1
|
Dickinson ER, Orsel K, Cuyler C, Kutz SJ. Life history matters: Differential effects of abomasal parasites on caribou fitness. Int J Parasitol 2023; 53:221-231. [PMID: 36801266 DOI: 10.1016/j.ijpara.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 02/18/2023]
Abstract
Parasites can impact wildlife populations through their effects on host fitness and survival. The life history strategies of a parasite species can dictate the mechanisms and timing through which it influences the host. However, unravelling this species-specific effect is difficult as parasites generally occur as part of a broader community of co-infecting parasites. Here, we use a unique study system to explore how life histories of different abomasal nematode species may influence host fitness. We examined abomasal nematodes in two adjacent, but isolated, West Greenland caribou (Rangifer tarandus groenlandicus) populations. One herd of caribou were naturally infected with Ostertagia gruehneri, a common and dominant summer nematode of Rangifer sspp., and the other with Marshallagia marshalli (abundant; winter) and Teladorsagia boreoarcticus (less abundant; summer), allowing us to determine if these nematode species have differing effects on host fitness. Using a Partial Least Squares Path Modelling approach, we found that in the caribou infected with O. gruehneri, higher infection intensity was associated with lower body condition, and that animals with lower body condition were less likely to be pregnant. In caribou infected with M. marshalli and T. boreoarcticus, we found that only M. marshalli infection intensity was negatively related to body condition and pregnancy, but that caribou with a calf at heel were more likely to have higher infection intensities of both nematode species. The differing effects of abomasal nematode species on caribou health outcomes in these herds may be due to parasite species-specific seasonal patterns which influence both transmission dynamics and when the parasites have the greatest impact on host condition. These results highlight the importance of considering parasite life history when testing associations between parasitic infection and host fitness.
Collapse
Affiliation(s)
- Eleanor R Dickinson
- Faculty of Veterinary Medicine, University of Calgary, 3280 University Drive, NW, Calgary, AB T2N 1N4, Canada.
| | - Karin Orsel
- Faculty of Veterinary Medicine, University of Calgary, 3280 University Drive, NW, Calgary, AB T2N 1N4, Canada
| | - Christine Cuyler
- Greenland Institute of Natural Resources, P.O. Box 570, 3900 Nuuk, Greenland
| | - Susan J Kutz
- Faculty of Veterinary Medicine, University of Calgary, 3280 University Drive, NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
2
|
Peacock SJ, Kutz SJ, Hoar BM, Molnár PK. Behaviour is more important than thermal performance for an Arctic host-parasite system under climate change. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220060. [PMID: 36016913 PMCID: PMC9399711 DOI: 10.1098/rsos.220060] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 08/02/2022] [Indexed: 05/10/2023]
Abstract
Climate change is affecting Arctic ecosystems, including parasites. Predicting outcomes for host-parasite systems is challenging due to the complexity of multi-species interactions and the numerous, interacting pathways by which climate change can alter dynamics. Increasing temperatures may lead to faster development of free-living parasite stages but also higher mortality. Interactions between behavioural plasticity of hosts and parasites will also influence transmission processes. We combined laboratory experiments and population modelling to understand the impacts of changing temperatures on barren-ground caribou (Rangifer tarandus) and their common helminth (Ostertagia gruehneri). We experimentally determined the thermal performance curves for mortality and development of free-living parasite stages and applied them in a spatial host-parasite model that also included behaviour of the parasite (propensity for arrested development in the host) and host (long-distance migration). Sensitivity analyses showed that thermal responses had less of an impact on simulated parasite burdens than expected, and the effect differed depending on parasite behaviour. The propensity for arrested development and host migration led to distinct spatio-temporal patterns in infection. These results emphasize the importance of considering behaviour-and behavioural plasticity-when projecting climate-change impacts on host-parasite systems.
Collapse
Affiliation(s)
- Stephanie J. Peacock
- Department of Ecosystem and Public Health, University of Calgary, 3280 Hospital Drive NW, Calgary, AB Canada, T2N 4Z6
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON Canada, M1C 1A4
| | - Susan J. Kutz
- Department of Ecosystem and Public Health, University of Calgary, 3280 Hospital Drive NW, Calgary, AB Canada, T2N 4Z6
| | - Bryanne M. Hoar
- Department of Ecosystem and Public Health, University of Calgary, 3280 Hospital Drive NW, Calgary, AB Canada, T2N 4Z6
| | - Péter K. Molnár
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON Canada, M1C 1A4
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON Canada, M5S 3B2
| |
Collapse
|
3
|
Mathison BA, Sapp SGH. An annotated checklist of the eukaryotic parasites of humans, exclusive of fungi and algae. Zookeys 2021; 1069:1-313. [PMID: 34819766 PMCID: PMC8595220 DOI: 10.3897/zookeys.1069.67403] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
The classification of "parasites" in the medical field is a challenging notion, a group which historically has included all eukaryotes exclusive of fungi that invade and derive resources from the human host. Since antiquity, humans have been identifying and documenting parasitic infections, and this collective catalog of parasitic agents has expanded considerably with technology. As our understanding of species boundaries and the use of molecular tools has evolved, so has our concept of the taxonomy of human parasites. Consequently, new species have been recognized while others have been relegated to synonyms. On the other hand, the decline of expertise in classical parasitology and limited curricula have led to a loss of awareness of many rarely encountered species. Here, we provide a comprehensive checklist of all reported eukaryotic organisms (excluding fungi and allied taxa) parasitizing humans resulting in 274 genus-group taxa and 848 species-group taxa. For each species, or genus where indicated, a concise summary of geographic distribution, natural hosts, route of transmission and site within human host, and vectored pathogens are presented. Ubiquitous, human-adapted species as well as very rare, incidental zoonotic organisms are discussed in this annotated checklist. We also provide a list of 79 excluded genera and species that have been previously reported as human parasites but are not believed to be true human parasites or represent misidentifications or taxonomic changes.
Collapse
Affiliation(s)
- Blaine A. Mathison
- Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, UT, USAInstitute for Clinical and Experimental PathologySalt Lake CityUnited States of America
| | - Sarah G. H. Sapp
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USACenters for Disease Control and PreventionAtlantaUnited States of America
| |
Collapse
|
4
|
Ravinet N, Chartier C, Bareille N, Lehebel A, Ponnau A, Brisseau N, Chauvin A. Unexpected Decrease in Milk Production after Fenbendazole Treatment of Dairy Cows during Early Grazing Season. PLoS One 2016; 11:e0147835. [PMID: 26808824 PMCID: PMC4725748 DOI: 10.1371/journal.pone.0147835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 11/27/2015] [Indexed: 11/28/2022] Open
Abstract
Gastrointestinal nematodes (GIN) infection can impair milk production (MP) in dairy cows. To investigate whether MP would be optimized by spring targeted-selective anthelmintic treatment in grazing cows, we assessed (1) the effect on MP of an anthelmintic treatment applied 1.5 to 2 months after turn-out, and (2) herd and individual indicators associated with the post-treatment MP response. A randomized controlled clinical trial was conducted in 13 dairy farms (578 cows) in western France in spring 2012. In each herd, lactating cows of the treatment group received fenbendazole orally, control cows remained untreated. Daily cow MP was recorded from 2 weeks before until 15 weeks after treatment. Individual serum pepsinogen and anti-Ostertagia antibody levels (expressed as ODR), faecal egg count and bulk tank milk (BTM) Ostertagia ODR were measured at treatment time. Anthelmintic treatment applied during the previous housing period was recorded for each cow. In each herd, information regarding heifers’ grazing and anthelmintic treatment history was collected to assess the Time of Effective Contact (TEC, in months) with GIN infective larvae before the first calving. The effect of treatment on weekly MP averages and its relationships with herd and individual indicators were studied using linear mixed models with two nested random effects (cow within herd). Unexpectedly, spring treatment had a significant detrimental effect on MP (-0.92 kg/cow/day on average). This negative MP response was particularly marked in high producing cows, in cows not treated during the previous housing period or with high pepsinogen levels, and in cows from herds with a high TEC or a high BTM ODR. This post-treatment decrease in MP may be associated with immuno-inflammatory mechanisms. Until further studies can assess whether this unexpected result can be generalized, non-persistent treatment of immunized adult dairy cows against GIN should not be recommended in early grazing season.
Collapse
Affiliation(s)
- Nadine Ravinet
- IDELE, French Livestock Institute, UMT Cattle Herd Health Management, Nantes, France
- LUNAM Université, Oniris, Nantes-Atlantic College of Veterinary Medicine and Food sciences and Engineering, UMR BioEpAR, Nantes, France
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in animal health, Nantes, France
- * E-mail:
| | - Christophe Chartier
- LUNAM Université, Oniris, Nantes-Atlantic College of Veterinary Medicine and Food sciences and Engineering, UMR BioEpAR, Nantes, France
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in animal health, Nantes, France
| | - Nathalie Bareille
- LUNAM Université, Oniris, Nantes-Atlantic College of Veterinary Medicine and Food sciences and Engineering, UMR BioEpAR, Nantes, France
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in animal health, Nantes, France
| | - Anne Lehebel
- LUNAM Université, Oniris, Nantes-Atlantic College of Veterinary Medicine and Food sciences and Engineering, UMR BioEpAR, Nantes, France
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in animal health, Nantes, France
| | - Adeline Ponnau
- LUNAM Université, Oniris, Nantes-Atlantic College of Veterinary Medicine and Food sciences and Engineering, UMR BioEpAR, Nantes, France
| | - Nadine Brisseau
- LUNAM Université, Oniris, Nantes-Atlantic College of Veterinary Medicine and Food sciences and Engineering, UMR BioEpAR, Nantes, France
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in animal health, Nantes, France
| | - Alain Chauvin
- LUNAM Université, Oniris, Nantes-Atlantic College of Veterinary Medicine and Food sciences and Engineering, UMR BioEpAR, Nantes, France
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in animal health, Nantes, France
| |
Collapse
|
5
|
Szyszka O, Kyriazakis I. What is the relationship between level of infection and ‘sickness behaviour’ in cattle? Appl Anim Behav Sci 2013. [DOI: 10.1016/j.applanim.2013.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
6
|
Infectious and Parasitic Diseases of the Alimentary Tract. JUBB, KENNEDY & PALMER'S PATHOLOGY OF DOMESTIC ANIMALS 2007. [PMCID: PMC7155580 DOI: 10.1016/b978-070202823-6.50096-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
7
|
Abstract
This review considers in a selective way the literature on diapause in parasitic nematodes, concentrating on four species of animal parasites and three species of plant parasites. We define diapause as a developmental arrest which is temporarily irreversible, so development will not resume, even under favourable conditions, until some intrinsic changes have been completed. Our analysis recognises four stages in diapause. The first is induction, typically brought about by environmental signals (although diapause may be genetically programmed independently of the environment). These environmental signals typically do not have an immediate effect on development, but we recognise a second phase, which we call the diapause pathway, in which worms have been induced to enter diapause at a later developmental stage. Surprisingly, entry into the diapause pathway may under some circumstances be reversible. The third stage is diapause development, a period during which development is suspended, but some ill-understood process must be completed prior to the fourth stage, emergence from diapause. Although diapause development is complete, resumption of development may be further delayed because of conditions in the host or in the environment: the worm is once more capable of development, but development is prevented by unfavourable conditions extrinsic to the worm. These may include the immune state of the host or the total parasite burden in animal hosts.
Collapse
|