Abstract
Hemoproteins catalyze reductive and oxidative one-electron transformations. Not infrequently, the radicals produced by these one-electron reactions add to the prosthetic heme group of the enzyme and modify or terminate its catalytic function. Reactions of the radicals with the heme group include additions to the iron atom, pyrrole nitrogens, pyrrole carbons, vinyl groups, and meso carbons. The radicals involved in these reactions derive from the oxidizing agent, the substrate, or the amino acid residues of the catalytic site. The mechanism by which the radicals are generated, their steric and electronic properties, and the extent to which they have access to the heme group determine the nature and regiospecificity of the reaction. The reaction of heme prosthetic groups with radicals is relevant to the inhibition of hemoprotein enzymes, the normal and pathological degradation of heme, and our understanding of hemoprotein function.
Collapse