1
|
Beauclercq S, Grenier O, Arnold AA, Warschawski DE, Wikfors GH, Genard B, Tremblay R, Marcotte I. Metabolomics and lipidomics reveal the effects of the toxic dinoflagellate Alexandrium catenella on immune cells of the blue mussel, Mytilus edulis. HARMFUL ALGAE 2023; 129:102529. [PMID: 37951624 DOI: 10.1016/j.hal.2023.102529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/13/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023]
Abstract
The increasing occurrence of harmful algal blooms, mostly of the dinoflagellate Alexandrium catenella in Canada, profoundly disrupts mussel aquaculture. These filter-feeding shellfish feed on A. catenella and accumulate paralytic shellfish toxins, such as saxitoxin, in tissues, making them unsafe for human consumption. Algal toxins also have detrimental effects upon several physiological functions in mussels, but particularly on the activity of hemocytes - the mussel immune cells. The objective of this work was to determine the effects of experimental exposure to A. catenella upon hemocyte metabolism and activity in the blue mussel, Mytilus edulis. To do so, mussels were exposed to cultures of the toxic dinoflagellate A. catenella for 120 h. The resulting mussel saxitoxin load had measurable effects upon survival of hemocytes and induced a stress response measured as increased ROS production. The neutral lipid fraction of mussel hemocytes decreased two-fold, suggesting a differential use of lipids. Metabolomic 1H nuclear magnetic resonance (NMR) analysis showed that A. catenella modified the energy metabolism of hemocytes as well as hemocyte osmolyte composition. The modified energy metabolism was reenforced by contrasting plasma metabolomes between control and exposed mussels, suggesting that the blue mussel may reduce feed assimilation when exposed to A. catenella.
Collapse
Affiliation(s)
- Stéphane Beauclercq
- Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Downtown Station, Montréal, QC, Canada
| | - Olivier Grenier
- Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski, QC, Canada
| | - Alexandre A Arnold
- Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Downtown Station, Montréal, QC, Canada
| | - Dror E Warschawski
- Laboratoire des Biomolécules, LBM, CNRS UMR 7203, Sorbonne Université, École Normale Supérieure, PSL University, Paris, France
| | - Gary H Wikfors
- Northeast Fisheries Science Center (NEFSC), NOAA Fisheries, Milford, CT, USA
| | - Bertrand Genard
- Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski, QC, Canada; Les laboratoires Iso-BioKem Inc., 367 rue Gratien-Gélinas, Rimouski, QC, Canada
| | - Réjean Tremblay
- Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski, QC, Canada
| | - Isabelle Marcotte
- Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Downtown Station, Montréal, QC, Canada.
| |
Collapse
|
2
|
Fernández B, Campillo JA, Chaves-Pozo E, Bellas J, León VM, Albentosa M. Comparative role of microplastics and microalgae as vectors for chlorpyrifos bioacumulation and related physiological and immune effects in mussels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150983. [PMID: 34678373 DOI: 10.1016/j.scitotenv.2021.150983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/27/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MP) are contaminants of concern per se, and also by their capacity to sorb dissolved chemicals from seawater, acting as vehicles for their transfer into marine organisms. Still, the role of MP as vehicles for contaminants and their associated toxicological effects have been poorly investigated. In this work we have compared the role of MP (high density polyethylene, HDPE, ≤22 μm) and of natural organic particles (microalgae, MA) as vehicle for chlorpyrifos (CPF), one of the most common pesticides found in river and coastal waters. We have compared the capacity of MP and MA to carry CPF. Then, the mussel Mytilus galloprovincialis has been exposed for 21 days to dissolved CPF, and to the same amount of CPF loaded onto MP and MA. The concentration of CPF in mussel' tissues and several physiological, energetics and immune parameters have been analyzed after 7 and 21 days of exposure. Results showed similar CPF accumulation in mussel exposed to MP and to MA spiked with CPF. This revealed that MP acted as vector for CPF in a similar way (or even to a lesser extent) than MA. After 21 days of exposure mussels exposed to MP spiked with CPF displayed similar or more pronounced biological effects than mussels exposed to dissolved CPF or to MA loaded with CPF. This suggested that the combined "particle" and "organic contaminant" effect produced an alteration on the biological responses greater than that produced by each stressor alone, although this was evident only after 3 weeks of exposure.
Collapse
Affiliation(s)
- Beatriz Fernández
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, Calle Varadero, 1, 30740, San Pedro del Pinatar, Murcia, Spain.
| | - Juan A Campillo
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, Calle Varadero, 1, 30740, San Pedro del Pinatar, Murcia, Spain.
| | - Elena Chaves-Pozo
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, Carretera de la Azohía s/n, 30860, Puerto de Mazarrón, Murcia, Spain.
| | - Juan Bellas
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Vigo, Subida Radio Faro, 50, 36200, Vigo, Spain.
| | - Víctor M León
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, Calle Varadero, 1, 30740, San Pedro del Pinatar, Murcia, Spain.
| | - Marina Albentosa
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, Calle Varadero, 1, 30740, San Pedro del Pinatar, Murcia, Spain.
| |
Collapse
|
3
|
Esposito M, Perugini M, Lambiase S, Conte A, Baldi L, Amorena M. Seasonal Trend of PAHs Concentrations in Farmed Mussels from the Coastal Areas of the Naples, Italy. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 99:333-337. [PMID: 28725931 DOI: 10.1007/s00128-017-2141-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/11/2017] [Indexed: 06/07/2023]
Abstract
This paper reports on the results about the chemical pollution pressure in the Gulf of Naples and nearby coastal areas. Farmed mussels were analysed for the presence of polycyclic aromatic hydrocarbons (PAHs). The results documented a decreasing trend in the PAHs levels respect to the past years. The Bay of Pozzuoli remains as the most contaminated site within the Lucrino area with the highest reported number of samples exceeding the benzo(a)pyrene and PAHs sum limits. All the samples with concentrations above the European regulatory limit were collected in the winter period illustrating a seasonal trend of PAHs distribution in mussels during the 4 years investigated.
Collapse
Affiliation(s)
- Mauro Esposito
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, via Salute, 2, 80155, Portici, Italy
| | - Monia Perugini
- Facoltà di Bioscienze e Tecnologie Agro-alimentari ed Ambientali, Via Renato Balzarini, 64100, Teramo, Italy.
| | - Sara Lambiase
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, via Salute, 2, 80155, Portici, Italy
| | - Annamaria Conte
- Istituto Zooprofilattico Sperimentale "G. Caporale", via Campo Boario, 64100, Teramo, Italy
| | - Loredana Baldi
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, via Salute, 2, 80155, Portici, Italy
| | - Michele Amorena
- Facoltà di Bioscienze e Tecnologie Agro-alimentari ed Ambientali, Via Renato Balzarini, 64100, Teramo, Italy
| |
Collapse
|
4
|
González-Fernández C, Albentosa M, Campillo JA, Viñas L, Fumega J, Franco A, Besada V, González-Quijano A, Bellas J. Influence of mussel biological variability on pollution biomarkers. ENVIRONMENTAL RESEARCH 2015; 137:14-31. [PMID: 25483414 DOI: 10.1016/j.envres.2014.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/27/2014] [Accepted: 11/24/2014] [Indexed: 06/04/2023]
Abstract
This study deals with the identification and characterization of biological variables that may affect some of the biological responses used as pollution biomarkers. With this aim, during the 2012 mussel survey of the Spanish Marine Pollution monitoring program (SMP), at the North-Atlantic coast, several quantitative and qualitative biological variables were measured (corporal and shell indices, gonadal development and reserves composition). Studied biomarkers were antioxidant enzymatic activities (CAT, GST, GR), lipid peroxidation (LPO) and the physiological rates integrated in the SFG biomarker (CR, AE, RR). Site pollution was considered as the chemical concentration in the whole tissues of mussels. A great geographical variability was observed for the biological variables, which was mainly linked to the differences in food availability along the studied region. An inverse relationship between antioxidant enzymes and the nutritional status of the organism was evidenced, whereas LPO was positively related to nutritional status and, therefore, with higher metabolic costs, with their associated ROS generation. Mussel condition was also inversely related to CR, and therefore to SFG, suggesting that mussels keep an "ecological memory" from the habitat where they have been collected. No overall relationship was observed between pollution and biomarkers, but a significant overall effect of biological variables on both biochemical and physiological biomarkers was evidenced. It was concluded that when a wide range of certain environmental factors, as food availability, coexist in the same monitoring program, it determines a great variability in mussel populations which mask the effect of contaminants on biomarkers.
Collapse
Affiliation(s)
- Carmen González-Fernández
- Instituto Español de Oceanografía, IEO, Centro Oceanográfico de Murcia, Varadero 1, 30740 San Pedro del Pinatar, Murcia, Spain
| | - Marina Albentosa
- Instituto Español de Oceanografía, IEO, Centro Oceanográfico de Murcia, Varadero 1, 30740 San Pedro del Pinatar, Murcia, Spain.
| | - Juan A Campillo
- Instituto Español de Oceanografía, IEO, Centro Oceanográfico de Murcia, Varadero 1, 30740 San Pedro del Pinatar, Murcia, Spain
| | - Lucía Viñas
- Instituto Español de Oceanografía, IEO, Centro Oceanográfico de Vigo, Subida a Radio Faro 50, 36390 Vigo, Spain
| | - José Fumega
- Instituto Español de Oceanografía, IEO, Centro Oceanográfico de Vigo, Subida a Radio Faro 50, 36390 Vigo, Spain
| | - Angeles Franco
- Instituto Español de Oceanografía, IEO, Centro Oceanográfico de Vigo, Subida a Radio Faro 50, 36390 Vigo, Spain
| | - Victoria Besada
- Instituto Español de Oceanografía, IEO, Centro Oceanográfico de Vigo, Subida a Radio Faro 50, 36390 Vigo, Spain
| | - Amelia González-Quijano
- Instituto Español de Oceanografía, IEO, Centro Oceanográfico de Vigo, Subida a Radio Faro 50, 36390 Vigo, Spain
| | - Juan Bellas
- Instituto Español de Oceanografía, IEO, Centro Oceanográfico de Vigo, Subida a Radio Faro 50, 36390 Vigo, Spain
| |
Collapse
|
5
|
Tikunov AP, Johnson CB, Lee H, Stoskopf MK, Macdonald JM. Metabolomic investigations of American oysters using H-NMR spectroscopy. Mar Drugs 2010; 8:2578-96. [PMID: 21116407 PMCID: PMC2992993 DOI: 10.3390/md8102578] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 09/22/2010] [Accepted: 09/30/2010] [Indexed: 02/02/2023] Open
Abstract
The Eastern oyster (Crassostrea virginica) is a useful, robust model marine organism for tissue metabolism studies. Its relatively few organs are easily delineated and there is sufficient understanding of their functions based on classical assays to support interpretation of advanced spectroscopic approaches. Here we apply high-resolution proton nuclear magnetic resonance ((1)H NMR)-based metabolomic analysis to C. virginica to investigate the differences in the metabolic profile of different organ groups, and magnetic resonance imaging (MRI) to non-invasively identify the well separated organs. Metabolites were identified in perchloric acid extracts of three portions of the oyster containing: (1) adductor muscle, (2) stomach and digestive gland, and (3) mantle and gills. Osmolytes dominated the metabolome in all three organ blocks with decreasing concentration as follows: betaine > taurine > proline > glycine > ß-alanine > hypotaurine. Mitochondrial metabolism appeared most pronounced in the adductor muscle with elevated levels of carnitine facilitating ß-oxidation, and ATP, and phosphoarginine synthesis, while glycogen was elevated in the mantle/gills and stomach/digestive gland. A biochemical schematic is presented that relates metabolites to biochemical pathways correlated with physiological organ functions. This study identifies metabolites and corresponding (1)H NMR peak assignments for future NMR-based metabolomic studies in oysters.
Collapse
Affiliation(s)
- Andrey P. Tikunov
- Joint Department of Biomedical Engineering, NC State University and UNC Chapel Hill, Chapel Hill, NC 27599, USA; E-Mail: (H.L.)
- Environmental Medicine Consortium, NC State University, 4700 Hillsborough St., Raleigh, NC 27606, USA; E-Mail: (J.M.M.)
| | - Christopher B. Johnson
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; E-Mail:
| | - Haakil Lee
- Joint Department of Biomedical Engineering, NC State University and UNC Chapel Hill, Chapel Hill, NC 27599, USA; E-Mail: (H.L.)
- Environmental Medicine Consortium, NC State University, 4700 Hillsborough St., Raleigh, NC 27606, USA; E-Mail: (J.M.M.)
| | - Michael K. Stoskopf
- Joint Department of Biomedical Engineering, NC State University and UNC Chapel Hill, Chapel Hill, NC 27599, USA; E-Mail: (H.L.)
- Environmental Medicine Consortium, NC State University, 4700 Hillsborough St., Raleigh, NC 27606, USA; E-Mail: (J.M.M.)
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough St., Raleigh, NC 27606, USA; E-Mail:
| | - Jeffrey M. Macdonald
- Joint Department of Biomedical Engineering, NC State University and UNC Chapel Hill, Chapel Hill, NC 27599, USA; E-Mail: (H.L.)
- Environmental Medicine Consortium, NC State University, 4700 Hillsborough St., Raleigh, NC 27606, USA; E-Mail: (J.M.M.)
| |
Collapse
|