1
|
Ding L, Shen Y, Jawad M, Wu T, Maloney SK, Wang M, Chen N, Blache D. Effect of arginine supplementation on the production of milk fat in dairy cows. J Dairy Sci 2022; 105:8115-8129. [PMID: 35965125 DOI: 10.3168/jds.2021-21312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 05/25/2022] [Indexed: 11/19/2022]
Abstract
Arginine, one of the conditionally essential AA, has been reported to affect fat synthesis and metabolism in nonruminant animals by influencing adenosine monophosphate activated protein kinase (AMPK) in some organs. In dairy cows, the effect of Arg on milk fat production is not clear, and any potential mechanism that underlies the effect is unknown. We tested the hypothesis that Arg infusion would improve the production of milk fat, and explored possible mechanism that might underlie any effect. We used 6 healthy lactating cows at 20 ± 2 d in milk, in fourth parity, with a body weight of 508 ± 14 kg, body condition score of 3.0 ± 0, and a milk yield of 30.6 ± 1.8 kg/d (mean ± standard deviation). The cows were blocked by days in milk and milk yield and each cow received 3 treatments in a replicated 3 × 3 Latin square design, with each of the experimental periods lasting 7 d with a 14-d washout between each period. The treatments, delivered in random order, were (1) infusion of saline (control); (2) infusion of 0.216 mol/d of l-Arg in saline (Arg); (3) infusion of 0.868 mol/d of l-Ala in saline (the Arg and Ala treatments were iso-nitrogenous) through a jugular vein. On the last day of each experimental period, blood was sampled to measure insulin, nitric oxide, glucose, and nonesterified fatty acid, and the liver and mammary gland were biopsied to measure the expression of genes. Milk yield was recorded, and milk fat percentage was measured daily during each of the experimental periods. The yield and composition of fatty acid (FA) in milk was measured daily on the last 3 d during each of the experimental periods. The data were analyzed using a mixed model with treatment as a fixed factor, and cow, period, and block as random factors. The daily milk yield and milk fat yield when the cows were infused with Arg were 2.2 kg and 76 g, respectively, higher than that in control, and 1.8 kg and 111 g, respectively, higher than that in Ala. When the cows were infused with Arg they had higher concentration and yield of de novo synthesized FA, than when they received the control or Ala infusions, although milk fat percentage, daily feed intake, and the digestibility of nutrients were not affected by treatment. The serum concentration of nitric oxide and insulin were higher during Arg than during control or Ala, with no difference between control and Ala. In the liver, the expression of the genes coding for AMPK (PRKAA1, PRKAB1, and PRKAG1) and genes related to the oxidation of FA were higher during Arg than during control or Ala, whereas in the mammary gland the expression PRKAB1 was lowest, and the expression of genes involved in the synthesis of milk fat were highest, during Arg infusion. The results suggest the intravenous infusion of Arg enhanced the production of milk fat by promoting the de novo synthesis of FA and increasing milk yield.
Collapse
Affiliation(s)
- L Ding
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, P.R. China; State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, 832000, P.R. China; UWA Institute of Agriculture, The University of Western Australia, Perth 6009, WA, Australia; School of Agriculture and Environment, The University of Western Australia, Perth 6009, WA, Australia
| | - Y Shen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, Hebei, P.R. China
| | - M Jawad
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, P.R. China
| | - T Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, P.R. China
| | - S K Maloney
- UWA Institute of Agriculture, The University of Western Australia, Perth 6009, WA, Australia; School of Human Sciences, The University of Western Australia, Perth 6009, WA, Australia
| | - M Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, P.R. China; State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, 832000, P.R. China.
| | - N Chen
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, 832000, P.R. China.
| | - D Blache
- UWA Institute of Agriculture, The University of Western Australia, Perth 6009, WA, Australia; School of Agriculture and Environment, The University of Western Australia, Perth 6009, WA, Australia.
| |
Collapse
|
2
|
Ohtsuka H, Kitagawa M, Kohiruimaki M, Tanami E, Masui M, Hayashi T, Ando T, Watanabe D, Koiwa M, Sato S, Kawamura S. Comparison of the insulin reaction of peripheral blood T cells between healthy Holstein dairy cows and JB during the periparturient period. J Vet Med Sci 2006; 68:1211-4. [PMID: 17146182 DOI: 10.1292/jvms.68.1211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To compare the changes in the insulin reaction of Holstein dairy cows and Japanese Black cows (JB) during the periparturient period, the insulin resistance test in vivo and lymphocytes proliferation with insulin in vitro were performed. Ten healthy Holstein dairy cows (Holstein group) and 10 healthy JB cows (JB group) used in this study were observed on days 60, 40, and 20 before calving and days 7 and 20 after calving. In insulin resistance reaction in vivo and in vitro, a low insulin-stimulated glucose disposal rate and lymphocyte proliferation with insulin were observed in the Holstein group compared with the JB group during the experimental period. An analysis of the lymphocytes cultured with insulin showed that the percentage of CD4+CD45R- T cells in the Holstein group was significantly lower than that of the JB group before day 20. These findings indicate that T cells reaction to insulin in healthy periparturient Holstein cows is lower than that in Japanese Black.
Collapse
Affiliation(s)
- Hiromichi Ohtsuka
- School of Veterinary Medicine and Animal Sciences, Kitasato University, Aamori, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Smith JJ, Capuco AV, Beal WE, Akers RM. Association of prolactin and insulin receptors with mammogenesis and lobulo-alveolar formation in pregnant ewes. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1989; 21:73-81. [PMID: 2473930 DOI: 10.1016/0020-711x(89)90029-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
1. Pregnant, multiparous ewes were sacrificed at d 50 (n = 3), 80 (n = 4), 115 (n = 3), or 140 (n = 4) for biochemical, histological and autoradiographical quantitation of mammary growth. 2. Significant increases in concentration of mammary parenchyma DNA (0.25-24 mg/g tissue), total under DNA (57-1304 mg), and total under RNA (36-1504 mg) were observed by d 115. 3. Mammary tissue at d 115 contained the maximal percent of tissue volume occupied by epithelium (41.2%), number of cells per alveolar cross section (36.6) and percent of [methyl-3H]thymidine labeled epithelial cell nuclei (3.5%). 4. Concentration prolactin binding sites were significantly increased at d 115 of gestation, but serum prolactin and growth hormone concentrations remained low until d 140. 5. Mammary insulin binding sites (per unit membrane protein) progressively decreased during gestation. 6. Results suggest that serum growth hormone concentration and quantity of insulin receptors do not limit mammogenesis but greater concentrations of prolactin binding sites coincident with lobulo-alveolar formation, suggest a primary association with mammogenesis in the ewe.
Collapse
Affiliation(s)
- J J Smith
- Department of Dairy Science, Virginia Polytechnic Institute and State University, Blacksburg 24061-0315
| | | | | | | |
Collapse
|