1
|
Dall'asta V, Franchi-Gazzola R, Bussolati O, Sala R, Rotoli BM, Rossi PA, Uggeri J, Belletti S, Visigalli R, Gazzola GC. Emerging roles for sodium dependent amino acid transport in mesenchymal cells. Amino Acids 2013; 11:117-33. [PMID: 24178683 DOI: 10.1007/bf00813856] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/1996] [Accepted: 02/20/1996] [Indexed: 11/25/2022]
Abstract
The functional aspects of sodium dependent amino acid transport in mesenchymal cells are the subject of this contribution. In a survey of the cross-talk existing among the various transport mechanisms, particular attention is devoted to the role played by substrates shared by several transport systems, such as L-glutamine. Intracellular levels of glutamine are determined by the activity of System A, the main transducer of ion gradients built on by Na,K-ATPase into neutral amino acid gradients. Changes in the activity of the System are employed to regulate intracellular amino acid pool and, hence, cell volume. System A activity has been found increased in hypertonically shrunken cells and in proliferating cells. Under both these conditions cells have to increase their volume; therefore, System A can be employed as a convenient mechanism to increase cell volume both under hypertonic and isotonic conditions. Although less well characterized, the uptake of anionic amino acids performed by System X(-) AG may be involved in the maintenance of intracellular amino acid pool under conditions of limited availability of neutral amino acids substrates of System A.
Collapse
Affiliation(s)
- V Dall'asta
- Istituto di Patologia Generale, Università degli Studi di Parma, Via Gramsci 14, I-43100, Parma, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Choi DH, Oh YM, Kwon SH, Bae SH. The mutation of a novel Saccharomyces cerevisiae SRL4 gene rescues the lethality of rad53 and lcd1 mutations by modulating dNTP levels. J Microbiol 2008; 46:75-80. [PMID: 18337697 DOI: 10.1007/s12275-008-0013-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The SRL4 (YPL033C) gene was initially identified by the screening of Saccharomyces cerevisiae genes that play a role in DNA metabolism and/or genome stability using the SOS system of Escherichia coli. In this study, we found that the srl4Delta mutant cells were resistant to the chemicals that inhibit nucleotide metabolism and evidenced higher dNTP levels than were observed in the wild-type cells in the presence of hydroxyurea. The mutant cells also showed a significantly faster growth rate and higher dNTP levels at low temperature (16 degrees C) than were observed in the wild-type cells, whereas we detected no differences in the growth rate at 30 degrees C. Furthermore, srl4Delta was shown to suppress the lethality of mutations of the essential S phase checkpoint genes, RAD53 and LCD1. These results indicate that SRL4 may be involved in the regulation of dNTP production by its function as a negative regulator of ribonucleotide reductase.
Collapse
Affiliation(s)
- Do-Hee Choi
- Department of Biological Sciences, College of Natural Science, Inha University, Incheon 402-751, Republic of Korea
| | | | | | | |
Collapse
|
3
|
Zada AAP, Singh SM, Reddy VA, Elsässer A, Meisel A, Haferlach T, Tenen DG, Hiddemann W, Behre G. Downregulation of c-Jun expression and cell cycle regulatory molecules in acute myeloid leukemia cells upon CD44 ligation. Oncogene 2003; 22:2296-308. [PMID: 12700665 DOI: 10.1038/sj.onc.1206393] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the present study, we investigated the mechanism of CD44 ligation with the anti-CD44 monoclonal antibody A3D8 to inhibit the proliferation of human acute myeloid leukemia (AML) cells. The effects of A3D8 on myeloid cells were associated with specific disruption of cell cycle events and induction of G0/G1 arrest. Induction of G0/G1 arrest was accompanied by an increase in the expression of p21, attenuation of pRb phosphorylation and associated with decreased Cdk2 and Cdk4 kinase activities. Since c-Jun is an important regulator of proliferation and cell cycle progression, we analysed its role in A3D8-mediated growth arrest. We observed that A3D8 treatment of AML patient blasts and HL60/U937 cells led to the downregulation of c-Jun expression at mRNA and protein level. Transient transfection studies showed the inhibition of c-jun promoter activity by A3D8, involving both AP-1 sites. Furthermore, A3D8 treatment caused a decrease in JNK protein expression and a decrease in the level of phosphorylated c-Jun. Ectopic overexpression of c-Jun in HL60 cells was able to induce proliferation and prevent the antiproliferative effects of A3D8. In summary, these data identify an important functional role of c-Jun in the induction of cell cycle arrest and proliferation arrest of myeloid leukemia cells because of the ligation of the cell surface adhesion receptor CD44 by anti-CD44 antibody. Moreover, targeting of G1 regulatory proteins and the resulting induction of G1 arrest by A3D8 may provide new insights into antiproliferative and differentiation therapy of AML.
Collapse
Affiliation(s)
- Abdul A Peer Zada
- Medicine III, University of Munich Hospital Grosshadern and GSF-Hematologikum, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
The most essential kinases involved in cell membrane receptor activation, signal transduction and cell cycle control or programmed cell death and their interconnections are reviewed. In tumours, the genes of many of those kinases are mutated or amplified or the proteins are overexpressed. The use of key kinases offers the possibility to screen in vitro for synthetic small molecule kinase inhibitors. In view of the many interconnections of cellular kinases, their role in preventing or inducing programmed cell death and the possibility that a considerable number of signal transducing proteins are still unknown, cellular test systems are recommended in which the respective key kinase or one of its main partner molecules are overexpressed.
Collapse
Affiliation(s)
- H H Sedlacek
- Aventis Pharma Deutschland GmbH, Central Biotechnology, Marburg, Germany.
| |
Collapse
|
5
|
Wang S, Ghosh RN, Chellappan SP. Raf-1 physically interacts with Rb and regulates its function: a link between mitogenic signaling and cell cycle regulation. Mol Cell Biol 1998; 18:7487-98. [PMID: 9819434 PMCID: PMC109329 DOI: 10.1128/mcb.18.12.7487] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/1998] [Accepted: 08/26/1998] [Indexed: 01/02/2023] Open
Abstract
Cells initiate proliferation in response to growth factor stimulation, but the biochemical mechanisms linking signals received at the cell surface receptors to the cell cycle regulatory molecules are not yet clear. In this study, we show that the signaling molecule Raf-1 can physically interact with Rb and p130 proteins in vitro and in vivo and that this interaction can be detected in mammalian cells without overexpressing any component. The binding of Raf-1 to Rb occurs subsequent to mitogen stimulation, and this interaction can be detected only in proliferating cells. Raf-1 can inactivate Rb function and can reverse Rb-mediated repression of E2F1 transcription and cell proliferation efficiently. The region of Raf-1 involved in Rb binding spanned residues 1 to 28 at the N terminus, and functional inactivation of Rb required a direct interaction. Serum stimulation of quiescent human fibroblast HSF8 cells led to a partial translocation of Raf-1 into the nucleus, where it colocalized with Rb. Further, Raf-1 was able to phosphorylate Rb in vitro quite efficiently. We believe that the physical interaction of Raf-1 with Rb is a vital step in the growth factor-mediated induction of cell proliferation and that Raf-1 acts as a direct link between cell surface signaling cascades and the cell cycle machinery.
Collapse
Affiliation(s)
- S Wang
- Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | |
Collapse
|
6
|
Deed RW, Hara E, Atherton GT, Peters G, Norton JD. Regulation of Id3 cell cycle function by Cdk-2-dependent phosphorylation. Mol Cell Biol 1997; 17:6815-21. [PMID: 9372912 PMCID: PMC232537 DOI: 10.1128/mcb.17.12.6815] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The functions of basic helix-loop-helix (bHLH) transcription factors in activating differentiation-linked gene expression and in inducing G1 cell cycle arrest are negatively regulated by members of the Id family of HLH proteins. These bHLH antagonists are induced during a mitogenic signalling response, and they function by sequestering their bHLH targets in inactive heterodimers that are unable to bind to specific gene regulatory (E box) sequences. Recently, cyclin E-Cdk2- and cyclin A-Cdk2-dependent phosphorylation of a single conserved serine residue (Ser5) in Id2 has been shown to occur during late G1-to-S phase transition of the cell cycle, and this neutralizes the function of Id2 in abrogating E-box-dependent bHLH homo- or heterodimer complex formation in vitro (E. Hara, M. Hall, and G. Peters, EMBO J. 16:332-342, 1997). We now show that an analogous cell-cycle-regulated phosphorylation of Id3 alters the specificity of Id3 for abrogating both E-box-dependent bHLH homo- or heterodimer complex formation in vitro and E-box-dependent reporter gene function in vivo. Furthermore, compared with wild-type Id3, an Id3 Asp5 mutant (mimicking phosphorylation) is unable to promote cell cycle S phase entry in transfected fibroblasts, whereas an Id3 Ala5 mutant (ablating phosphorylation) displays an activity significantly greater than that of wild-type Id3 protein. Cdk2-dependent phosphorylation therefore provides a switch during late G1-to-S phase that both nullifies an early G1 cell cycle regulatory function of Id3 and modulates its target bHLH specificity. These data also demonstrate that the ability of Id3 to promote cell cycle S phase entry is not simply a function of its ability to modulate bHLH heterodimer-dependent gene expression and establish a biologically important mechanism through which Cdk2 and Id-bHLH functions are integrated in the coordination of cell proliferation and differentiation.
Collapse
Affiliation(s)
- R W Deed
- CRC Department of Gene Regulation, Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Manchester, United Kingdom
| | | | | | | | | |
Collapse
|
7
|
Kaplan MR, Trubniykov E, Berke G. Fluorescence depolarization as an early measure of T lymphocyte stimulation. J Immunol Methods 1997; 201:15-24. [PMID: 9032406 DOI: 10.1016/s0022-1759(96)00189-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have used the Cellscan, an apparatus capable of measuring optical properties of individual cells, to study changes in fluorescence polarization associated with T cell stimulation. We show that the fluorescence polarization of human peripheral blood lymphocytes (PBL) labeled with fluorescein diacetate (FDA) is markedly reduced upon exposure to the mitogenic lectins phytohemagglutinin (PHA), concanavalin A (ConA), or to phorbol esters. Methyl alpha-D-mannopyranoside (alphaMM) is able to reverse the depolarizing effect induced by ConA as long as the cells are not committed to proliferate. H7 and staurosporin, both inhibitors of protein kinase C (PKC), inhibit the depolarization induced by PHA. The mitogen-induced depolarization is dependent on metabolic energy. The results support the use of fluorescence depolarization of FDA-labeled PBL, monitored by the Cellscan, as a sensitive means of measuring early lymphocyte stimulation.
Collapse
|
8
|
Donohue PJ, Feng SL, Alberts GF, Guo Y, Peifley KA, Hsu DK, Winkles JA. Fibroblast growth factor-1 stimulation of quiescent NIH 3T3 cells increases G/T mismatch-binding protein expression. Biochem J 1996; 319 ( Pt 1):9-12. [PMID: 8870641 PMCID: PMC1217727 DOI: 10.1042/bj3190009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Polypeptide growth factors promote cell-cycle progression in part by the transcriptional activation of a diverse group of specific genes. We have used an mRNA differential-display approach to identify several fibroblast growth factor (FGF)-1 (acidic FGF)-inducible genes in NIH 3T3 cells. Here we report that one of these genes, called FGF-regulated (FR)-3, is predicted to encode G/T mismatch-binding protein (GTBP), a component of the mammalian DNA mismatch correction system. The murine GTBP gene is transiently expressed after FGF-1 or calf serum treatment, with maximal mRNA levels detected at 12 and 18 h post-stimulation. FGF-1-stimulated NIH 3T3 cells also express an increased amount of GTBP as determined by immunoblot analysis. These results indicate that elevated levels of GTBP may be required during the DNA synthesis phase of the cell cycle for efficient G/T mismatch recognition and repair.
Collapse
Affiliation(s)
- P J Donohue
- Department of Molecular Biology, Holland Laboratory, American Red Cross, Rockville, MD 20855, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Mal A, Piotrkowski A, Harter ML. Cyclin-dependent kinases phosphorylate the adenovirus E1A protein, enhancing its ability to bind pRb and disrupt pRb-E2F complexes. J Virol 1996; 70:2911-21. [PMID: 8627766 PMCID: PMC190149 DOI: 10.1128/jvi.70.5.2911-2921.1996] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The adenovirus E1A protein of 243 amino acids has been shown to affect a variety of cellular functions, most notably the immortalization of primary cells and the promotion of quiescent cells into S phase. The activity of E1A is derived, in part, from its association with various cellular proteins, many of which play important roles in regulating cell cycle progression. E1A is known to have multiple sites of phosphorylation. It has been suggested that cell cycle-dependent phosphorylation may also control some of E1A's functions. We find now that immune complexes of cyclin-dependent kinases such as cdk4, cdk2, and cdc2 are all capable of phosphorylating E1A in vitro. Additionally, the sites on E1A phosphorylated by these kinases in vitro are similar to the E1A sites phosphorylated in vivo. We have also found that a phosphorylated E1A is far more efficient than an unphosphorylated E1A in associating with pRB and in disrupting E2F/DP-pRB complexes as well. On the basis of our findings and the differences in timing and expression levels of the various cyclins regulating cdks, we suggest that E1A functions at different control points in the cell cycle and that phosphorylation controls, to some extent, its biological functions.
Collapse
Affiliation(s)
- A Mal
- Department of Molecular Biology, Cleveland Clinic Research Institute, Ohio 44195, USA
| | | | | |
Collapse
|
10
|
Nagel WW, Vallee BL. Cell cycle regulation of metallothionein in human colonic cancer cells. Proc Natl Acad Sci U S A 1995; 92:579-83. [PMID: 7831333 PMCID: PMC42785 DOI: 10.1073/pnas.92.2.579] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Elevated levels of metallothionein (MT) found in rapidly growing tissues such as neonatal liver and various types of human tumors have suggested a role for MT in cell proliferation. To further explore this possibility we investigated the concentration of MT in human colonic cancer (HT-29) cells at different stages of proliferation by means of immunocytochemistry and competitive binding. MT is increased in subconfluent proliferating cells relative to growth-inhibited confluent cells, much as it is in growing tissues. Cycling cells synchronized with compactin, an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, revealed an oscillation of cytoplasmic MT that reached a maximum in successive late G1 phases and at the G1/S transition. Individual phase of the cell cycle were assessed by [3H]thymidine incorporation and by immunofluorescence employing an antibody that detects a nuclear antigen associated with proliferation. An enzyme-linked immunosorbent assay was used to quantify the relative amounts of MT in homogenate supernatants of HT-29 cells. A 2- to 3-fold increase in MT in actively proliferating cells and the regulation of the protein during the mitotic cell cycle point to a physiological role for MT in cellular proliferation and suggest that it may also serve as a proliferation marker.
Collapse
Affiliation(s)
- W W Nagel
- Center for Biochemical and Biophysical Sciences and Medicine, Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|
11
|
Piccoletti R, Maroni P, Bendinelli P, Bernelli-Zazzera A. Rapid stimulation of mitogen-activated protein kinase of rat liver by prolactin. Biochem J 1994; 303 ( Pt 2):429-33. [PMID: 7526842 PMCID: PMC1137345 DOI: 10.1042/bj3030429] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Intraperitoneal prolactin administration to female rats caused a rapid and transient stimulation of hepatic mitogen-activated kinase (MAP kinase) activity measured in vitro as cytosolic phosphotransferase capacity towards two specific substrates. Myelin basic protein kinase activity of MAP kinase immunoprecipitates confirmed the specificity and magnified the prolactin effect. Immunoblot experiments with anti-(MAP kinase) and anti-phosphotyrosine antibodies showed changes in both electrophoretic mobility and phosphotyrosine content of 40 and 44 kDa isoenzymes suggesting that prolactin affects these isoforms. Concomitant with the increase in MAP kinase activity, prolactin induced tyrosine phosphorylation in a number of liver proteins, suggesting a rapid involvement of tyrosine kinases which might be correlated in some way with MAP kinase activation. Protein kinase C activity, which has been implicated in the regulation of MAP kinase and in mediating the prolactin effect, does not seem to participate in MAP kinase activation.
Collapse
Affiliation(s)
- R Piccoletti
- Instituto di Patologia Generale, Università degli Studi di Milano, Italy
| | | | | | | |
Collapse
|