1
|
Godoy-Hernandez A, Asseri AH, Purugganan AJ, Jiko C, de Ram C, Lill H, Pabst M, Mitsuoka K, Gerle C, Bald D, McMillan DGG. Rapid and Highly Stable Membrane Reconstitution by LAiR Enables the Study of Physiological Integral Membrane Protein Functions. ACS CENTRAL SCIENCE 2023; 9:494-507. [PMID: 36968527 PMCID: PMC10037447 DOI: 10.1021/acscentsci.2c01170] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Indexed: 06/18/2023]
Abstract
Functional reintegration into lipid environments represents a major challenge for in vitro investigation of integral membrane proteins (IMPs). Here, we report a new approach, termed LMNG Auto-insertion Reintegration (LAiR), for reintegration of IMPs into lipid bilayers within minutes. The resulting proteoliposomes displayed an unprecedented capability to maintain proton gradients and long-term stability. LAiR allowed for monitoring catalysis of a membrane-bound, physiologically relevant polyisoprenoid quinone substrate by Escherichia coli cytochromes bo 3 (cbo 3) and bd (cbd) under control of the proton motive force. LAiR also facilitated bulk-phase detection and physiological assessment of the "proton leak" in cbo 3, a controversial catalytic state that previously was only approachable at the single-molecule level. LAiR maintained the multisubunit integrity and higher-order oligomeric states of the delicate mammalian F-ATP synthase. Given that LAiR can be applied to both liposomes and planar membrane bilayers and is compatible with IMPs and lipids from prokaryotic and eukaryotic sources, we anticipate LAiR to be applied broadly across basic research, pharmaceutical applications, and biotechnology.
Collapse
Affiliation(s)
- Albert Godoy-Hernandez
- Department
of Biotechnology, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Amer H. Asseri
- Biochemistry
Department, Faculty of Science, King Abdulaziz
University, Jeddah 21589, Saudi Arabia
- Amsterdam
Institute for Life and Environment (A-LIFE), AIMMS, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Aiden J. Purugganan
- Department
of Biotechnology, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Chimari Jiko
- Institute
for Integrated Radiation and Nuclear Science, Kyoto University, Kyoto, 606-8501, Japan
| | - Carol de Ram
- Department
of Biotechnology, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Holger Lill
- Amsterdam
Institute for Life and Environment (A-LIFE), AIMMS, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Martin Pabst
- Department
of Biotechnology, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Kaoru Mitsuoka
- Research
Center for Ultra-High Voltage Electron Microscopy, Osaka University, Ibaraki, Osaka 565-0871, Japan
| | - Christoph Gerle
- Institute
for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
- Life
Science Research Infrastructure Group, RIKEN
SPring-8 Center, Kouto, Hyogo 679-5148, Japan
| | - Dirk Bald
- Amsterdam
Institute for Life and Environment (A-LIFE), AIMMS, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Duncan G. G. McMillan
- Department
of Biotechnology, Delft University of Technology, 2628 CD Delft, The Netherlands
- Department
of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Bunkyo
City, Tokyo 113-8654, Japan
| |
Collapse
|
2
|
Recent Advances in Oral Peptide or Protein-Based Drug Liposomes. Pharmaceuticals (Basel) 2022; 15:ph15091072. [PMID: 36145293 PMCID: PMC9501131 DOI: 10.3390/ph15091072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
The high physiology and low toxicity of therapeutic peptides and proteins have made them a hot spot for drug development in recent years. However, their poor oral bioavailability and unstable metabolism make their clinical application difficult. The bilayer membrane of liposomes provides protection for the drug within the compartment, and their high biocompatibility makes the drug more easily absorbed by the body. However, phospholipids—which form the membranes—are subjected to various digestive enzymes and mucosal adhesion in the digestive tract and disintegrate before absorption. Improvements in the composition of liposomes or modifying their surface can enhance the stability of the liposomes in the gastrointestinal tract. This article reviews the basic strategies for liposome preparation and surface modification that promote the oral administration of therapeutic polypeptides.
Collapse
|
3
|
Yamagami M, Tsuchikawa H, Cui J, Umegawa Y, Miyazaki Y, Seo S, Shinoda W, Murata M. Average Conformation of Branched Chain Lipid PGP-Me That Accounts for the Thermal Stability and High-Salinity Resistance of Archaeal Membranes. Biochemistry 2019; 58:3869-3879. [DOI: 10.1021/acs.biochem.9b00469] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Masaki Yamagami
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- JST ERATO, Lipid Active Structure Project, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Hiroshi Tsuchikawa
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Jin Cui
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- JST ERATO, Lipid Active Structure Project, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yuichi Umegawa
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- JST ERATO, Lipid Active Structure Project, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yusuke Miyazaki
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Sangjae Seo
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Wataru Shinoda
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- JST ERATO, Lipid Active Structure Project, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
4
|
Khaleque MDA, Okumura Y, Mitani M. Liposome Immobilization on Cross-linked Polymer Gel by In Situ Formation of Cleavable Covalent Bonds. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911506070822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Immobilization of liposomes onto chemically modified Sephacryl gel particles by in situreaction between liposome-incorporated thiols and mercapto moieties on the gel to form disulfide linkages was investigated. For the immobilization, both the mercapto moieties and the incorporated thiol were essential. The immobilization occurred upon coincubation of the modified liposomes with the modified gel for 48 hours. Once immobilized, no spontaneous detachment of the immobilized liposomes was observed. The degree of immobilization depended on both the thiol content and the ratio of the liposomes to the gel partilces. In a typical immobilization with 25mol% 1-octanethiol, 82% of the liposomal phosphatidylcholine in the system was found to be associated with the gel. By decreasing the ratio of the liposomes to gel it was possible to bring the immobilization close to quantitative one. Among the three different thiols examined (1-octanethiol, 1-hexadecanethiol and thiocholesterol), the extent of the immobilization was slightly higher with thiocholesterol than the alkanethiols. The immobilized liposomes were detached from the gel with dithiothreitol. Approximately 60% of the fluorescent dextran derivative encapsulated in the liposomes was retained throughout the immobilization-detachment process. The gel left after the detachment remained active for immobilizing a fresh batch of thiol-liposomes.
Collapse
Affiliation(s)
- MD. Abdul Khaleque
- Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano, Nagano 380-8553, Japan
| | - Y. Okumura
- Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano, Nagano 380-8553, Japan
| | - M. Mitani
- Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano, Nagano 380-8553, Japan
| |
Collapse
|
5
|
Schmitt C, Lippert AH, Bonakdar N, Sandoghdar V, Voll LM. Compartmentalization and Transport in Synthetic Vesicles. Front Bioeng Biotechnol 2016; 4:19. [PMID: 26973834 PMCID: PMC4770187 DOI: 10.3389/fbioe.2016.00019] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/11/2016] [Indexed: 12/03/2022] Open
Abstract
Nanoscale vesicles have become a popular tool in life sciences. Besides liposomes that are generated from phospholipids of natural origin, polymersomes fabricated of synthetic block copolymers enjoy increasing popularity, as they represent more versatile membrane building blocks that can be selected based on their specific physicochemical properties, such as permeability, stability, or chemical reactivity. In this review, we focus on the application of simple and nested artificial vesicles in synthetic biology. First, we provide an introduction into the utilization of multicompartmented vesosomes as compartmentalized nanoscale bioreactors. In the bottom-up development of protocells from vesicular nanoreactors, the specific exchange of pathway intermediates across compartment boundaries represents a bottleneck for future studies. To date, most compartmented bioreactors rely on unspecific exchange of substrates and products. This is either based on changes in permeability of the coblock polymer shell by physicochemical triggers or by the incorporation of unspecific porin proteins into the vesicle membrane. Since the incorporation of membrane transport proteins into simple and nested artificial vesicles offers the potential for specific exchange of substances between subcompartments, it opens new vistas in the design of protocells. Therefore, we devote the main part of the review to summarize the technical advances in the use of phospholipids and block copolymers for the reconstitution of membrane proteins.
Collapse
Affiliation(s)
- Christine Schmitt
- Division of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anna H. Lippert
- Max-Planck-Institute for the Science of Light, Erlangen, Germany
| | - Navid Bonakdar
- Max-Planck-Institute for the Science of Light, Erlangen, Germany
| | - Vahid Sandoghdar
- Max-Planck-Institute for the Science of Light, Erlangen, Germany
| | - Lars M. Voll
- Division of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
6
|
Cui J, Kawatake S, Umegawa Y, Lethu S, Yamagami M, Matsuoka S, Sato F, Matsumori N, Murata M. Stereoselective synthesis of the head group of archaeal phospholipid PGP-Me to investigate bacteriorhodopsin–lipid interactions. Org Biomol Chem 2015; 13:10279-84. [DOI: 10.1039/c5ob01252j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Phosphatidylglycerophosphate methyl ester (PGP-Me), a major constituent of the archaeal purple membrane, is essential for the proper proton-pump activity of bacteriorhodopsin (bR).
Collapse
Affiliation(s)
- Jin Cui
- Department of Chemistry
- Osaka University
- Toyonaka
- Japan
- JST ERATO
| | | | - Yuichi Umegawa
- Department of Chemistry
- Osaka University
- Toyonaka
- Japan
- JST ERATO
| | - Sébastien Lethu
- Department of Chemistry
- Osaka University
- Toyonaka
- Japan
- JST ERATO
| | | | | | - Fuminori Sato
- JST ERATO
- Lipid Active Structure Project
- Osaka University
- Toyonaka
- Japan
| | | | - Michio Murata
- Department of Chemistry
- Osaka University
- Toyonaka
- Japan
- JST ERATO
| |
Collapse
|
7
|
Langecker M, Arnaut V, Martin TG, List J, Renner S, Mayer M, Dietz H, Simmel FC. Synthetic lipid membrane channels formed by designed DNA nanostructures. Science 2012; 338:932-6. [PMID: 23161995 DOI: 10.1126/science.1225624] [Citation(s) in RCA: 566] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We created nanometer-scale transmembrane channels in lipid bilayers by means of self-assembled DNA-based nanostructures. Scaffolded DNA origami was used to create a stem that penetrated and spanned a lipid membrane, as well as a barrel-shaped cap that adhered to the membrane, in part via 26 cholesterol moieties. In single-channel electrophysiological measurements, we found similarities to the response of natural ion channels, such as conductances on the order of 1 nanosiemens and channel gating. More pronounced gating was seen for mutations in which a single DNA strand of the stem protruded into the channel. Single-molecule translocation experiments show that the synthetic channels can be used to discriminate single DNA molecules.
Collapse
Affiliation(s)
- Martin Langecker
- Lehrstuhl für Bioelektronik, Physics Department and ZNN/WSI, Technische Universität München, 85748 Garching, Germany
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Witoonsaridsilp W, Panyarachun B, Sarisuta N, Müller-Goymann CC. Influence of microenvironment and liposomal formulation on secondary structure and bilayer interaction of lysozyme. Colloids Surf B Biointerfaces 2010; 75:501-9. [DOI: 10.1016/j.colsurfb.2009.09.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 09/04/2009] [Accepted: 09/22/2009] [Indexed: 10/20/2022]
|
9
|
Abstract
In spite of considerable progress in the methodology for reconstitution of membrane proteins into the liposomes, a successful reconstitution still appears to be more an art than a science. Reconstitution of membrane proteins into bilayers is required for establishing several aspects of the functions of membrane proteins and lipids and for elaborating models of naturally occurring membranes.Cyclooxygenase (COX)-1 and -2 (also prostaglandin endoperoxide H(2) synthase, PGHS-1 and -2) belong to the class of monotopic membrane proteins. Membrane-binding domains of both COX-1 and -2 contain four short, consecutive, amphipathic alpha-helices (A, B, C, and D). Crystal structures of the COXs indicate that basic, hydrophobic, and aromatic residues in the membrane-binding domain are oriented away from the protein core and form a surface on the enzyme, which has been proposed to interact with the lipid bilayer (1).In this chapter, we describe a fast and efficient method for direct incorporation of COX-1 and -2 isozymes - as models for monotopic integral membrane proteins - into preformed liposomes containing fatty acids without loss of activity.
Collapse
|
10
|
Comparative analysis of the electrostatics of the binding of cationic proteins to vesicles: Asymmetric location of anionic phospholipids. Anal Chim Acta 2009; 654:2-10. [DOI: 10.1016/j.aca.2009.08.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 06/24/2009] [Accepted: 08/14/2009] [Indexed: 11/23/2022]
|
11
|
Torrens F, Castellano G, Campos A, Abad C. Binding of water-soluble, globular proteins to anionic model membranes. J Mol Struct 2009. [DOI: 10.1016/j.molstruc.2008.12.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Subbaiah PV, Horvath P, Achar SB. Regulation of the activity and fatty acid specificity of lecithin-cholesterol acyltransferase by sphingomyelin and its metabolites, ceramide and ceramide phosphate. Biochemistry 2006; 45:5029-38. [PMID: 16605271 PMCID: PMC1451158 DOI: 10.1021/bi0600704] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sphingomyelin (SM), the second most abundant phospholipid in plasma lipoproteins, was previously shown to be a physiological inhibitor of the lecithin-cholesterol acyltransferase (LCAT) reaction. In this study, we investigated the effects of its metabolites, ceramide and ceramide phosphate, on the activity and fatty acid specificity of LCAT in vitro. Treatment of SM-containing substrate with SMase C, which hydrolyzes SM to ceramide, abolished the inhibitory effect of SM, whereas treatment with SMase D, which hydrolyzes it to ceramide phosphate, increased the level of inhibition. Although incorporation of ceramide into the substrate in the absence of SM activated the LCAT reaction only modestly, its co-incorporation with SM neutralized the inhibitory effect of SM. Ceramide phosphate, on the other hand, inhibited the LCAT reaction more strongly than SM. The effects of the sphingolipids on the phospholipase A and cholesterol esterification reactions of the enzyme were similar, indicating that they regulate the binding of phosphatidylcholine (PC) to the active site, rather than the esterification step. Incorporation of ceramide into the substrate stimulated the synthesis of unsaturated cholesteryl esters at the expense of saturated esters. However, these effects on fatty acid specificity disappeared when the PC substrates were incorporated into an inert diether PC matrix, suggesting that ceramide increases the availability of polyunsaturated PCs to the enzyme by altering the macromolecular structure of the substrate particle. Since the plasma ceramide levels are increased during inflammation, these results indicate that the activity and fatty acid specificity of LCAT may be altered during the inflammatory response.
Collapse
Affiliation(s)
- Papasani V Subbaiah
- Department of Medicine, University of Illinois, Chicago, Illinois 60612, USA.
| | | | | |
Collapse
|
13
|
MirAfzali Z, Leipprandt JR, McCracken JL, DeWitt DL. Fast, efficient reconstitution of the cyclooxygenases into proteoliposomes. Arch Biochem Biophys 2005; 443:60-5. [PMID: 16212933 DOI: 10.1016/j.abb.2005.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 08/25/2005] [Accepted: 08/26/2005] [Indexed: 11/22/2022]
Abstract
To study the physical and catalytic properties of purified membrane proteins, it is often necessary to reconstitute them into lipid bilayers. Here, we describe a fast efficient method for the direct incorporation of cyclooxygenase-1 and -2 (COX-1 and -2) isozymes into liposomes without loss of activity. Purified COX-1 and -2 spontaneously incorporate into large unilamellar vesicles produced from a mixture of DOPC:DOPS (7:3) that has been doped with oleic acid. When incorporation was measured by comparing cyclooxygenase activity to total phospholipid in the proteoliposomes, molar reconstitution ratios of 1000:1 (phospholipid:COX) were obtained. Electron paramagnetic resonance spectroscopic spin counting analysis of proteoliposomes formed with nitroxide spin-labeled COX-2 gave a nearly identical phospholipid:COX ratio, confirming that incorporation had no effect on enzyme activity, and demonstrating that the efficiency of protein incorporation is sufficient for EPR spectroscopic analysis. The spontaneous incorporation of cyclooxygenase into intact liposomes allows only insertion into the outer leaflet for this monotopic enzyme, an orientation confirmed by immunogold staining of the proteoliposomes. This method of reconstitution into liposomes may be generally applicable to the class of monotopic integral membrane proteins typified by the cyclooxygenase isozymes.
Collapse
Affiliation(s)
- Zahra MirAfzali
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
14
|
Raffy S, Lazdunski C, Teissié J. Electroinsertion and activation of the C-terminal domain of colicin A, a voltage gated bacterial toxin, into mammalian cell membranes. Mol Membr Biol 2005; 21:237-46. [PMID: 15371013 DOI: 10.1080/09687680410001711632] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The C-terminal fragment of colicin, a protein that is highly soluble in aqueous solution, is spontaneously and irreversibly inserted into the membranes of mammalian cells, which are locally permeabilized by a transmembrane voltage increase. Insertion is detected by immunodetection. This is obtained by mixing the protein with electropermeabilized cells. The same result is observed by pulsing the colicin/cell mixture. Electroinsertion is therefore obtained for the first time with a multi-fragment spanning protein. The cell viability is not affected beyond the effect of electropermeabilization. A train of low voltage repetitive transmembrane modulation, which cannot trigger membrane permeabilization, is applied a day after the electroinsertion. This induces no effect on unmodified cells but triggers the lysis of cells in which colicin has been inserted by the first electropulsation. The low-level electrical treatment is high enough to trigger the voltage gated opening of colicin and to induce the associated toxicity. A transmembrane configuration of colicin is therefore obtained by electroinsertion. The toxic effect of their voltage gating is only obtained when a critical number of voltage gated channels are activated.
Collapse
Affiliation(s)
- Sophie Raffy
- Institut de Pharmacologie et de Biologie Structurale du CNRS (UMR 5089), 205 route de Narbonne, F-31077 Toulouse cedex 4, France
| | | | | |
Collapse
|
15
|
Khaleque MA, Okumura Y, Yabushita S, Mitani M. Detachable immobilization of liposomes on polymer gel particles. Colloids Surf B Biointerfaces 2004; 37:35-42. [PMID: 15450306 DOI: 10.1016/j.colsurfb.2004.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2004] [Accepted: 06/26/2004] [Indexed: 11/25/2022]
Abstract
Immobilization of liposomes on hydrophobized Sephacryl gel and controlled detachment of the liposomes from the gel were examined. The gel was chemically modified and bore octyl, hexadecyl or cholesteryl moiety via disulfide linkage as anchors to liposomal bilayer membrane. Upon interaction with the gel, egg phosphatidylcholine liposomes were successfully immobilized onto the gel. The gel with cholesteryl moiety showed 1.7 times higher liposome immobilization per anchor moiety than the gels with the alkyl moieties. The immobilization of liposomes on the gel was stable, and no significant spontaneous detachment of phospholipid or leakage of fluorescein isothiocyanate-conjugated dextran encapsulated in the immobilized liposomes was observed in 24h. Reductive cleavage of the disulfide linkage by dithiothreitol resulted in detachment of the liposomes from the gel. The majority of the detached liposomes were found encapsulating the dextran derivative, and these liposomes should have kept their structural integrity throughout the immobilization and the detachment processes. The release of the liposomes was insignificant until the ratio of the dithiothreitol to the hydrophobic anchor reached a threshold. The presence of the threshold suggests that the immobilization of liposomes should require a certain minimum number of the hydrophobic moieties anchored in the liposomal membrane. By applying the present immobilization-detachment system, preparation of liposomes encapsulating the dextran derivative without using costly gel filtration or ultracentrifugation procedure was successfully demonstrated.
Collapse
Affiliation(s)
- Md Abdul Khaleque
- Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | | | | | | |
Collapse
|
16
|
Stamouli A, Kafi S, Klein DCG, Oosterkamp TH, Frenken JWM, Cogdell RJ, Aartsma TJ. The ring structure and organization of light harvesting 2 complexes in a reconstituted lipid bilayer, resolved by atomic force microscopy. Biophys J 2003; 84:2483-91. [PMID: 12668456 PMCID: PMC1302814 DOI: 10.1016/s0006-3495(03)75053-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2002] [Accepted: 11/25/2002] [Indexed: 10/21/2022] Open
Abstract
The main function of the transmembrane light-harvesting complexes in photosynthetic organisms is the absorption of a light quantum and its subsequent rapid transfer to a reaction center where a charge separation occurs. A combination of freeze-thaw and dialysis methods were used to reconstitute the detergent-solubilized Light Harvesting 2 complex (LH2) of the purple bacterium Rhodopseudomonas acidophila strain 10050 into preformed egg phosphatidylcholine liposomes, without the need for extra chemical agents. The LH2-containing liposomes opened up to a flat bilayer, which were imaged with tapping and contact mode atomic force microscopy under ambient and physiological conditions, respectively. The LH2 complexes were packed in quasicrystalline domains. The endoplasmic and periplasmic sides of the LH2 complexes could be distinguished by the difference in height of the protrusions from the lipid bilayer. The results indicate that the complexes entered in intact liposomes. In addition, it was observed that the most hydrophilic side, the periplasmic, enters first in the membrane. In contact mode the molecular structure of the periplasmic side of the transmembrane pigment-protein complex was observed. Using Föster's theory for describing the distance dependent energy transfer, we estimate the dipole strength for energy transfer between two neighboring LH2s, based on the architecture of the imaged unit cell.
Collapse
Affiliation(s)
- Amalia Stamouli
- Department of Biophysics, Huygens Laboratory, Leiden University, 2300 RA Leiden, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
17
|
Berg OG, Gelb MH, Tsai MD, Jain MK. Interfacial enzymology: the secreted phospholipase A(2)-paradigm. Chem Rev 2001; 101:2613-54. [PMID: 11749391 DOI: 10.1021/cr990139w] [Citation(s) in RCA: 266] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- O G Berg
- Evolutionary Biology Center, Uppsala University, Uppsala, Sweden
| | | | | | | |
Collapse
|
18
|
Shobini J, Mishra AK. Effect of a Decapeptide (VPDLLADLLK) on the Phase Transition of Dimyristoylphosphatidylcholine Lipid Bilayer. J Colloid Interface Sci 2001; 240:24-29. [PMID: 11446782 DOI: 10.1006/jcis.2001.7644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
VPDLLADLLK is a synthetic decapeptide, which shows a difference in conformation in various environments. Circular dichroism spectral studies show that it exists in an unordered conformation in the aqueous phase, and in dimyristoylphosphatidylcholine (DMPC) lipid bilayer, it exhibits an alpha-helical structure. The membrane property modification due to the peptide incorporation has been studied by using differential scanning calorimetry and fluorescence spectroscopy. With incorporation of the peptide the average steady-state anisotropy of DPH in the membrane decreases slightly in the gel state but remains more or less the same in the liquid crystalline state. The peptide incorporation causes a shift in the phase-transition temperature from 23 to 26 degrees C for 15 mol% and 29 degrees C for 30 mol% of the peptide, which is accompanied by a decrease in the sharpness and a broadening of the DSC thermogram. This preferential stabilization of the more ordered gel phase by the peptide could be due to the hydrophobic mismatch between the length of the peptide and the length of the hydrophobic segment of the DMPC bilayer. Copyright 2001 Academic Press.
Collapse
Affiliation(s)
- J. Shobini
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600 036, India
| | | |
Collapse
|
19
|
Shin SJ, Lee WK, Lim HW, Park J. Characterization of the ATP transporter in the reconstituted rough endoplasmic reticulum proteoliposomes. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1468:55-62. [PMID: 11018651 DOI: 10.1016/s0005-2736(00)00241-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adenosine triphosphate (ATP) transporter from rat liver rough endoplasmic reticulum (RER) was solubilized and reconstituted into phosphatidylcholine liposomes. The RER proteoliposomes, resulting from optimizing some reconstitution parameters, had an apparent K(m) value of 1.5 microM and a V(max) of 286 pmol min(-1) (mg protein)(-1) and showed higher affinity for ATP and a lower V(max) value than intact RER (K(m) of 6.5 microM and V(max) of 1 nmol). ATP transport was time- and temperature-dependent, inhibited by 4, 4'-diisothiocyanostilbene-2,2'-disulfonic acid, which is known as an inhibitor of anion transporters including ATP transporter, but was not affected by atractyloside, a specific inhibitor of mitochondrial ADP/ATP carrier. The internal and external effects of various nucleotides on the ATP transport were examined. ATP transport was cis-inhibited strongly by ADP and weakly by AMP. ADP-preloaded RER proteoliposomes showed a specific increase of ATP transport activity while AMP-preloaded RER proteoliposomes did not show the enhanced overshoot peak in the ATP uptake plot. These results demonstrate the ADP/ATP antiport mechanism of ATP transport in rat liver RER.
Collapse
Affiliation(s)
- S J Shin
- Center for Molecular Catalysis, Department of Chemistry, Seoul National University, Shillim-dong, San 56-1, Kwanak-ku, 151-742, Seoul, South Korea
| | | | | | | |
Collapse
|
20
|
Bakás L. Influence of encapsulated enzyme on the surface properties of freeze-dried liposomes in trehalose. Colloids Surf B Biointerfaces 2000. [DOI: 10.1016/s0927-7765(99)00106-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Szponarski W, Guibal O, Espuna M, Doumas P, Rossignol M, Gibrat R. Reconstitution of an electrogenic auxin transport activity mediated by Arabidopsis thaliana plasma membrane proteins. FEBS Lett 1999; 446:153-6. [PMID: 10100633 DOI: 10.1016/s0014-5793(99)00200-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Plasma membrane proteins from Arabidopsis thaliana leaves were reconstituted into proteoliposomes and a K+ diffusion potential was generated. The resulting ionic fluxes, determined in the presence of the plant hormone auxin (indole-3 acetic acid), showed an additional electrogenic and saturable component, with a K(M) of 6 microM. This flux was neither detected in liposomes in the presence of indole-3 acetic acid, nor in proteoliposomes in the presence of an inactive auxin analog and was completely inhibited by 3 microM naphtylphthalamic acid, a specific inhibitor of the auxin efflux carrier. The efficiency of the reconstituted carrier and the mechanism of its regulation by naphtylphthalamic acid are discussed.
Collapse
Affiliation(s)
- W Szponarski
- Biochimie et Physiologie Moléculaire des Plantes, INRA/ENSA-M/CNRS URA 2133, Montpellier, France.
| | | | | | | | | | | |
Collapse
|
22
|
Hess D, Isenberg G. A new fluorescence-based, hydrophobic photolabeling technique for analyzing membrane-associated proteins. FEBS Lett 1999; 445:279-82. [PMID: 10094472 DOI: 10.1016/s0014-5793(99)00155-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We introduce a new, fluorescent and photoactivatable fatty acid derivative (SANU) for hydrophobic labelling of membrane-bound proteins. The technique allows fast and highly sensitive screening of hydrophobically inserting proteins analyzed by SDS-PAGE with a detection limit below 0.1 pmol. A reliable calculation of labelling efficiencies is achieved by simultaneous densitometry of fluorescence and protein staining. We have applied the new technique on the membrane inserting protein talin, G-actin, and, as a negative control, on RNase, which only binds electrostatically to negatively charged lipid interfaces. In several ways superior to radiolabelling, we can recommend this technique for all laboratories under any circumstances.
Collapse
Affiliation(s)
- D Hess
- Biophysics-Dept. E22, Technical University of Munich, Garching, Germany
| | | |
Collapse
|
23
|
Yoshimoto M, Kuboi R, Yang Q, Miyake J. Immobilized liposome chromatography for studies of protein-membrane interactions and refolding of denatured bovine carbonic anhydrase. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 1998; 712:59-71. [PMID: 9698229 DOI: 10.1016/s0378-4347(98)00157-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Small unilamellar vesicles (SUVs) composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and 1 mol% phosphatidylethanolamine were covalently coupled to chromatographic gel beads. Interactions of liposomal lipid bilayers with several water-soluble proteins, which had been denatured or partially denatured by 0.1-5 M guanidinium hydrochloride (GuHCl), were studied on gel beads containing the immobilized SUVs. The partially-denatured proteins treated with 0.5-1.0 M GuHCl were significantly retarded on the immobilized liposome column, whereas little retardation of native or unfolded proteins treated by >2 M GuHCl was observed on the same liposome columns. The retardation on the immobilized liposome column was found to be well correlated with local hydrophobicity, which was determined by the aqueous two-phase partitioning method using 1 mM Triton X-405 as a hydrophobic probe. It implies that the partially-denatured proteins are likely in a molten-globule state and associated with liposomal lipid bilayers. Chromatographic refolding of denatured bovine carbonic anhydrase (CAB) was achieved on the immobilized liposome column. The enzymatic activity of an unfolded CAB treated by 5 M GuHCl was recovered up to 83% after passing it through immobilized liposome column, whereas only 58% of the enzymatic activity was recovered when the denatured CAB was run on a liposome-free column. The refolding process is probably involved in the interaction of molten-globule state of CAB with the liposomal lipid bilayers.
Collapse
Affiliation(s)
- M Yoshimoto
- Department of Chemical Science and Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| | | | | | | |
Collapse
|
24
|
Abstract
alpha-Hemolysin is synthesized as a 1024-amino acid polypeptide, then intracellularly activated by specific fatty acylation. A second activation step takes place in the extracellular medium through binding of Ca2+ ions. Even in the absence of fatty acids and Ca2+ HlyA is an amphipathic protein, with a tendency to self-aggregation. However, Ca(2+)-binding appears to expose hydrophobic patches on the protein surface, facilitating both self-aggregation and irreversible insertion into membranes. The protein may somehow bind membranes in the absence of divalent cations, but only when Ca2+ (or Sr2+, or Ba2+) is bound to the toxin in aqueous suspensions, i.e., prior to its interaction with bilayers, can alpha-hemolysin bind irreversibly model or cell membranes in such a way that the integrity of the membrane barrier is lost, and cell or vesicle leakage ensues. Leakage is not due to the formation of proteinaceous pores, but rather to the transient disruption of the bilayer, due to the protein insertion into the outer membrane monolayer, and subsequent perturbations in the bilayer lateral tension. Protein or glycoprotein receptors for alpha-hemolysin may exist on the cell surface, but the toxin is also active on pure lipid bilayers.
Collapse
Affiliation(s)
- F M Goñi
- Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain.
| | | |
Collapse
|
25
|
LaBrake CC, Fung LW. Sickle hemoglobin is more fusogenic than normal hemoglobin at physiological pH and ionic strength conditions. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1406:152-61. [PMID: 9573351 DOI: 10.1016/s0925-4439(97)00093-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We used electron microscopy, quasi-elastic light scattering and static light scattering to show that human hemoglobin (Hb) interacts with bovine brain phosphatidylserine lipid vesicles and promotes vesicle fusion in an isotonic buffer at pH 7.4. The fusogenic properties of Hb were observed in both small unilamellar vesicles (SUVs) and large unilamellar vesicles (LUVs). A simple turbidity measurement method was used to follow increases in vesicle size (scattering diameter) as a function of time. For the first 3 h, upon incubation with oxygenated Hb, the scattering diameters of vesicles increased at a rate of 7.8 nm/h for LUVs. Continuous incubation with Hb led to complicated vesicle fusion, probably due to the oxidation products of Hb and lipid molecules. In the absence of both Hb and lipid oxidation, using Hb liganded with carbon monoxide, we obtained, for the entire 20 h incubation period, a fusion rate of 2.9 nm/h for LUVs. We also studied interactions between sickle Hb and vesicles under the same conditions and found that the vesicle fusion rates for sickle Hb were about 2 times faster than those for normal Hb. These results showed that sickle Hb exhibited more extensive interactions with lipid bilayer than normal Hb at physiological pH and ionic strength conditions, and provide insights toward understanding the molecular mechanisms in sickle cell abnormalities.
Collapse
Affiliation(s)
- C C LaBrake
- Department of Chemistry, Loyola University of Chicago, Chicago, IL 60626, USA
| | | |
Collapse
|
26
|
Raffy S, Teissié J. Electroinsertion of glycophorin A in interdigitation-fusion giant unilamellar lipid vesicles. J Biol Chem 1997; 272:25524-30. [PMID: 9325267 DOI: 10.1074/jbc.272.41.25524] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Previously we demonstrated that transmembrane back insertion of glycophorin A, a solubilizable intrinsic protein, can be obtained in dipalmitoylphosphatidylcholine multilamellar vesicles, MLVs, by electropulsation (Raffy, S., and Teissié, J. (1995) Eur. J. Biochem. 230, 722-732). Here we report that transmembrane back insertion of protein is obtained by electropulsion of unilamellar giant vesicles, termed interdigitation-fusion vesicles (IFVs), which are better membrane models than MLVs due to their unilamellarity. Electropulsation promotes a field-dependent local permeabilization of the lipid layer, as shown by the associated leakage of entrapped calcein. Glycophorin insertion is assayed by immunofluorescence. Electroinsertion is obtained by pulsing the vesicle/protein mixture. Glycophorin insertion is observed under more drastic electrical conditions than needed for permeabilization. Direct observation of glycophorin insertion in the vesicles under a microscope shows a localized process in agreement with the theoretical prediction. A quantitative evaluation of the immunofluorescence pattern shows that insertion was higher on one side of the vesicle than on the other. This suggests that an electrophoretic movement of the solubilized glycophorin could take place during electropulsation. Insertion of glycophorin, a prefolded intrinsic protein, is then obtained in the lipid bilayer brought transiently to the electropermeabilized state.
Collapse
Affiliation(s)
- S Raffy
- Institut de Pharmacologie et de Biologie Structurale du CNRS, 118 rte de Narbonne, F-31062 Toulouse Cedex, France
| | | |
Collapse
|
27
|
Callaghan R, Berridge G, Ferry DR, Higgins CF. The functional purification of P-glycoprotein is dependent on maintenance of a lipid-protein interface. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1328:109-24. [PMID: 9315609 DOI: 10.1016/s0005-2736(97)00079-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
P-Glycoprotein (P-gp) is a 180-kDa membrane-bound transporter which can confer the multi-drug resistance phenotype on tumor cells. We have examined the factors required to preserve activity of P-gp during its purification. The starting material for purification was plasma membranes from Chinese hamster ovary (CHrB30) cells, overexpressing P-glycoprotein. These membranes displayed drug stimulated ATPase activity (Vm = 897 +/- 55 nmol min(-1) mg(-1); Km = 1.8 +/- 0.4 mM) and high affinity binding of [3H]vinblastine (Kd = 36 +/- 5 nM; Bm = 161 +/- 11 pmol/mg). Several non-ionic detergents which readily solubilized P-glycoprotein significantly inhibited ATPase activity and drug binding at concentrations well below their respective CMC values. This inactivation was prevented by excess crude lipid mixtures, with the greatest protection afforded against dodecyl-maltoside. Furthermore, the significantly reduced binding affinity and capacity of solubilized P-gp was partly reversed by the addition of lipids. A combination of anion-exchange and hydroxyapatite chromatography were used to purify P-gp with high yield to greater than 90%. The purified, reconstituted P-gp displayed high ATPase activity (Vm = 2137 +/- 309; Km = 2.9 +/- 0.9 mM) which was stimulated by verapamil (EC50 = 3.8 +/- 0.6 microM) and inhibited by orthovanadate (3.1 +/- 0.8 microM). Pure P-gp also displayed high affinity vinblastine binding (Kd = 64 +/- 9 nM) with a capacity of 2320 +/- 192 pmol/mg. This purification scheme yields the highest P-gp activity reported to date, and indicates a dependence of function on maintaining a lipid-protein interface.
Collapse
Affiliation(s)
- R Callaghan
- Nuffield Department of Clinical Biochemistry, John Radcliffe Hospital, University of Oxford, UK.
| | | | | | | |
Collapse
|
28
|
Andreou VG, Nikolelis DP, Tarus B. Electrochemical investigation of transduction of interactions of aflatoxin M1 with bilayer lipid membranes (BLMs). Anal Chim Acta 1997. [DOI: 10.1016/s0003-2670(97)00325-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Grouzis JP, Pouliquin P, Rigaud J, Grignon C, Gibrat R. In vitro study of passive nitrate transport by native and reconstituted plasma membrane vesicles from corn root cells. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1325:329-42. [PMID: 9168158 DOI: 10.1016/s0005-2736(96)00256-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Proteins from phase-partitioned corn root plasma membrane were reconstituted into soybean lipids/egg PC (8:2, w:w) using deoxycholate and rapid gel filtration to eliminate the detergent. All (H+)ATPase molecules were inside-out reinserted and the initial activity was totally recovered in an homogeneous vesicle preparation. In addition, membrane tightness greatly increased, as shown by the size and stability of the response of the fluorescent membrane potential probe (oxonol VI) to an imposed K+ diffusion gradient. Consequently, the H(+)-pumping activity of the (H+)ATPase, monitored with the fluorescent pH probe (ACMA), increased 20-fold after reconstitution. A protein-mediated passive transport of nitrate was first demonstrated by the ability of NO3- to electrically short-circuit the (H+)ATPase in plasma membrane vesicles and not in liposomes containing only the purified enzyme. The passive transport was saturable (K(m) approximately 5 mM), thermolabile, inhibited by the arginine reagent phenylglyoxal, and selective (NO3- > I- approximately ClO3- approximately Br- > Cl- approximately NO2- > Iminodiacetate approximately SO4(2-)). Passive NO3- transport was also determined, independently of the (H+)ATPase, from the NO3(-)-dependent augmentation of the dissipation rate of imposed diffusion potentials. This second transport assay gave similar K(m) for NO3- and should be suitable to continue the functional and biochemical characterization of the NO3- transport system.
Collapse
Affiliation(s)
- J P Grouzis
- Biochimie et Physiologie Moléculaire des Plantes, CNRS (URA 2133) / INRA/ ENSA-M, Montpellier, France.
| | | | | | | | | |
Collapse
|
30
|
Shin I, Kreimer D, Silman I, Weiner L. Membrane-promoted unfolding of acetylcholinesterase: a possible mechanism for insertion into the lipid bilayer. Proc Natl Acad Sci U S A 1997; 94:2848-52. [PMID: 9096309 PMCID: PMC20285 DOI: 10.1073/pnas.94.7.2848] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/1996] [Accepted: 01/24/1997] [Indexed: 02/04/2023] Open
Abstract
Acetylcholinesterase from Torpedo californica partially unfolds to a state with the physicochemical characteristics of a "molten globule" upon mild thermal denaturation or upon chemical modification of a single non-conserved buried cysteine residue, Cys231. The protein in this state binds tightly to liposomes. It is here shown that the rate of unfolding is greatly enhanced in the presence of unilamellar vesicles of dimyristoylphosphatidylcholine, with concomitant incorporation of the protein into the lipid bilayer. Arrhenius plots reveal that in the presence of the liposomes the energy barrier for transition from the native to the molten globule state is lowered from 145 to 47 kcal/mol. Chemical modification of Cys231 by mercuric chloride produces initially a quasinative state of Torpedo acetylcholinesterase which, at room temperature, undergoes spontaneous transition to a molten globule state with a half-life of 1-2 hr. This permitted temporal resolution of interaction of the quasi-native state with the membrane from the transition of the membrane-bound protein to the molten globule state. The data presented here suggest that either the native enzyme, or a quasi-native state with which it is in equilibrium, interacts with the liposome, which then promotes a fast transition to the membrane-bound molten globule state by lowering the energy barrier for the transition. These findings raise the possibility that the membrane itself, by lowering the energy barrier for transition to a partially unfolded state, may play an active posttranslational role in insertion and translocation of proteins in situ.
Collapse
Affiliation(s)
- I Shin
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
31
|
Aledo JC, de Pedro E, Gómez-Fabre PM, Núñez de Castro I, Márquez J. Submitochondrial localization and membrane topography of Ehrlich ascitic tumour cell glutaminase. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1323:173-84. [PMID: 9042341 DOI: 10.1016/s0005-2736(96)00189-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The intramitocondrial localization of the phosphate-activated glutaminase from Ehrlich cells has been examined by a combination of techniques, including: mitochondria subfractionation studies, chemical modification with sulfhydryl group reagents of different permeability, enzymatic digestion in both sides of the inner mitochondrial membrane, and immunological studies. Using alkaline extraction at high ionic strength, hypoosmotic shock and freezing-thawing cycle techniques, the enzyme was found in the particulate fraction. On the contrary, glutaminase activity was labile when subfractionation was carried out by digitonin/lubrol method; Western blot analysis localized the inactive enzyme in the matrix fraction. In addition, glutaminase was fully inactivated when mitoplasts were incubated with phospholipase A2 and phospholipase C. The enzyme also showed a non-linear Arrhenius plot with a break at 24 degrees C. The membrane-impermeant thiol reagents mersalyl and p-chloromercuriphenylsulfonic acid do not inhibit glutaminase activity in freeze-thawed mitochondria and mitoplasts, but N-ethylmaleimide, which is membrane permeant, strongly inhibited the enzyme. However, mersalyl and p-chloromercuriphenylsulfonic acid were effective inhibitors when the alkylation was performed on the matrix side of mitoplasts or using detergent-solubilized enzyme. Furthermore, trypsin digestion of mitoplasts was only effective inactivating glutaminase when the proteolysis was carried out on the matrix side of the vesicles. Enzyme-linked immunosorbent assay of the soluble and membrane fractions obtained in the preparation of submitochondrial particles, revealed that most of the enzyme was solubilized, but in the inactive form. Phase separation with Triton X-114 rendered most of the protein in the aqueous phase. These results taken together discard a transmembrane localization for the protein, whereas they are consistent with anchorage of glutaminase on the matrix side of the inner mitochondrial membrane, the matrix portion of the enzyme being relevant for its function.
Collapse
Affiliation(s)
- J C Aledo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Málaga, Spain
| | | | | | | | | |
Collapse
|
32
|
Tetlow IJ, Bowsher CG, Emes MJ. Reconstitution of the hexose phosphate translocator from the envelope membranes of wheat endosperm amyloplasts. Biochem J 1996; 319 ( Pt 3):717-23. [PMID: 8920972 PMCID: PMC1217848 DOI: 10.1042/bj3190717] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Amyloplasts were isolated and purified from wheat endosperm and the envelope membranes reconstituted into liposomes. Envelope membranes were solubilized in n-octyl beta-D-glucopyranoside and mixed with liposomes supplemented with 5.6 mol% cholesterol to produce proteoliposomes of defined size, which showed negligible leakage of internal substrates. Transport experiments with proteoliposomes revealed a counter-exchange of glucose 1-phosphate (Glc1P), glucose 6-phosphate (Glc6P), inorganic phosphate (Pi), 3-phosphoglycerate and dihydroxyacetone phosphate. The Glc1P/Pi counter-exchange reaction exhibited an apparent K(m) for Glc1P of 0.4 mM. Glc6P was a competitive inhibitor of Glc1P transport (Ki 0.8 mM), and the two hexose phosphates could exchange with each other, indicating the operation of a single carrier protein. Glc1P/Pi antiport in proteoliposomes showed an exchange stoichiometry at pH 8.0 of 1 mol of phosphate transported per mol of sugar phosphate.
Collapse
Affiliation(s)
- I J Tetlow
- School of Biological Sciences, University of Manchester, U.K
| | | | | |
Collapse
|
33
|
Bakás L, Ostolaza H, Vaz WL, Goñi FM. Reversible adsorption and nonreversible insertion of Escherichia coli alpha-hemolysin into lipid bilayers. Biophys J 1996; 71:1869-76. [PMID: 8889162 PMCID: PMC1233654 DOI: 10.1016/s0006-3495(96)79386-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Alpha-Hemolysin is an extracellular protein toxin (107 kDa) produced by some pathogenic strains of Escherichia coli. Although stable in aqueous medium, it can bind to lipid bilayers and produce membrane disruption in model and cell membranes. Previous studies had shown that toxin binding to the bilayer did not always lead to membrane lysis. In this paper, we find that alpha-hemolysin may bind the membranes in at least two ways, a reversible adsorption and an irreversible insertion. Reversibility is detected by the ability of liposome-bound toxin to induce hemolysis of added horse erythrocytes; insertion is accompanied by an increase in the protein intrinsic fluorescence. Toxin insertion does not necessarily lead to membrane lysis. Studies of alpha-hemolysin insertion into bilayers formed from a variety of single phospholipids, or binary mixtures of phospholipids, or of phospholipid and cholesterol, reveal that irreversible insertion is favored by fluid over gel states, by low over high cholesterol concentrations, by disordered liquid phases over gel or ordered liquid phases, and by gel over ordered liquid phases. These results are relevant to the mechanism of action of alpha-hemolysin and provide new insights into the membrane insertion of large proteins.
Collapse
Affiliation(s)
- L Bakás
- Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain
| | | | | | | |
Collapse
|
34
|
Waters SI, Sen R, Brunauer LS, Huestis WH. Physical determinants of intermembrane protein transfer. Biochemistry 1996; 35:4002-8. [PMID: 8672433 DOI: 10.1021/bi950433s] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Intermembrane protein transfer between erythrocytes and phospholipid vesicles was examined under a variety of conditions to investigate physical factors governing this process. Human erythrocytes were incubated with sonicated dimyristoylphosphatidylcholine vesicles containing trace [14C]dipalmitoylphosphatidylcholine. Protein-vesicle complexes were separated from cells and from membrane fragments by density gradient centrifugation. The yield of isolated protein vesicles was determined from the 14C-vesicle marker; protein compositions were analyzed by SDS-polyacrylamide gel electrophoresis. Enzymatic removal of portions of the cytoplasmic or exoplasmic domains of cell membrane proteins had little effect on the extent of protein transfer. Membrane additives such as cholate produced a 2-fold increase in protein-vesicle yield. The selectivity of protein transfer from erythrocytes was influenced by the lipid composition of recipient vesicles: inclusion of cholesterol increased band 3 content while the presence of anionic phospholipids reduced transfer. Proteins transferred from 32P-labeled cells differed in specific radioactivity from bulk cell proteins: glycophorin, highly phosphorylated in the cell membrane, showed no detectable labeling in the corresponding protein-vesicle band. These observations suggest that cell-to-vesicle protein transfer is insensitive to bulk steric and electrostatic properties of cell membranes, but enhanced by membrane defects. Recipient membrane composition influences the selectivity of transferred proteins and may reveal subtle differences in the membrane association of protein subpopulations.
Collapse
Affiliation(s)
- S I Waters
- Department of Chemistry, Stanford University, California 94305, USA
| | | | | | | |
Collapse
|
35
|
Pap EH, Ketelaars M, Borst JW, van Hoek A, Visser AJ. Reorientational properties of fluorescent analogues of the protein kinase C cofactors diacylglycerol and phorbol ester. Biophys Chem 1996; 58:255-66. [PMID: 8820410 DOI: 10.1016/0301-4622(95)00107-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The reorientational properties of the fluorescently labelled protein kinase C (PKC) cofactors diacylglycerol (DG) and phorbol ester (PMA) in vesicles and mixed micelles have been investigated using time-resolved polarised fluorescence. The sn-2 acyl chain of DG was replaced by diphenylhexatriene- (DPH) propionic acid, while a dansyl labelled analogue of phorbol ester was used. The extent of ordering of DPH-DG in vesicles turned out to be slightly different from that of the control choline lipid DPH-PC. Addition of PKC to vesicles containing 30 mole% brain PS considerably slowed down the DPH-DG anisotropy decay. This was not observed when DPH-DG was replaced by DPH-PC. Analysis of the fluorescence anisotropy decays of these DPH-lipids in micelles polyoxyethylene-9-laurylether mixed with 10 mole% of the essential phosphatidylserine allowed estimation of their lateral diffusion, orientation distribution and reorientational dynamics within the micelles. Addition of PKC resulted in a significantly slower decay of the fluorescence anisotropy of both DPH-DG and DPH-PC even in the absence of calcium, indicating a calcium independent complexation of PKC with the PS containing micelles. Addition of calcium resulted in a further reduction of the decay of anisotropy of DPH-DG but not of DPH-PC indicating that the Ca2+ dependent immobilisation is cofactor-specific. Similar specific interactions with PKC resulted in a slower decay of dansylated PMA when calcium and PS were present.
Collapse
Affiliation(s)
- E H Pap
- Department of Biochemistry, Agricultural University, Wageningen, Netherlands
| | | | | | | | | |
Collapse
|
36
|
Rigaud JL, Pitard B, Levy D. Reconstitution of membrane proteins into liposomes: application to energy-transducing membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1231:223-46. [PMID: 7578213 DOI: 10.1016/0005-2728(95)00091-v] [Citation(s) in RCA: 342] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- J L Rigaud
- Section de Bióenergétique, DBCM, CEA-Saclay, Gif sur Yvette, France
| | | | | |
Collapse
|
37
|
Raffy S, Teissie J. Insertion of Glycophorin A, A Transmembraneous Protein, in Lipid Bilayers can be Mediated by Electropermeabilization. ACTA ACUST UNITED AC 1995. [DOI: 10.1111/j.1432-1033.1995.0722h.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Wang H, Brennan JD, Gene A, Krull UJ. Assembly of antibodies in lipid membranes for biosensor development. Appl Biochem Biotechnol 1995; 53:163-81. [PMID: 7763053 DOI: 10.1007/bf02788606] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An investigation of the incorporation of antibody in lipid films of a composition that has been used for biosensor preparation is reported. IgG that is incorporated into lipid monolayers prepared from 7:3 mixtures of dipalmitoyl phosphatidylcholine and dipalmitoyl phosphatidic acid is edge-active, and enters and penetrates the fluid region of the mixed-phase system when monolayers are held at low pressure (< 20 mN/m). It was found that there is an "exclusion pressure" observed in pressure-area (pi-A) curves that are collected for monolayers that contain antibody. This term refers to a specific threshold of lateral pressure (which is reached by monolayer compression) that can cause explusion of antibody from the interior of a membrane. Microscopic images of monolayers containing the fluorescent phospholipid nitrobenzoxadiazole dipalmitoyl phosphatidylethanolamine (NBD-PE), or antibody labeled with tetramethylrhodamine isothiocyanate (TRITC), were used to determine the structure of membranes, and the location of effects on structure caused by IgG. Ellipsometric measurements of lipid monolayers that were cast onto silicon wafers by the Langmuir-Blodgett method were used to study the thickness of monolayers and to investigate the structural changes that occurred at the "exclusion pressure." Both the use of fluorescent antigen and ellipsometry indicated that antibody binding activity was present and was dependent on compression pressure. The effects of pH and ionic strength of subphase, antibody concentration, incubation time, and lateral pressure have been examined. The results may indicate the conditions that can be used to improve the incorporation of active IgG for preparation of biosensors that are based on lipid membranes.
Collapse
Affiliation(s)
- H Wang
- Analysis and Test Centre, Shandong Teachers' University, Jinan, People's Republic of China
| | | | | | | |
Collapse
|
39
|
Jones MN. The surface properties of phospholipid liposome systems and their characterisation. Adv Colloid Interface Sci 1995; 54:93-128. [PMID: 7832999 DOI: 10.1016/0001-8686(94)00223-y] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The field of liposome (vesicle) research has expanded considerably over the last 30 years. In physical chemical terms liposomes have many of the characteristics of colloidal particles and their stability is determined in part by the classical surface forces. It is now possible to engineer a wide range of liposomes varying in size, phospholipid composition and surface characteristics. The surfaces of liposomes can be modified by the choice of bilayer lipid as well as by the incorporation and covalent linkage of proteins (e.g. antibodies and sugar binding proteins [lectins]), glycoproteins and synthetic polymers. Much of the impetus for liposome design has come from their potential value as drug delivery systems. The development of technologies for the production of such a range of liposome systems has presented interesting problems in the characterisation of their properties. The review addresses the progress that has been made in characterising the surfaces of different types of liposomes with specific reference to their electrophoretic properties and their interpretation and the physical interactions between liposomal bilayers.
Collapse
Affiliation(s)
- M N Jones
- School of Biological Sciences, University of Manchester, UK
| |
Collapse
|
40
|
Effects of acid phospholipids on nucleotide exchange properties of ADP-ribosylation factor 1. Evidence for specific interaction with phosphatidylinositol 4,5-bisphosphate. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)46904-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
41
|
el Ouagari K, Benoist H, Sixou S, Teissie J. Electropermeabilization mediates a stable insertion of glycophorin A with Chinese hamster ovary cell membranes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 219:1031-9. [PMID: 8112316 DOI: 10.1111/j.1432-1033.1994.tb18586.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Electropulsation allowed us to incorporate glycophorin A, an integral membrane protein, into mammalian nucleated cell membranes (Chinese hamster ovary cells). The induction of stable protein association is effective only when the field intensity is higher than its threshold value, creating membrane permeabilization to small molecules. Under controlled conditions, cell viability was only slightly altered by this treatment. Pulse number and duration controlled both the number of modified cells and incorporated molecules. The phenomena was temperature dependent. An average of 5 x 10(4) molecules/cell was bound. About 80% of cells in the pulsed population were observed to incorporate glycophorin. The protein incorporation was shown to be stable 48 h after electroassociation. Electrically bound proteins were shared between the cells after each division. As enhanced binding is detected if glycophorin is added after the pulses, it is the long-lived alteration of the membrane mediated by the pulses which supports the association.
Collapse
Affiliation(s)
- K el Ouagari
- Département de Glycoconjugués et Biomembranes, UPR 8221 CNRS, Toulouse, France
| | | | | | | |
Collapse
|
42
|
Nikolelis DP, Tzanelis MG, Krull UJ. The bilayer lipid membrane as a generic electrochemical transducer of hydrolytic enzyme reactions. Biosens Bioelectron 1994; 9:179-88. [PMID: 8060587 DOI: 10.1016/0956-5663(94)80119-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Bilayer lipid membranes (BLMs) can be used as generic transducers to monitor hydrolytic enzyme reactions occurring at the membrane surface. The representative enzymatic reactions presented herein were between membrane associated urease and penicillinase with urea and penicillin, respectively. Transient electrochemical signals from BLMs which contained enzyme were obtained by proper selection of the lipid composition of membranes. Negatively charged lipid membranes composed of egg phosphatidylcholine (PC) and 35% dipalmitoylphosphatidic acid were used for this purpose. The results were consistent with an electrostatic mechanism of perturbation of the surface structure of the BLMs, where changes of local hydronium ion activity associated with the enzymatic reaction altered the extent of ionization of the headgroups of the acidic constituent of the membranes, thereby providing a transient charging current which lasted for a period on the order of seconds. The delay time for observation of the transient was directly and reproducibly related to the concentration of the substrate which could be determined over a range of microM to mM levels. The results indicate that BLMs can be used as generic selective electrochemical transducers and as switchable biosensors to monitor rapid enzymatic reactions which alter pH.
Collapse
Affiliation(s)
- D P Nikolelis
- Department of Chemistry, University of Athens, Panepistimiopolis, Kouponia, Greece
| | | | | |
Collapse
|
43
|
Affiliation(s)
- B Poolman
- Department of Microbiology, University of Groningen, Haren, The Netherlands
| | | |
Collapse
|
44
|
Nikolelis DP, Tzanelis MG, Krull UJ. Direct electrochemical transduction of an immunological reaction by bilayer lipid membranes. Anal Chim Acta 1993. [DOI: 10.1016/0003-2670(93)80116-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
45
|
Greenhut SF, Taylor KM, Roseman MA. Tight insertion of cytochrome b5 into large unilamellar vesicles. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1149:1-9. [PMID: 8318521 DOI: 10.1016/0005-2736(93)90018-u] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cytochrome b5 spontaneously binds to liposomes in a 'loose', or transferable form, whereas in vivo b5 binds post-translationally to the ER in the 'tight' or nontransferable form. The mechanism of tight insertion is unknown, except that it does not require SRP or energy input. The present study shows that prolonged incubation of b5 with large unilamellar vesicles (LUVs) of phosphatidylcholine results in slow conversion of the loose to the tight form, with a halftime of days. However, the process is complex. When the b5-LUVs are depleted of loose b5, by transfer of b5 to sonicated vesicles, the tight b5 is found to be concentrated to near saturating levels in a small fraction of the LUVs. If the LUVs devoid of tight b5 are recovered and then reincubated with fresh b5, the same slow transformation recurs. Apparently, a new population of vesicles, containing tight b5, is generated during the prolonged incubation with the protein. The b5-enriched LUVs contain about the same level of trapped sucrose as does the original vesicle preparation, indicating that vesicle integrity is maintained throughout the process. When fresh b5 is added to these tight b5-containing LUVs, all the freshly bound protein rapidly inserts (< 2 h) into the tight configuration. Apparently, the newly formed tight-b5/LUV vesicle population is 'insertion-active'. A model for these complex transformations is proposed.
Collapse
Affiliation(s)
- S F Greenhut
- Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799
| | | | | |
Collapse
|
46
|
Bergers JJ, Vingerhoeds MH, van Bloois L, Herron JN, Janssen LH, Fischer MJ, Crommelin DJ. The role of protein charge in protein-lipid interactions. pH-dependent changes of the electrophoretic mobility of liposomes through adsorption of water-soluble, globular proteins. Biochemistry 1993; 32:4641-9. [PMID: 8485142 DOI: 10.1021/bi00068a023] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The role of electrostatics in the adsorption process of proteins to preformed negatively-charged (phosphatidylcholine/phosphatidylglycerol) and neutral (phosphatidylcholine) liposomes was studied. The interaction was monitored at low ionic strength for a set of model proteins as a function of pH. The adsorption behavior of trypsin inhibitor (pI = 4.6), myoglobin (pI = 7.4), ribonuclease (pI = 9.6), and lysozyme (pI = 10.7) with preformed liposomes was investigated, along with changes in the electrophoretic mobility of liposomes through the adsorption of charged proteins. Mean protein charge was determined by acid/base titration. Significant adsorption of the proteins to negatively-charged liposomes was only found at pH values where the number of positive charge moieties exceeds the number of negative charge moieties on the protein by at least three charge units. Negligible adsorption to liposomes composed of zwitterionic lipids was observed in the pH range tested (4-9). The absolute value of the electrophoretic mobilities of negatively-charged, empty liposomes decreased after adsorption of positively-charged proteins. With increasing protein to phospholipid ratio, the drop in the electrophoretic mobility leveled off and reached a plateau; protein adsorption profiles showed a similar shape. Analysis of the data demonstrated that neutralization of the liposome charge due to the adsorption of the positively-charged proteins is the controlling factor in their adsorption. The plateau level reached depended on the type of protein and the pH of the incubation medium. This pH dependency could be ascribed to the mean positive charge of the protein.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J J Bergers
- Department of Pharmaceutics, Faculty of Pharmacy, Utrecht University, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
47
|
Zidovetzki R, Laptalo L, Crawford J. Effect of diacylglycerols on the activity of cobra venom, bee venom, and pig pancreatic phospholipases A2. Biochemistry 1992; 31:7683-91. [PMID: 1510954 DOI: 10.1021/bi00148a032] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The effects of a series of diacylglycerols (DAGs) with varying acyl chain lengths and degree of unsaturation on the activity of cobra venom, bee venom, and pig pancreatic phospholipases A2 (PL-A2S) were studied using two lipid substrates: dipalmitoylphosphatidylcholine (DPPC) or bovine liver phosphatidylcholine (BL-PC). The activities of the phospholipases critically depended on the chain length and degree of unsaturation of the added DAGs and on the chemical composition of the substrate. The effects of DAGs on cobra or bee venom PL-A2S were similar, but significantly different from the pig pancreatic PL-A2. The data, taken together with our previous NMR studies on physicochemical effects of these DAGs on lipid bilayer structure [De Boeck, H., & Zidovetzki, R. (1989) Biochemistry 28, 7439; (1992) Biochemistry 31, 623], allowed detailed correlation of the type of a bilayer perturbation induced by DAG with the activation or inhibition of the phospholipase on the same system. In general, the activation of the phospholipases correlated with the DAG-induced defects of the lipid bilayer structure. The results, however, argue against general designation of DAGs as "activators" or "inhibitors" of PL-A2S. Thus, for example, diolein activated phospholipases with the BL-PC lipid substrate, but inhibited them with the DPPC substrate. Dihexanoylglycerol and dioctanoylglycerol inhibited pig pancreatic PL-A2 with both lipid substrates and inhibited cobra or been venom PL-A2 with the DPPC substrate, but activated the latter two enzymes with the BL-PC substrate. Longer-chain DAGs (C greater than 12), which induce lateral phase separation of the bilayers into the regions of different fluidities, activated all PL-A2S with both lipid substrates.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R Zidovetzki
- Department of Biology, University of California, Riverside 92521
| | | | | |
Collapse
|
48
|
Zakim D, Eibl H. The influence of charge and the distribution of charge in the polar region of phospholipids on the activity of UDP-glucuronosyltransferase. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42188-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
49
|
Lévy D, Gulik A, Bluzat A, Rigaud JL. Reconstitution of the sarcoplasmic reticulum Ca(2+)-ATPase: mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergents. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1107:283-98. [PMID: 1387003 DOI: 10.1016/0005-2736(92)90415-i] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The Ca(2+)-ATPase from skeletal muscle sarcoplasmic reticulum was reconstituted into sealed phospholipid vesicles using the method recently developed for bacteriorhodopsin (Rigaud, J.L., Paternostre, M.T. and Bluzat, A. (1988) Biochemistry 27, 2677-2688). Liposomes prepared by reverse-phase evaporation were treated with various amounts of Triton X-100, octyl glucoside, sodium cholate or dodecyl octa(oxyethylene) glycol ether (C12E8) and protein incorporation was studied at each step of the liposome solubilization process by each of these detergents. After detergent removal by SM-2 Bio-Beads the resulting vesicles were analyzed with respect to protein incorporation by freeze-fracture electron microscopy, sucrose density gradients and Ca2+ pumping measurements. The nature of the detergent used for reconstitution proved to be important for determining the mechanism of protein insertion. With octyl glucoside, direct incorporation of Ca(2+)-ATPase into preformed liposomes destabilized by saturating levels of this detergent was observed and gave proteoliposomes homogeneous in regard to protein distribution. With the other detergents, optimal Ca(2+)-ATPase pumping activities were obtained when starting from Ca(2+)-ATPase/detergent/phospholipid micellar solutions. However, the homogeneity of the resulting recombinants was shown to be dependent upon the detergent used and in the presence of Triton X-100 or C12E8 different populations were clearly evidenced. It was further demonstrated that the rate of detergent removal drastically influenced the composition of resulting proteoliposomes: upon slow detergent removal from samples solubilized with Triton X-100 or C12E8, Ca(2+)-ATPase was found seggregated and/or aggregated in very few liposomes while upon rapid detergent removal compositionally homogeneous proteoliposomes were obtained with high Ca2+ pumping activities. The reconstitution process was further analyzed by centrifugation experiments and the results demonstrated that the different mechanisms of reconstitution were driven predominantly by the tendency for self-aggregation of the Ca(2+)-ATPase. A model for Ca(2+)-ATPase reconstitution was proposed which accounted for all our results. In summary, the advantage of the systematic studies reported in this paper was to allow a rapid and easy determination of the experimental conditions for optimal detergent-mediated reconstitution of Ca(2+)-ATPase. Proteoliposomes prepared by the present simple method exhibited the highest Ca2+ pumping activities reported to date in Ca(2+)-ATPase reconstitution experiments performed in the absence of Ca2+ precipitating agents.
Collapse
Affiliation(s)
- D Lévy
- Service de Biophysique, Département de Biologie et URA-CNRS (D 1290), CEN Saclay, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
50
|
Freisleben HJ, Blöcher D, Ring K. Calorimetry of tetraether lipids from Thermoplasma acidophilum: incorporation of alamethicin, melittin, valinomycin, and nonactin. Arch Biochem Biophys 1992; 294:418-26. [PMID: 1567197 DOI: 10.1016/0003-9861(92)90706-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The development and application of model membrane systems on the basis of tetraether lipids from Thermoplasma acidophilum has been proposed. In this respect incorporation of membrane proteins and ionophores is indispensable and is demonstrated in the case of alamethicin, melittin, nonactin, and valinomycin by calorimetry. Dipalmitoylphosphatidylcholine (DPPC) and dihexadecylmaltosylglycerol (DHMG) were chosen for comparison. Melittin and alamethicin prove to broaden the lipid phase transition and to reduce the melting temperature Tm and enthalpy change (delta H) of the main phospholipid from T. acidophilum (MPL) and DPPC. The decrease in Tm, however, is more pronounced in DPPC than in MPL. Valinomycin shows only a marginal effect on the temperature and width of the transition; delta H is reduced in MPL and remains constant in DPPC and DHMG. With nonactin the phase transition of DPPC is quenched, and delta H and the half-height width are increased. DHMG is affected to a lesser extent and MPL only marginally. The four ionophores exhibit different modulation of the phase transition behavior of the various lipids as expected from their varying molecular structures. Thus, the integral membrane protein alamethicin, the peripheral protein melittin, valinomycin, and nonactin interact primarily with lipid head groups and are readily incorporated into the tetraether lipid structures.
Collapse
Affiliation(s)
- H J Freisleben
- Gustav-Embden-Zentrum der Biologischen Chemie, Johann Wolfgang Goethe-Universität, Frankfurt/Main, Germany
| | | | | |
Collapse
|