1
|
Hwang SW, Kim M, Liu AP. Towards Synthetic Cells with Self-Producing Energy. Chempluschem 2024; 89:e202400138. [PMID: 38866722 DOI: 10.1002/cplu.202400138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/06/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024]
Abstract
Autonomous generation of energy, specifically adenosine triphosphate (ATP), is critical for sustaining the engineered functionalities of synthetic cells constructed from the bottom-up. In this mini-review, we categorize studies on ATP-producing synthetic cells into three different approaches: photosynthetic mechanisms, mitochondrial respiration mimicry, and utilization of non-conventional approaches such as exploiting synthetic metabolic pathways. Within this framework, we evaluate the strengths and limitations of each approach and provide directions for future research endeavors. We also introduce a concept of building ATP-generating synthetic organelle that will enable us to mimic cellular respiration in a simpler way than current strategies. This review aims to highlight the importance of energy self-production in synthetic cells, providing suggestions and ideas that may help overcome some longstanding challenges in this field.
Collapse
Affiliation(s)
- Sung-Won Hwang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Minha Kim
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Allen P Liu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, Biophysics, Cellular and Molecular Biology Program, Applied Physics Program, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
2
|
Khaleque MDA, Okumura Y, Mitani M. Liposome Immobilization on Cross-linked Polymer Gel by In Situ Formation of Cleavable Covalent Bonds. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911506070822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Immobilization of liposomes onto chemically modified Sephacryl gel particles by in situreaction between liposome-incorporated thiols and mercapto moieties on the gel to form disulfide linkages was investigated. For the immobilization, both the mercapto moieties and the incorporated thiol were essential. The immobilization occurred upon coincubation of the modified liposomes with the modified gel for 48 hours. Once immobilized, no spontaneous detachment of the immobilized liposomes was observed. The degree of immobilization depended on both the thiol content and the ratio of the liposomes to the gel partilces. In a typical immobilization with 25mol% 1-octanethiol, 82% of the liposomal phosphatidylcholine in the system was found to be associated with the gel. By decreasing the ratio of the liposomes to gel it was possible to bring the immobilization close to quantitative one. Among the three different thiols examined (1-octanethiol, 1-hexadecanethiol and thiocholesterol), the extent of the immobilization was slightly higher with thiocholesterol than the alkanethiols. The immobilized liposomes were detached from the gel with dithiothreitol. Approximately 60% of the fluorescent dextran derivative encapsulated in the liposomes was retained throughout the immobilization-detachment process. The gel left after the detachment remained active for immobilizing a fresh batch of thiol-liposomes.
Collapse
Affiliation(s)
- MD. Abdul Khaleque
- Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano, Nagano 380-8553, Japan
| | - Y. Okumura
- Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano, Nagano 380-8553, Japan
| | - M. Mitani
- Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano, Nagano 380-8553, Japan
| |
Collapse
|
3
|
Synthesis of poly(sulfobetaine methacrylate)-grafted chitosan under γ-ray irradiation for alamethicin assembly. Colloids Surf B Biointerfaces 2015; 132:132-7. [DOI: 10.1016/j.colsurfb.2015.05.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/08/2015] [Accepted: 05/11/2015] [Indexed: 11/21/2022]
|
4
|
Kuang L, Fernandes DA, O'Halloran M, Zheng W, Jiang Y, Ladizhansky V, Brown LS, Liang H. "Frozen" block copolymer nanomembranes with light-driven proton pumping performance. ACS NANO 2014; 8:537-545. [PMID: 24358932 DOI: 10.1021/nn4059852] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cellular membranes are natural nanoengineering devices, where matter transport, information processing, and energy conversion across the nanoscale boundaries are mediated by membrane proteins (MPs). Despite the great potential of MPs for nanotechnologies, their broad utility in engineered systems is limited by the fluidic and often labile nature of MP-supporting membranes. Little is known on how to direct spontaneous reconstitution of MPs into robust synthetic nanomembranes or how to tune MP functions through rational design of these membranes. Here we report that proteorhodopsin (PR), a light-driven proton pump, can be spontaneously reconstituted into "frozen" (i.e., glassy state) amphiphilic block copolymer membranes via a charge-interaction-directed reconstitution mechanism. We show that PR is not enslaved by a fluidic or lipid-based membrane environment. Rather, well-defined block copolymer nanomembranes, with their tunable membrane moduli, act as allosteric regulators to support the structural integrity and function of PR. Versatile membrane designs exist to modulate the conformational energetics of reconstituted MPs, therefore optimizing proteomembrane stability and performance in synthetic systems.
Collapse
Affiliation(s)
- Liangju Kuang
- Department of Metallurgical and Materials Engineering, Colorado School of Mines , Golden, Colorado 80401, United States
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Rogerson ML, Robinson BH, Bucak S, Walde P. Kinetic studies of the interaction of fatty acids with phosphatidylcholine vesicles (liposomes). Colloids Surf B Biointerfaces 2006; 48:24-34. [PMID: 16466910 DOI: 10.1016/j.colsurfb.2006.01.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 12/16/2005] [Accepted: 01/03/2006] [Indexed: 10/25/2022]
Abstract
The kinetics of addition of fatty acids (as alkaline solutions of the fatty acid anions) to pre-existing unilamellar phospholipid vesicles (mean diameter 100 nm) has been studied. The phospholipid DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) has been mainly used, together with three fatty acids, oleic acid (cis-9-octadecenoic acid), linoleic acid (cis,cis-9,12-octadecadienoic acid) and capric acid (decanoic acid). Experiments were performed above as well as below the main phase transition temperature (Tm) of DMPC vesicles. The pH chosen to study the fatty acid vesicle interaction (after fatty acid and vesicle mixing) was 8.5 in the case of oleic acid and linoleic acid and 7.4 for capric acid. In the absence of any pre-existing phospholipid vesicles, the addition of alkaline solutions of the fatty acid anions to corresponding buffer solutions of pH 8.5 or 7.4 leads to a partial protonation of the fatty acid anions again resulting in the formation of fatty acid vesicles. This process is rather slow, taking place over a period of hours/days, and the vesicles formed are very polydisperse and include a range of vesicle sizes/shapes. However, in the presence of pre-existing phospholipid vesicles the added fatty acids equilibrate readily within a few minutes and the size of the vesicles that form are then closely related to the size of the originally present phospholipid vesicles; the vesicles formed being generally somewhat larger than the pre-existing vesicles. In the case of the phospholipid DMPC, the mixed fatty acid/phospholipid vesicle system is often formed rather rapidly (particularly above Tm), so that stopped-flow methods have been applied to follow the kinetics of the process. It is proposed that most of the fatty acid molecules are initially rapidly incorporated into the bilayers of the pre-exisiting phospholipid vesicles as monomers, rather than that the added fatty acids form separate fatty acid vesicles. The mean vesicle sizes formed in the systems investigated have been analysed by using dynamic light scattering measurements. The behaviour of the DMPC system was found to be slightly different from the POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) system studied before, but the results are consistent with a model that involves growth and subsequent fission of the mixed vesicles. The study provides further support of the "matrix effect" in this type of system [S. Lonchin, P.L. Luisi, P. Walde, B.H. Robinson, J. Phys. Chem. B 103 (1999) 10910-10916]. The pre-existing DMPC vesicles act as a kind of seed to control the behavior of the system in the presence of added fatty acid anions.
Collapse
Affiliation(s)
- Madeleine L Rogerson
- School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich NR4 7TJ, UK
| | | | | | | |
Collapse
|
6
|
Khaleque MA, Okumura Y, Yabushita S, Mitani M. Detachable immobilization of liposomes on polymer gel particles. Colloids Surf B Biointerfaces 2004; 37:35-42. [PMID: 15450306 DOI: 10.1016/j.colsurfb.2004.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2004] [Accepted: 06/26/2004] [Indexed: 11/25/2022]
Abstract
Immobilization of liposomes on hydrophobized Sephacryl gel and controlled detachment of the liposomes from the gel were examined. The gel was chemically modified and bore octyl, hexadecyl or cholesteryl moiety via disulfide linkage as anchors to liposomal bilayer membrane. Upon interaction with the gel, egg phosphatidylcholine liposomes were successfully immobilized onto the gel. The gel with cholesteryl moiety showed 1.7 times higher liposome immobilization per anchor moiety than the gels with the alkyl moieties. The immobilization of liposomes on the gel was stable, and no significant spontaneous detachment of phospholipid or leakage of fluorescein isothiocyanate-conjugated dextran encapsulated in the immobilized liposomes was observed in 24h. Reductive cleavage of the disulfide linkage by dithiothreitol resulted in detachment of the liposomes from the gel. The majority of the detached liposomes were found encapsulating the dextran derivative, and these liposomes should have kept their structural integrity throughout the immobilization and the detachment processes. The release of the liposomes was insignificant until the ratio of the dithiothreitol to the hydrophobic anchor reached a threshold. The presence of the threshold suggests that the immobilization of liposomes should require a certain minimum number of the hydrophobic moieties anchored in the liposomal membrane. By applying the present immobilization-detachment system, preparation of liposomes encapsulating the dextran derivative without using costly gel filtration or ultracentrifugation procedure was successfully demonstrated.
Collapse
Affiliation(s)
- Md Abdul Khaleque
- Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | | | | | | |
Collapse
|
7
|
Hirooka K, Bamba T, Fukusaki EI, Kobayashi A. Cloning and kinetic characterization of Arabidopsis thaliana solanesyl diphosphate synthase. Biochem J 2003; 370:679-86. [PMID: 12437513 PMCID: PMC1223189 DOI: 10.1042/bj20021311] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2002] [Revised: 11/12/2002] [Accepted: 11/19/2002] [Indexed: 11/17/2022]
Abstract
trans -Long-chain prenyl diphosphate synthases catalyse the sequential condensation of isopentenyl diphosphate (C(5)) units with allylic diphosphate to produce the C(30)-C(50) prenyl diphosphates, which are precursors of the side chains of prenylquinones. Based on the relationship between product specificity and the region around the first aspartate-rich motif in trans -prenyl diphosphate synthases characterized so far, we have isolated the cDNA for a member of trans -long-chain prenyl diphosphate synthases from Arabidopsis thaliana. The cDNA was heterologously expressed in Escherichia coli, and the recombinant His(6)-tagged protein was purified and characterized. Product analysis revealed that the cDNA encodes solanesyl diphosphate (C(45)) synthase (At-SPS). At-SPS utilized farnesyl diphosphate (FPP; C(15)) and geranylgeranyl diphosphate (GGPP; C(20)), but did not accept either the C(5) or the C(10) allylic diphosphate as a primer substrate. The Michaelis constants for FPP and GGPP were 5.73 microM and 1.61 microM respectively. We also performed an analysis of the side chains of prenylquinones extracted from the A. thaliana plant, and showed that its major prenylquinones, i.e. plastoquinone and ubiquinone, contain the C(45) prenyl moiety. This suggests that At-SPS might be devoted to the biosynthesis of either or both of the prenylquinone side chains. This is the first established trans -long-chain prenyl diphosphate synthase from a multicellular organism.
Collapse
Affiliation(s)
- Kazutake Hirooka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita Yamadaoka 2-1, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
8
|
Evidence for a high proton translocation stoichiometry of the H+-ATPase complex in well coupled proteoliposomes reconstituted from a thermophilic cyanobacterium. FEBS Lett 2002. [DOI: 10.1016/0014-5793(86)81548-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Kadenbach B, Hüttemann M, Arnold S, Lee I, Bender E. Mitochondrial energy metabolism is regulated via nuclear-coded subunits of cytochrome c oxidase. Free Radic Biol Med 2000; 29:211-21. [PMID: 11035249 DOI: 10.1016/s0891-5849(00)00305-1] [Citation(s) in RCA: 197] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A new mechanism on regulation of mitochondrial energy metabolism is proposed on the basis of reversible control of respiration by the intramitochondrial ATP/ADP ratio and slip of proton pumping (decreased H+/e- stoichiometry) in cytochrome c oxidase (COX) at high proton motive force delta p. cAMP-dependent phosphorylation of COX switches on and Ca2+-dependent dephosphorylation switches off the allosteric ATP-inhibition of COX (nucleotides bind to subunit IV). Control of respiration via phosphorylated COX by the ATP/ADP ratio keeps delta p (mainly delta psi(m)) low. Hormone induced Ca2+-dependent dephosphorylation results in loss of ATP-inhibition, increase of respiration and delta p with consequent slip in proton pumping. Slip in COX increases the free energy of reaction, resulting in increased rates of respiration, thermogenesis and ATP-synthesis. Increased delta psi(m) stimulates production of reactive oxygen species (ROS), mutations of mitochondrial DNA and accelerates aging. Slip of proton pumping without dephosphorylation and increase of delta p is found permanently in the liver-type isozyme of COX (subunit VIaL) and at high intramitochondrial ATP/ADP ratios in the heart-type isozyme (subunit VIaH). High substrate pressure (sigmoidal v/s kinetics), palmitate and 3,5-diiodothyronine (binding to subunit Va) increase also delta p, ROS production and slip but without dephosphorylation of COX.
Collapse
Affiliation(s)
- B Kadenbach
- Fachbereich Chemie, Philipps-Universität, Marburg, Germany.
| | | | | | | | | |
Collapse
|
10
|
De Cuyper M, De Meulenaer B, Van der Meeren P, Vanderdeelen J. Catalytic durability of magnetoproteoliposomes captured by high-gradient magnetic forces in a miniature fixed-bed reactor. Biotechnol Bioeng 2000; 49:654-8. [DOI: 10.1002/(sici)1097-0290(19960320)49:6<654::aid-bit6>3.0.co;2-n] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Skulachev V. Energy Transduction Mechanisms (Animals and Plants). Compr Physiol 1997. [DOI: 10.1002/cphy.cp140104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
Vygodina TV, Capitanio N, Papa S, Konstantinov AA. Proton pumping by cytochrome c oxidase is coupled to peroxidase half of its catalytic cycle. FEBS Lett 1997; 412:405-9. [PMID: 9276436 DOI: 10.1016/s0014-5793(97)00649-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The four-electron reaction cycle of cytochrome oxidase is comprised of an eu-oxidase phase in which the enzyme receives the first two electrons and reduces oxygen to bound peroxide and a peroxidase phase in which the peroxy state formed in the eu-oxidase half of the cycle is reduced by the 3rd and 4th electrons to the ferryl-oxo state and oxidized form, respectively. Here we show that the ferrocyanide-peroxidase activity of cytochrome c oxidase incorporated in phospholipid vesicles is coupled to proton pumping. The H+/e- ratio for the ferrocyanide-peroxidase partial reaction is twice higher than for the overall ferrocyanide-oxidase activity and is close to 2. These results show that proton pumping by COX is confined to the peroxidase part of the enzyme catalytic cycle (transfer of the 3rd and 4th electron) whereas the eu-oxidase part (transfer of the first two electrons) may not be proton pumping.
Collapse
Affiliation(s)
- T V Vygodina
- A.N. Belozerskiy Institute of Physico-Chemical Biology, Moscow State University, Russia
| | | | | | | |
Collapse
|
13
|
|
14
|
Das TK. Rotational Dynamics of Lipid/Detergent Mixtures: A Mechanism for Membrane Protein Reconstitution into Lipid Vesicles. ACTA ACUST UNITED AC 1996. [DOI: 10.1021/jp9608638] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tapan Kanti Das
- Chemical Physics Group, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400 005, India
| |
Collapse
|
15
|
Cladera J, Rigaud JL, Bottin H, Duñach M. Functional reconstitution of photosystem I reaction center from cyanobacterium Synechocystis sp PCC6803 into liposomes using a new reconstitution procedure. J Bioenerg Biomembr 1996; 28:503-15. [PMID: 8953382 DOI: 10.1007/bf02110440] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Photosystem I reaction center from the cyanobacterium Synechocystis sp PCC6803 was reconstituted into phosphatidylcholine/phosphatidic acid liposomes. Liposomes prepared by reversephase evaporation were treated with various amounts of different detergents and protein incorporation was analyzed at each step of the solubilization process. After detergent removal the activities of the resulting proteoliposomes were measured. The most efficient reconstitution was obtained by insertion of the protein complex into preformed liposomes destabilized by saturating amounts of octylglucoside. In the presence of N-methylphenazonium methosulfate and ascorbic acid, liposomes containing the reaction center catalyzed a light-dependent net H+ uptake as measured by the 9-aminoacridine fluorescence quenching and the pH meter. An important benefit of the new reconstitution procedure is that it produces a homogeneous population of large-size proteoliposomes with a low ionic permeability and with a majority inwardly directed H+ transport activity. In optimal conditions, a light-induced delta pH of about 1.8 units could be sustained at 20 degrees C in the presence of valinomycin. In the absence of valinomycin, a "back-pressure" effect of an electrical transmembrane potential decreased both the rate and the extent of the H+ transport. The reaction center was also co-reconstituted with F0F1 H(+)-ATPases from chloroplasts and from the thermophilic bacterium, PS3. The co-reconstituted system was shown to catalyze a light-dependent phosphorylation which could only be measured in the presence of a high concentration of PSI (low lipid/PSI ratios) while no delta pH could be detected.
Collapse
Affiliation(s)
- J Cladera
- Department de Bioquímica i Biologia Molecular, Universitat Autonoma de Barcelona, Bellaterra, Spain
| | | | | | | |
Collapse
|
16
|
Das TK. Rotational dynamics of lipid–detergent mixtures probed by a cyanine dye: a mechanism for vesicle formation. ACTA ACUST UNITED AC 1996. [DOI: 10.1039/ft9969204279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Rigaud JL, Pitard B, Levy D. Reconstitution of membrane proteins into liposomes: application to energy-transducing membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1231:223-46. [PMID: 7578213 DOI: 10.1016/0005-2728(95)00091-v] [Citation(s) in RCA: 342] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- J L Rigaud
- Section de Bióenergétique, DBCM, CEA-Saclay, Gif sur Yvette, France
| | | | | |
Collapse
|
18
|
Malatesta F, Antonini G, Sarti P, Brunori M. Structure and function of a molecular machine: cytochrome c oxidase. Biophys Chem 1995; 54:1-33. [PMID: 7703349 DOI: 10.1016/0301-4622(94)00117-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cytochrome c is responsible for over 90% of the dioxygen consumption in the living cell and contributes to the build-up of a proton electrochemical gradient derived by the vectorial transfer of electrons between cytochrome c and molecular oxygen. The metal ions found in cytochrome oxidases play a crucial role in these processes and have been extensively studied. In this review we present and discuss some of the relevant spectroscopic and kinetic properties of the prosthetic groups of cytochrome c oxidase.
Collapse
Affiliation(s)
- F Malatesta
- Department of Experimental Medicine, University of Rome, Tor Vergata, Italy
| | | | | | | |
Collapse
|
19
|
Sharpe MA, Cooper CE, Wrigglesworth JM. Transport of K+ and other cations across phospholipid membranes by nonesterified fatty acids. J Membr Biol 1994; 141:21-8. [PMID: 7966242 DOI: 10.1007/bf00232870] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The rate of change of internal pH and transmembrane potential has been monitored in liposomes following the external addition of various cation salts. Oleic acid increases the transmembrane movement of H+ following the imposition of a K+ gradient. An initial fast change in internal pH is seen followed by a slower rate of alkalinization. High concentrations of the fatty acid enhance the rate comparable to that seen in the presence of nigericin in contrast to the effect of FCCP (carbonyl cyanide p-(tri-fluoromethoxy)phenyl hydrazone) which saturates at an intermediate value. The ability of nonesterified fatty acids to catalyze the movement of cations across the liposome membrane increases with the degree of unsaturation and decreases with increasing chain length. Li and Na salts cause a similar initial fast pH change but have less effect on the subsequent slower rate. Similarly, the main effect of divalent cation salts is on the initial fast change. The membrane potential can enhance or inhibit cation transport depending on its polarity with respect to the cation gradient. It is concluded that nonesterified fatty acids have the capability to complex with, and transport, a variety of cations across phospholipid bilayers. However, they do not act simply as proton/cation exchangers analogous to nigericin nor as protonophores analogous to FCCP. The full cycle of ionophoric action involves a combination of both functions.
Collapse
Affiliation(s)
- M A Sharpe
- Division of Life Sciences, King's College London, United Kingdom
| | | | | |
Collapse
|
20
|
Frey TG. Cytochrome c oxidase: structural studies by electron microscopy of two-dimensional crystals. Microsc Res Tech 1994; 27:319-32. [PMID: 8186450 DOI: 10.1002/jemt.1070270407] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cytochrome c oxidase is a complex integral membrane protein consisting of 13 different polypeptide chains and four metal centers having a total molecular weight of approximately 200,000 daltons. It can be isolated in two 2-dimensional crystalline forms differing in aggregation state of the enzyme. One crystal form consists of cytochrome oxidase dimers (approximately 400,000 daltons) embedded unidirectionally in the lipid bilayer of a collapsed vesicle while the other form consists of crystalline sheets of cytochrome oxidase monomers. Both crystal forms have been studied by electron microscopy during the past two decades, and this paper summarizes the results of early structural studies as well as more recent results applying techniques of cryoelectron microscopy and digital image processing. The structure of frozen-hydrated cytochrome oxidase dimers at 20 A resolution is discussed as well as the packing of monomers within dimers and the site of cytochrome c binding.
Collapse
Affiliation(s)
- T G Frey
- Department of Biology and Molecular Biology Institute, San Diego State University, California 92182
| |
Collapse
|
21
|
Veld GI, Driessen AJ, Konings WN. Bacterial solute transport proteins in their lipid environment. FEMS Microbiol Rev 1993; 12:293-314. [PMID: 8268004 DOI: 10.1111/j.1574-6976.1993.tb00024.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The cytoplasmic membrane of bacteria is a selective barrier that restricts entry and exit of solutes. Transport of solutes across this membrane is catalyzed by specific membrane proteins. Integral membrane proteins usually require specific lipids for optimal activity and are inhibited by other lipid species. Their activities are also sensitive to the lipid bilayer dynamics and physico-chemical state. Bacteria can adapt to changes in the environments (respective temperature, hydrostatic pressure, and pH) by altering the lipid composition of the membrane. Homeoviscous adaptation results in the maintenance of the liquid-crystalline phase through alterations in the degree of acyl chain saturation and branching, acyl chain length and the sterol content of the membrane. Homeophasic adaptation prevents the formation of non-bilayer phases, which would disrupt membrane organization and increase permeability. A balance is maintained between the lamellar phase, preferring lipids, and those that adopt a non-bilayer organization. As a result, the membrane proteins are optimally active under physiological conditions. The molecular basis of lipid-protein interactions is still obscure. Annular lipids stabilize integral membrane proteins. Stabilization occurs through electrostatic and possibly other interactions between the lipid headgroups and the charged amino acid residues close to the phospholipid-water interface, and hydrophobic interactions between the fatty acyl chains and the membrane-spanning segments. Reconstitution techniques allow manipulation of the lipid composition of the membrane in a way that is difficult to achieve in vivo. The physical characteristics of membrane lipids that affect protein-mediated transport functions have been studied in liposomal systems that separate an inner and outer compartment. The activity of most transport proteins is modulated by the bulk physical characteristics of the lipid bilayer, while specific lipid requirements appear rare.
Collapse
Affiliation(s)
- G I Veld
- Department of Microbiology, University of Groningen, The Netherlands
| | | | | |
Collapse
|
22
|
Riek R, Apell HJ. Investigation of reconstitution of the Na, K-ATPase in lipid vesicles. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1148:321-30. [PMID: 8389199 DOI: 10.1016/0005-2736(93)90146-q] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Vesicles containing Na,K-ATPase were prepared by a dialysis method in buffers with various concentrations of K+ and Na+ ions. Ion-exchange chromatography has been used to separate proteoliposomes into protein-depleted and protein-rich fractions. The pumping activity of reconstituted ion pumps has been determined in the different fractions of the vesicle preparation using voltage-dependent fluorescence dyes. This method allowed to characterise vesicle fractions by a quantity which is proportional to the average number of pumps per vesicle with an active (inside-out) orientation. It could be shown that both, the amount of enzymatic active protein and the orientation of Na,K-ATPase in the vesicle lipid bilayer, is partially controlled by the Na+ and K+ concentration in the buffer during vesicle formation. High Na+ concentrations preferentially maintain the E1 conformation of the enzyme, which is less stable against denaturation during the dialysis, but displays a higher percentage of inside-out orientation of the transport-active protein. High K+ concentrations maintain the E2 conformation of the enzyme, which is stable against denaturation during the dialysis, but leads to a random orientation of the pump during dialysis.
Collapse
|
23
|
Cooper CE, Markus M, Seetulsingh SP, Wrigglesworth JM. Kinetics of inhibition of purified and mitochondrial cytochrome c oxidase by psychosine (beta-galactosylsphingosine). Biochem J 1993; 290 ( Pt 1):139-44. [PMID: 8382474 PMCID: PMC1132393 DOI: 10.1042/bj2900139] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
1. Psychosine (beta-galactosylsphingosine) is the toxic agent in Krabbe's disease (globoid cells leukodystrophy). It inhibits purified bovine heart mitochondrial cytochrome c oxidase; there is a rapid phase of inhibition (complete within 10-15 s) and a slower phase (complete within 10-15 min). Both phases are also seen in rat liver mitochondria. IC50 is about 200 microM psychosine in the purified enzyme and less than 20 microM in mitochondria. Psychosine inhibition is due to binding to cytochrome oxidase, not cytochrome c. 2. Bovine heart submitochondrial particles show inhibition similar to rat liver mitochondria. However, although proteoliposomes containing bovine heart cytochrome oxidase show an identical fast phase, they have no noticeable slow phase of inhibition. Addition of phospholipid liposomes to submitochondrial particles relieved the majority of psychosine inhibition, consistent with the removal of those molecules binding in the slow phase. Psychosine can inhibit cytochrome oxidase molecules facing in either direction in proteoliposomes and submitochondrial particles, suggesting that it can rapidly interact with both sides of a membrane when added externally. 3. At high ionic strength, the presence of psychosine decreases the Vmax. of cytochrome oxidase with little effect on the Km for cytochrome c. This non-competitive inhibition suggests that the psychosine-enzyme complex is kinetically inactive and not labile over the time course of the assay. Psychosine does not inhibit the reduction of haem a or haem a3 by artificial electron donors, but does inhibit the reduction of haem a by cytochrome c.
Collapse
Affiliation(s)
- C E Cooper
- Metals in Biology and Medicine Centre, Division of Life Sciences, King's College London, U.K
| | | | | | | |
Collapse
|
24
|
Co-reconstitution of the H+-ATP synthase and cytochrome b-563c-554 complex from a thermophilic cyanobacterium. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1993. [DOI: 10.1016/0005-2728(93)90066-o] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Puustinen A, Finel M, Haltia T, Gennis RB, Wikström M. Properties of the two terminal oxidases of Escherichia coli. Biochemistry 1991; 30:3936-42. [PMID: 1850294 DOI: 10.1021/bi00230a019] [Citation(s) in RCA: 235] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Proton translocation coupled to oxidation of ubiquinol by O2 was studied in spheroplasts of two mutant strains of Escherichia coli, one of which expresses cytochrome d, but not cytochrome bo, and the other expressing only the latter. O2 pulse experiments revealed that cytochrome d catalyzes separation of the protons and electrons of ubiquinol oxidation but is not a proton pump. In contrast, cytochrome bo functions as a proton pump in addition to separating the charges of quinol oxidation. E. coli membranes and isolated cytochrome bo lack the CuA center typical of cytochrome c oxidase, and the isolated enzyme contains only 1Cu/2Fe. Optical spectra indicate that high-spin heme o contributes less than 10% to the reduced minus oxidized 560-nm band of the enzyme. Pyridine hemochrome spectra suggest that the hemes of cytochrome bo are not protohemes. Proteoliposomes with cytochrome bo exhibited good respiratory control, but H+/e- during quinol oxidation was only 0.3-0.7. This was attributed to an "inside out" orientation of a significant fraction of the enzyme. Possible metabolic benefits of expressing both cytochromes bo and d in E. coli are discussed.
Collapse
Affiliation(s)
- A Puustinen
- Department of Medical Chemistry, University of Helsinki, Finland
| | | | | | | | | |
Collapse
|
26
|
Wrigglesworth JM, Cooper CE, Sharpe MA, Nicholls P. The proteoliposomal steady state. Effect of size, capacitance and membrane permeability on cytochrome-oxidase-induced ion gradients. Biochem J 1990; 270:109-18. [PMID: 2168698 PMCID: PMC1131685 DOI: 10.1042/bj2700109] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
1. The flux pathways for H+ and K+ movements into and out of proteoliposomes incorporating cytochrome c oxidase have been investigated as a function of the electrical and geometrical properties of the vesicles. 2. The respiration-induced pH gradient (delta pH) and membrane potential (delta psi) are mutually dependent and individually sensitive to the permeability properties of the membrane. A lowering or abolition of delta psi by the addition of valinomycin increased the steady-state level of delta pH. Conversely, removal of delta pH by the addition of nigericin resulted in a higher steady-state delta psi. 3. Vesicles prepared by sonication followed by centrifugation maintained similar pH gradients at steady state to those in vesicles prepared by dialysis, although the time taken to reach steady state was longer. Higher pH gradients can be induced in non-centrifuged sonicated preparations. 4. No significant differences were found in H+ and K+ permeability between proteoliposomes prepared by dialysis or by sonication. The permeability coefficient of the vesicle bilayers for H+ was 6.1 x 10(-4) cm.s-1 and that for K+ was 7.5 x 10(-10) cm.s-1. An initial fast change in internal pH was seen on the addition of external acid or alkali, followed by a slower, ionophore-sensitive, change. The initial fast phase can be increased by the lipid-soluble base dibucaine and the weak acid oleate. In the absence of ionophores, increasing concentrations of oleate increased the rate of H+ translocation to a level similar to that seen in the presence of nigericin. Internal alkalinization could also be induced by oleate upon the addition of potassium sulphate. 5. The initial, pre-steady-state and steady-state delta pH and delta psi changes can be simulated using a model in which the enzyme responds to both delta pH and delta psi components of the protonmotive force. At steady state, the electrogenic entry of K+ is countered by electroneutral exit via a K+/H+ exchange. 6. The permeability coefficient, PH, calculated from H+ flux under steady-state turnover conditions, was approx. 100 times higher than the corresponding 'passive' measurements of PH. Under conditions of oxidase turnover, the vesicles appear to be intrinsically more permeable to protons.
Collapse
|
27
|
|
28
|
Villalobo A. Reconstitution of ion-motive transport ATPases in artificial lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1017:1-48. [PMID: 1693288 DOI: 10.1016/0005-2728(90)90176-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- A Villalobo
- Instituto de Investigaciones Biomédicas, C.S.I.C., Madrid, Spain
| |
Collapse
|
29
|
Abstract
During oxidative phosphorylation by mammalian mitochondria part of the free energy stored in reduced substrates is dissipated and energy is released as heat. Here I review the mechanisms and the physiological significance of this phenomenon.
Collapse
Affiliation(s)
- M P Murphy
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY
| |
Collapse
|
30
|
|
31
|
Slooten L, Vandenbranden S. ATP-synthesis by proteoliposomes incorporating Rhodospirillum rubrum F0F1 as measured with firefly luciferase: dependence on delta psi and delta pH. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 976:150-60. [PMID: 2528991 DOI: 10.1016/s0005-2728(89)80224-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
ATP-synthesis catalyzed by proteoliposomes incorporating Rhodospirillum rubrum F0F1 was driven by artificially applied electrochemical proton gradients. The time-course of ATP-synthesis was followed continuously by means of firefly luciferase. Correction methods were developed which allow one to calculate the initial rate of ATP-synthesis from the observed luminescence kinetics. The following results were obtained: (1) ATP-synthesis occurred above a threshold delta mu H+ of 90 mV; this threshold is not imposed by the activation requirement of the enzyme; (2) delta psi and delta pH appear to be equivalent as driving forces for ATP-synthesis if allowance is made for the effect of the electrical capacitance of the liposome membrane on the distribution of K+ at equilibrium; and (3) the highest rate observed so far is 200 mol ATP per mol F0F1 per s.
Collapse
Affiliation(s)
- L Slooten
- Vrije Universiteit Brussel, Faculty of Sciences, Laboratory of Biophysics, Belgium
| | | |
Collapse
|
32
|
Slooten L, Vandenbranden S. Isolation of the proton-translocating F0F1-ATPase from Rhodospirillum rubrum chromatophores, and its functional reconstitution into proteoliposomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1989. [DOI: 10.1016/s0005-2728(89)80213-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Lill H, Junge W. CF0, the proton channel of chloroplast ATP synthase. After removal of CF1 it appears in two forms with highly different proton conductance. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 179:459-67. [PMID: 2465153 DOI: 10.1111/j.1432-1033.1989.tb14575.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The discharge of the flash-induced transmembrane voltage through the exposed proton channel, CF0, of the chloroplast ATP synthase, CF0CF1 was investigated. EDTA treatment of thylakoid membranes exposed approximately 50% of total CF0 by removal of the CF1 counterparts. This greatly accelerated the decay of the transmembrane voltage, as was apparent from electrochromic-absorption changes of intrinsic pigments and by pH-indicating-absorption changes of added dyes. Two decay processes were discernible, one rapid with a typical half-decay time of 2 ms, and a slower one with a half-decay time variable between 20-100 ms. Both were sensitive to CF0 inhibitors, but only the rapid decay process was also inhibited by added CF1. CF1 was effective in surprisingly small amounts, which were significantly lower than those previously removed by EDTA treatment. This finding corroborated our previous conclusion that the rapid decay of the transmembrane voltage was attributable to only a few high-conductance channels among many CF0 molecules, typically in the order of one channel/CF1-depleted EDTA vesicle. Inhibition of photophosphorylation in control thylakoids was measured as function of the concentration of CF0 inhibitors. It was compared with the inhibition of proton conduction through exposed CF0 in EDTA vesicles. Photophosphorylation and proton conduction by the high-conductance form of CF0 were inhibited by the same low inhibitor concentrations. This suggested that the high-conducting form of CF0 with a time-averaged single-channel conductance of 1 pS [Lill, H., Althoff, G. & Junge, W. (1987) J. Membrane Biol. 98, 69-78] represented the proton channel in the integral enzyme, which acted as a low-impedance access from the thylakoid lumen to the coupling site in CF0CF1. The slow decay process was attributed to a majority of low-conductance CF0 channels, i.e. about 50 molecules/vesicle. The conductance of these channels was more than 100-fold lower and they did not compete with the very few highly conducting channels for rebinding of added CF1. The low proton conduction of the majority of exposed CF0 molecules, possibly due to a structural rearrangement, may be protecting the thylakoid membrane against rapid energy dissipation caused by accidental loss of CF1. It may also explain the low single-channel conductance of bacterial F0 reported in the literature.
Collapse
Affiliation(s)
- H Lill
- Biophysik, Fachbereich Biologie/Chemie, Universität Osnabräuck, Federal Republic of Germany
| | | |
Collapse
|
34
|
|
35
|
Affiliation(s)
- D D Lasic
- Department of Physics, University of Waterloo, Ontario, Canada
| |
Collapse
|
36
|
Long RC, Hawkridge FM, Chlebowski JF, Hartzell CR. The temperature dependence and thermal denaturation of the cytochrome c/cytochrome c oxidase/dioxygen system: an electrochemical investigation. ACTA ACUST UNITED AC 1988. [DOI: 10.1016/0022-0728(88)85011-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
|
38
|
Affiliation(s)
- J M Wrigglesworth
- Department of Biochemistry, King's College, University of London, U.K
| |
Collapse
|
39
|
Hakvoort TB, Moolenaar K, Lankvelt AH, Sinjorgo KM, Dekker HL, Muijsers AO. Separation, stability and kinetics of monomeric and dimeric bovine heart cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 894:347-54. [PMID: 2825776 DOI: 10.1016/0005-2728(87)90112-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The stability of monomeric and dimeric bovine heart cytochrome c oxidase in laurylmaltoside-containing buffers of high ionic strength allowed separation of the two forms by gel-filtration high-performance liquid chromatography (HPLC). A solution of the dimeric oxidase could be diluted without monomerisation. Both monomeric and dimeric cytochrome c oxidase showed biphasic steady-state kinetics when assayed spectrophotometrically at low ionic strength. Thus, the biphasic kinetics did not result from negative cooperativity between the two adjacent cytochrome c binding sites of the monomers constituting the dimeric oxidase. On polyacrylamide gels in the presence of sodium dodecyl sulphate (SDS) a fraction of subunit III of the dimeric enzyme migrated as a dimer, a phenomenon not seen with the monomeric enzyme. This might suggest that in the dimeric oxidase subunit III lies on the contact surface between the protomers. If so, the presumably hydrophobic interaction between the two subunits III resisted dissociation by SDS to some extent. Addition of sufficient ascorbate and cytochrome c to the monomeric oxidase to allow a few turnovers induced slow dimerisation (on a time-scale of hours). This probably indicates that one of the transient forms arising upon reoxidation of the reduced enzyme is more easily converted to the dimeric state than the resting enzyme. Gel-filtration HPLC proved to be a useful step in small-scale purification of cytochrome c oxidase. In the presence of laurylmaltoside the monomeric oxidase eluted after the usual trace contaminants, the dimeric Complex III and the much larger Complex I. The procedure is fast and non-denaturing, although limited by the capacity of available columns.
Collapse
Affiliation(s)
- T B Hakvoort
- Laboratory of Biochemistry, University of Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
40
|
Wrigglesworth JM, Wooster MS, Elsden J, Danneel HJ. Dynamics of proteoliposome formation. Intermediate states during detergent dialysis. Biochem J 1987; 246:737-44. [PMID: 2825651 PMCID: PMC1148339 DOI: 10.1042/bj2460737] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
1. The intermediate structures formed during dialysis of mixtures of cholate, phospholipid and cytochrome c oxidase were analysed by gel chromatography and electron microscopy. Measurements of trapped phosphate and the degree of respiratory control were used to assess the integrity of the vesicular structures formed. Protein orientation in the bilayer was monitored by the accessibility of cytochrome c to cytochrome c oxidase. 2. The results indicate that proteoliposome formation by the detergent-dialysis procedure takes place in three distinct stages. In the first stage, cholate/phospholipid and cholate/phospholipid/protein micelles coexist in solution and grow in size as the detergent is slowly removed. At a detergent/phospholipid molar ratio of about 0.2, micelle fusion results in the formation of large bilayer aggregates permeable to both phosphate and cytochrome c. It is at this stage that cytochrome c oxidase is incorporated into the bilayer. In the final stage of dialysis the bilayer sheets fragment into small unilamellar vesicles. 3. The orientation of membrane protein in the final vesicles appears to be determined by the effect of protein conformation on the initial curvature of the bilayer sheets during the fragmentation process.
Collapse
Affiliation(s)
- J M Wrigglesworth
- Department of Biochemistry, King's College (University of London), U.K
| | | | | | | |
Collapse
|
41
|
Wagner N, Gutweiler M, Pabst R, Dose K. Coreconstitution of bacterial ATP synthase with monomeric bacteriorhodopsin into liposomes. A comparison between the efficiency of monomeric bacteriorhodopsin and purple membrane patches in coreconstitution experiments. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 165:177-83. [PMID: 2883008 DOI: 10.1111/j.1432-1033.1987.tb11209.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The conditions for coreconstitution of a bacterial ATP synthase and bacteriorhodopsin into lecithin liposomes and for light driven ATP synthesis have been optimized. A rate of maximally 280 nmol ATP min-1 mg ATP synthase-1 was achieved with monomerized bacteriorhodopsin compared with a rate of up to 45 nmol ATP min-1 mg-1 found for proteoliposomes containing bacteriorhodopsin in the form of purple membrane patches. The different rates are explained by the finding that monomeric bacteriorhodopsin is more homogeneously distributed among the liposomes than the purple membrane patches. The final activities depended on both the purification method for the two proteins and the coreconstitution procedure. Furthermore, the ratio (lipid to bacteriorhodopsin to ATP synthase) could be optimized. Light-driven ATP synthesis depends also on the type of detergent used. The best result was obtained by deoxycholate. Also the relationship between proton translocation (by bacteriorhodopsin) and ATP synthesis activity was measured. A constant H+/ATP ratio was found at higher light intensities. This ratio increased strongly at lower light intensities.
Collapse
|
42
|
Eytan G, Persson B, Ekebacke A, Rydström J. Energy-linked nicotinamide-nucleotide transhydrogenase. Characterization of reconstituted ATP-driven transhydrogenase from beef heart mitochondria. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)61146-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
43
|
Finel M, Wikström M. Studies on the role of the oligomeric state and subunit III of cytochrome oxidase in proton translocation. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 851:99-108. [PMID: 3015210 DOI: 10.1016/0005-2728(86)90253-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Anion-exchange fast protein liquid chromatography in the presence of lauryldimethylamine N-oxide (LDAO) was introduced to separate cytochrome oxidase into different complexes that either did or did not contain subunit III. Both kinds of enzyme complex exhibited H+ translocation after reconstitution into phospholipid vesicles, but with a significantly (approx. 50-60%) reduced H+/e- ratio as compared with unchromatographed enzyme. The anion-exchange FPLC fractions of the enzyme (with or without subunit III) sedimented more slowly than the control enzyme upon sucrose gradient centrifugation in the presence of cholate and a high potassium phosphate concentration. When the control enzyme was subjected to the sucrose gradient centrifugation in the presence of LDAO or Triton X-100, instead of cholate, one band containing all subunits was observed, which sedimented slowly like the FPLC fractions. Transfer of this band to cholate medium, and reapplication on the sucrose gradient (with cholate), yielded both a slow- and a fast-migrating band after centrifugation. Enzyme complexes that sedimented slowly or rapidly in the sucrose gradients revealed longer and shorter elution times, respectively, in gel filtration FPLC. This suggests that these complexes corresponds to monomers and dimers of cytochrome oxidase. Solubilization of proteoliposomes and subsequent sucrose gradient centrifugation in cholate yielded one fast-migrating band for the untreated enzyme, but both a fast- and a slow-migrating band for the anion-exchange FPLC-treated enzyme, which was exclusively slow-migrating before reconstitution into liposomes. It is suggested that dimerisation of monomeric cytochrome oxidase may be favoured when the enzyme encounters a membranous milieu, and that the dimeric structure might be necessary for proton translocation.
Collapse
|
44
|
Van Walraven H, Van Der Bend R, Hagendoorn M, Haak N, Oskam A, Oostdam A, Krab K, Kraayenhof R. Comparison of ATP synthesis efficiencies in ATPase proteoliposomes of different complexities. ACTA ACUST UNITED AC 1986. [DOI: 10.1016/0302-4598(86)80055-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Kell DB. Uncoupler titrations in co-reconstituted systems do not discriminate between localized and delocalized mechanisms of photo-phosphorylation. Biochem J 1986; 236:931-2. [PMID: 2878657 PMCID: PMC1146931 DOI: 10.1042/bj2360931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
46
|
Sone N, Ogura T, Kitagawa T. Iron-histidine stretching Raman line and enzymic activities of bovine and bacterial cytochrome c oxidases. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 850:139-45. [PMID: 3011089 DOI: 10.1016/0005-2728(86)90018-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Resonance Raman spectra of the reduced form of cytochrome c oxidase isolated from bovine heart and the thermophilic bacterium PS3 were investigated in relation to their H+-pumping- and cytochrome-c-oxidizing activities, which were varied by incubating the enzyme at raised temperatures or at alkaline pH at room temperature. For both the bovine and PS3 enzymes, the intensity of the iron-histidine stretching Raman line of the ferrous a3 heme (214 cm-1) exhibited an incubation-temperature-dependent change, which fell between the similar curves of the H+-pumping and cytochrome-c-oxidizing activities. The intensities of the formyl CH=O stretching Raman line of the ferrous a3 heme (1665 cm-1) as well as of other lines were insensitive to the heat treatment. The iron-histidine stretching Raman line of both enzymes showed pH-dependent intensity change which was nearly parallel with the pH dependence of cytochrome-c-oxidizing activity. Therefore, deprotonation affecting the 214 cm-1 Raman line is responsible for the decrease of activity. This limited alkaline treatment to the PS3 enzyme was reversible and the recovered enzyme exhibited Raman intensities and enzymic activities similar to the native one. However, the neutralized, bovine enzyme with a similar intensity of the 214 cm-1 line showed increased cytochrome-c-oxidizing activity and null H+-pumping activity.
Collapse
|
47
|
Wikström M. Robert P. Casey, 1951–1985. Trends Biochem Sci 1986. [DOI: 10.1016/0968-0004(86)90259-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Porumb H, Petrescu I. Interaction with mitochondria of the anthracycline cytostatics adriamycin and daunomycin. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1986; 48:103-25. [PMID: 3029807 DOI: 10.1016/0079-6107(86)90002-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
49
|
|
50
|
Krab K, van Walraven H, Scholts M, Kraayenhof R. Measurement of diffusion potentials in liposomes. Origin and properties of the threshold level in the oxonol VI response. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1985. [DOI: 10.1016/0005-2728(85)90066-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|