1
|
Medvedev ES, Stuchebrukhov AA. Mechanisms of generation of local ΔpH in mitochondria and bacteria. BIOCHEMISTRY (MOSCOW) 2015; 79:425-34. [PMID: 24954593 DOI: 10.1134/s000629791405006x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The concepts of global and local coupling between proton generators, the enzymes of the respiratory chain, and the consumer, the ATP synthase, coexist in the theory of oxidative phosphorylation. Global coupling is trivial proton transport via the aqueous medium, whereas local coupling implies that the protons pumped are consumed before they escape to the bulk phase. In this work, the conditions for the occurrence of local coupling are explored. It is supposed that the membrane retains protons near its surface and that the proton current generated by the proton pumps rapidly decreases with increasing proton motive force (pmf). It is shown that the competition between the processes of proton translocation across the membrane and their dissipation from the surface to the bulk can result in transient generation of a local ΔpH in reply to a sharp change in pmf; the appearance of local ΔpH, in turn, leads to rapid recovery of the pmf, and hence, it provides for stabilization of the potential at the membrane. Two mechanisms of such kind are discussed: 1) pH changes in the surface area due to proton pumping develop faster than those due to proton escape to the bulk; 2) the former does not take place, but the protons leaving the surface do not equilibrate with the bulk immediately; rather, they give rise to a non-equilibrium concentration near the surface and, as a result, to a back proton flow to the surface. The first mechanism is more efficient, but it does not occur in mitochondria and neutrophilic bacteria, whereas the second can produce ΔpH on the order of unity. In the absence of proton retardation at the surface, local ΔpH does not arise, whereas the formation of global ΔpH is possible only at buffer concentration of less than 10 mM. The role of the mechanisms proposed in transitions between States 3 and 4 of the respiratory chain is discussed. The main conclusion is that surface protons, under conditions where they play a role, support stabilization of the membrane pmf and rapid communication between proton generators and consumers, while their contribution to the energetics is not significant.
Collapse
Affiliation(s)
- E S Medvedev
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region, 142432, Russia.
| | | |
Collapse
|
2
|
del Rosario RCH, Oppawsky C, Tittor J, Oesterhelt D. Modeling the membrane potential generation of bacteriorhodopsin. Math Biosci 2010; 225:68-80. [PMID: 20188746 DOI: 10.1016/j.mbs.2010.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 02/10/2010] [Accepted: 02/13/2010] [Indexed: 10/19/2022]
Abstract
The archaeon Halobacterium salinarum can grow phototrophically with only light as its energy source. It uses the retinal containing and light-driven proton pump bacteriorhodopsin to enhance the membrane potential which drives the ATP synthase. Therefore, a model of the membrane potential generation of bacteriorhodopsin is of central importance to the development of a mathematical model of the bioenergetics of H. salinarum. To measure the current produced by bacteriorhodopsin at different light intensities and clamped voltages, we expressed the gene in Xenopus laevis oocytes. We present current-voltage measurements and a mathematical model of the current-voltage relationship of bacteriorhodopsin and its generation of the membrane potential. The model consists of three intermediate states, the BR, L, and M states, and comparisons between model predictions and experimental data show that the L to M reaction must be inhibited by the membrane potential. The model is not able to fit the current-voltage measurements when only the M to BR phase is membrane potential dependent, while it is able to do so when either only the L to M reaction or both reactions (L to M and M to BR) are membrane potential dependent. We also show that a decay term is necessary for modeling the rate of change of the membrane potential.
Collapse
Affiliation(s)
- Ricardo C H del Rosario
- Max Planck Institute of Biochemistry, Department of Membrane Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | | | |
Collapse
|
3
|
Seo J, Savitzky DC, Ford E, Darwin AJ. Global analysis of tolerance to secretin-induced stress in Yersinia enterocolitica suggests that the phage-shock-protein system may be a remarkably self-contained stress response. Mol Microbiol 2007; 65:714-27. [PMID: 17608794 DOI: 10.1111/j.1365-2958.2007.05821.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The phage-shock-protein (Psp) system is essential for Yersinia enterocolitica virulence. Mislocalized secretins induce psp gene expression, and kill psp null strains. We used transposon mutagenesis to investigate whether other genes are required to tolerate secretin-induced stress. Our motivation included the possibility of identifying signal transducers required to activate psp gene expression. Besides Psp, only defects in the RpoE system and the TrkA potassium transporter caused secretin sensitivity. These mutations did not cause the same specific/severe sensitivity as defects in the Psp system, nor did they affect psp gene expression. The Escherichia coli Psp system was reported to be induced via the ArcB redox sensor and to activate anaerobic metabolism. Our screen did not identify arcB, or any genes involved in anaerobic metabolism/regulation. Therefore, we investigated the role of ArcB in Y. enterocolitica and E. coli. ArcB was not required for secretin-dependent induction of psp gene expression. Furthermore, microarray analysis uncovered a restricted transcriptional response to prolonged secretin stress in Y. enterocolitica. Taken together, these data do not support the proposal that the Psp system is induced via ArcB and activates anaerobic metabolism. Rather, they suggest that Psp proteins may sense an inducing trigger and mediate their physiological output(s) directly.
Collapse
Affiliation(s)
- Jin Seo
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | |
Collapse
|
4
|
Zakharian E, Reusch RN. Streptomyces lividans potassium channel KcsA is regulated by the potassium electrochemical gradient. Biochem Biophys Res Commun 2004; 316:429-36. [PMID: 15020236 DOI: 10.1016/j.bbrc.2004.02.069] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Indexed: 11/30/2022]
Abstract
It is currently held that the Streptomyces lividans potassium channel, KcsA, requires an intracellular pH<5 to exhibit activity in planar lipid bilayers. Here, we show that KcsA functions well at normal physiological pH in the presence of a potassium electrochemical gradient. Single-channel conductance and open probability increased directly as the extracellular potassium concentration was decreased. Channel activity was sensitive to both the membrane potential and the size of the gradient, thus indicating that gating of the channel depends on both components of the electrochemical potential. When [K(+)(in)]/[K(+)(ex)] was 200 mM/10 mM, chord conductance was 24pS with subconductance 15pS; open probability was 0.9. The permeability series was K(+) > Rb(+) >>> Cs(+); K(+) selectivity over Rb(+) was 1.2-fold and selectivity over Na(+) was 12-fold. The channels were disrupted by intracellular Na(+) and blocked by intracellular Ba(2+). A hypothetical supramolecular model for the channel is presented.
Collapse
Affiliation(s)
- E Zakharian
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
5
|
Trchounian A. Escherichia coli proton-translocating F0F1-ATP synthase and its association with solute secondary transporters and/or enzymes of anaerobic oxidation–reduction under fermentation. Biochem Biophys Res Commun 2004; 315:1051-7. [PMID: 14985119 DOI: 10.1016/j.bbrc.2004.02.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Indexed: 11/26/2022]
Abstract
The Escherichia coli proton-translocating F0F1-ATP synthase has a priority in H+ circulation through the membrane in maintaining proton-motive force in the context of ATP synthesis and hydrolysis. Recent advances in the study of this complex under fermentative growth have led to hypothesis that, in the absence of oxidative phosphorylation, F0F1 is implicated as an essential part of H+ movement and ATP hydrolysis, associated with solute secondary transporters and/or enzymes of anaerobic oxidation-reduction. These associations can result from a protein-protein interaction by dithiol-disulfide interchange. In such associations F0F1 has novel functions in bacterial cell physiology.
Collapse
Affiliation(s)
- Armen Trchounian
- Department of Biophysics of the Biological Faculty, Yerevan State University, 1 A. Manoukian Street, 375049 Yerevan, Armenia.
| |
Collapse
|
6
|
|
7
|
Trchounian A. Ion Exchange in Facultative Anaerobes: Does a Proton-potassium Pump Exist in AnaerobicEscherichia Coli? Anaerobe 1997; 3:355-71. [PMID: 16887611 DOI: 10.1006/anae.1997.0122] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/1997] [Accepted: 05/27/1997] [Indexed: 11/22/2022]
Affiliation(s)
- A Trchounian
- Department of Biophysics, Biological Faculty of Yerevan State University, 375049, Yerevan, Armenia.
| |
Collapse
|
8
|
Trchounian AA, Bagramyan KA, Ogandjanian ES, Vassilian AV, Zakharian EG. An electrochemical study of energy-dependent potassium accumulation in E. coli Part 14. Comparison of K+ uptake characteristics in anaerobically grown cells performing glycolysis or nitrate/nitrite respiration: role of the respiratory chain. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/0302-4598(95)01864-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
|
10
|
A direct interaction between the H+-F1F0-ATPase and the K+ transport within the membrane of anaerobically grown bacteria. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/0302-4598(94)87026-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Trchounian A, Ogandjanian E, Mironova G. An electrochemical study of energy-dependent potassium accumulation in E. coli. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/0302-4598(92)87011-i] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Trchounian A, Ogandjanian E, Mironova G. An electrochemical study of energy-dependent potassium accumulation in E. coli. J Electroanal Chem (Lausanne) 1992. [DOI: 10.1016/0022-0728(92)85130-u] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
13
|
Markin VS, Tsong TY. Reversible mechanosensitive ion pumping as a part of mechanoelectrical transduction. Biophys J 1991; 59:1317-24. [PMID: 1873468 PMCID: PMC1281211 DOI: 10.1016/s0006-3495(91)82346-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
To explain the ability of some mechanosensitive cells to reverse the process of mechanotransduction and to generate mechanical oscillations and emit sound, a piezo-conformational coupling model (PCC model) is proposed. The model includes a transport protein which changes either its volume (PV-coupling) or its area in the membrane (gamma A-coupling) when undergoing conformational transitions. Such a protein can interact with an oscillating pressure to pump ions and create a transmembrane gradient if the affinities of the protein for ions are different at the two sides of membrane. The frequency and concentration windows for mechanical energy transduction were determined. Under optimal conditions, the efficiency of energy transduction can approach the theoretical maximum of 100%. If the concentration gradient exceeds the static head value (quasi-equilibrium which can be built up and maintained by this transport system), the energy transduction reverses and the transporter becomes a generator of mechanical oscillations at the expense of a concentration gradient. Estimation of thermodynamic parameters of the pump shows that the PV-coupling model would require large pressure oscillations to work while the gamma A-coupling model could work in physiological conditions. The gamma A-coupling mechanism may be used by cells for two purposes. In the reverse mode, it can be a force generator for various applications. In the direct mode, it may serve bioenergetic purposes by harvesting the energy of mechanical oscillations and storing it in the form of a concentration gradient. This pump has an unusual thermodynamic feature: it can distinguish the two components of the electrochemical potential gradient,i.e., the concentration gradient and the electrical potential, the latter serving as a permissive switch to open, or close, the pump when the potential reaches the threshold value.Predictions of the PCC model and its probable involvement in biological mechanotransduction are dicussed.
Collapse
Affiliation(s)
- V S Markin
- Department of Biochemistry, University of Minnesota College of Biological Sciences, St. Paul 55108
| | | |
Collapse
|
14
|
Markin VS, Tsong TY. Frequency and concentration windows for the electric activation of a membrane active transport system. Biophys J 1991; 59:1308-16. [PMID: 1873467 PMCID: PMC1281210 DOI: 10.1016/s0006-3495(91)82345-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Previous work has shown that a simple four-state membrane transport system can interact with an oscillating electric field to become an active transport system if there is charge translocation associated with conformational changes of the transporter and if affinities of the transporter for the ligand on the two sides of membrane are different. The relationship between the transport flux and both the frequency of the applied field and the concentration of ligand have been examined based on the following assumptions: the rate of the electroconformational change of the transporter is much greater than that of the ligand association/dissociation reaction, and the oscillating electric field has a large amplitude. It was found that the transport flux depends strongly on the frequency of the field and on the concentration of the ligand and it displays a window of broad bandwidth both on the frequency and the concentration axes. The maximum concentration gradient, or the static head, which can be supported by this mechanism is shown to be constant for field frequencies smaller than the rate of the electroconformational change. The static head value diminishes completely when the field frequency exceeds the rate of the conformational change. The presence of an optimal field frequency has been shown experimentally in several membrane enzyme systems. The theory was applied to the description of Rb and Na pumping in human erythrocytes stimulated by an AC field. The prediction of a window for a ligand concentration and the static head value may be tested experimentally. In addition, the rate constants and the equilibrium constants of the four state model can be determined by measuring positions of windows, fluxes, and static head values under different experimental conditions. These results are equally applicable to the oscillation of pressure, membrane tension, substrate concentration, or temperature if these external parameters can induce functionally relevant conformational changes of the transporter.
Collapse
Affiliation(s)
- V S Markin
- Department of Biochemistry, University of Minnesota, St. Paul 55108
| | | |
Collapse
|
15
|
Dibrov PA. The role of sodium ion transport in Escherichia coli energetics. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1056:209-24. [PMID: 1848102 DOI: 10.1016/s0005-2728(05)80052-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- P A Dibrov
- Department of Bioenergetics, A.N. Belozersky Laboratory of Molecular Biology and Bioorganic Chemistry, Moscow State University, U.S.S.R
| |
Collapse
|
16
|
Villalobo A. Reconstitution of ion-motive transport ATPases in artificial lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1017:1-48. [PMID: 1693288 DOI: 10.1016/0005-2728(90)90176-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- A Villalobo
- Instituto de Investigaciones Biomédicas, C.S.I.C., Madrid, Spain
| |
Collapse
|
17
|
Abstract
The progress of bioenergetic studies on the role of Na+ in bacteria is reviewed. Experiments performed over the past decade on several bacterial species of quite different taxonomic positions show that Na+ can, under certain conditions, substitute for H+ as the coupling ion. Various primary Na+ pumps (delta mu Na+ generators) are described, i.e., Na+ -motive decarboxylases, NADH-quinone reductase, terminal oxidase, and ATPase. The delta mu Na+ formed is shown to be consumed by Na+ driven ATP-synthase, Na+ flagellar motor, numerous Na+, solute symporters, and the methanogenesis-linked reverse electron transfer system. In Vibrio alginolyticus, it was found that delta mu Na+, generated by NADH-quinone reductase, can be utilized to support all three types of membrane-linked work, i.e., chemical (ATP synthesis), osmotic (Na+, solute symports), and mechanical (rotation of the flagellum). In Propionigenum modestum, circulation of Na+ proved to be the only mechanism of energy coupling. In other species studied, the Na+ cycle seems to coexist with the H+ cycle. For instance, in V. alginolyticus the initial and terminal steps of the respiratory chain are Na+ - and H+ -motive, respectively, whereas ATP hydrolysis is competent in the uphill transfer of Na+ as well as of H+. In the alkalo- and halotolerant Bacillus FTU, there are H+ - and Na+ -motive terminal oxidases. Sometimes, the Na+ -translocating enzyme strongly differs from its H+ -translocating homolog. So, the Na+ -motive and H+ -motive NADH-quinone reductases are composed of different subunits and prosthetic groups. The H+ -motive and Na+ -motive terminal oxidases differ in that the former is of aa3-type and sensitive to micromolar cyanide whereas the latter is of another type and sensitive to millimolar cyanide. At the same time, both Na+ and H+ can be translocated by one and the same P. modestum ATPase which is of the F0F1-type and sensitive to DCCD. The sodium cycle, i.e., a system composed of primary delta mu Na+ generator(s) and delta mu Na+ consumer(s), is already described in many species of marine aerobic and anaerobic eubacteria and archaebacteria belonging to the following genera: Vibrio, Bacillus, Alcaligenes, Alteromonas, Salmonella, Klebsiella, Propionigenum, Clostridium, Veilonella, Acidaminococcus, Streptococcus, Peptococcus, Exiguobacterium, Fusobacterium, Methanobacterium, Methanococcus, Methanosarcina, etc. Thus, the "sodium world" seems to occupy a rather extensive area in the biosphere.
Collapse
Affiliation(s)
- V P Skulachev
- Department of Bioenergetics, Moscow State University, USSR
| |
Collapse
|
18
|
Abstract
Novel observations related to the Na+-linked energy transduction in bacterial membranes are considered. It is concluded that besides the well-known systems based on the circulation of protons, there are those based on the circulation of Na+. In some cases, H+ and Na+ cycles co-exist in one and the same membrane. Representatives of the 'sodium world', i.e. cells possessing primary Na+ pumps (delta mu Na generators and consumers) are found in many genera of bacteria. Among the delta mu Na generators, one should mention Na+-NADH-quinone reductase and Na+-terminal oxidase of the respiratory chain, Na+-decarboxylases and Na+-ATPases. For delta mu Na consumers, there are Na+-ATP-synthases, Na+-metabolite symporters and Na+ motors. Sometimes, one and the same enzyme can transport H+ or, alternatively, Na+. For instance, an Na+-ATP-synthase of the F0F1 type translocates H+ when Na+ is absent. Employment of the Na+ cycle, apart from or instead of the H+ cycle, increases the resistance of bacteria to alkaline or protonophore-containing media and, apparently, to some other unfavourable conditions.
Collapse
Affiliation(s)
- V P Skulachev
- Department of Bioenergetics, A.N. Belozersky Laboratory of Molecular Biology and Bioorganic Chemistry, Moscow State University, USSR
| |
Collapse
|
19
|
Smith FA, Walker NA. Transport of potassium inChara australis: I. A symport with sodium. J Membr Biol 1989. [DOI: 10.1007/bf01871024] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
|
21
|
|
22
|
Abstract
Secondary active transport is defined as the transport of a solute in the direction of its increasing electrochemical potential coupled to the facilitated diffusion of a second solute (usually an ion) in the direction of its decreasing electrochemical potential. The coupling agents are membrane proteins (carriers), each of which catalyzes simultaneously the facilitated diffusion of the driving ion and the active transport of a given solute. The review starts with some considerations on the energetics followed by a presentation of the kinetics of secondary active transport. Examples of information which may be gained by such studies are discussed. In the second part, some examples of secondary transport are given; we also describe the characteristics of the corresponding carriers. The various transport systems presented are: the D-glucose/Na+ symport in brush-border membranes, the lactose/H+ symport in E. coli, the Na+/H+ antiport, the different transport systems in the inner mitochondrial membrane.
Collapse
|