in the 3rd session following re-start of MAP drinking. On the other hand, the amount of MAP intake was decreased on the 2nd and 3rd sessions as compared with the 1st session. These results indicate that the mechanism of MAP-induced disorganization of daily activity rhythm may involve sensitization.
Collapse
Affiliation(s)
- T Nikaido
- Department of Pharmacology and Brain Science, School of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa-shi, Japan
| | | | | | | | | |
Collapse
|