1
|
Buschi E, Dell’Anno A, Tangherlini M, Stefanni S, Lo Martire M, Núñez-Pons L, Avila C, Corinaldesi C. Rhodobacteraceae dominate the core microbiome of the sea star Odontaster validus (Koehler, 1906) in two opposite geographical sectors of the Antarctic Ocean. Front Microbiol 2023; 14:1234725. [PMID: 37799611 PMCID: PMC10548270 DOI: 10.3389/fmicb.2023.1234725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/29/2023] [Indexed: 10/07/2023] Open
Abstract
Microbiota plays essential roles in the health, physiology, and in adaptation of marine multi-cellular organisms to their environment. In Antarctica, marine organisms have a wide range of unique physiological functions and adaptive strategies, useful for coping with extremely cold conditions. However, the role of microbiota associated with Antarctic organisms in such adaptive strategies is underexplored. In the present study, we investigated the diversity and putative functions of the microbiome of the sea star Odontaster validus, one of the main keystone species of the Antarctic benthic ecosystems. We compared the whole-body bacterial microbiome of sea stars from different sites of the Antarctic Peninsula and Ross Sea, two areas located in two opposite geographical sectors of the Antarctic continent. The taxonomic composition of O. validus microbiomes changed both between and within the two Antarctic sectors, suggesting that environmental and biological factors acting both at large and local scales may influence microbiome diversity. Despite this, one bacterial family (Rhodobacteraceae) was shared among all sea star individuals from the two geographical sectors, representing up to 95% of the microbial core, and suggesting a key functional role of this taxon in holobiont metabolism and well-being. In addition, the genus Roseobacter belonging to this family was also present in the surrounding sediment, implying a potential horizontal acquisition of dominant bacterial core taxa via host-selection processes from the environment.
Collapse
Affiliation(s)
- Emanuela Buschi
- Department of Marine Biotechnology, Stazione Zoologica di Napoli “Anton Dohrn”, Fano Marine Centre, Fano, Italy
| | - Antonio Dell’Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Michael Tangherlini
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica di Napoli “Anton Dohrn”, Fano Marine Centre, Fano, Italy
| | - Sergio Stefanni
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica di Napoli “Anton Dohrn”, Naples, Italy
| | - Marco Lo Martire
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Laura Núñez-Pons
- Department of Integrative Marine Ecology, Stazione Zoologica di Napoli “Anton Dohrn”, Naples, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Conxita Avila
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat, University of Barcelona, Barcelona, Catalonia, Spain
| | - Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
2
|
Wada N, Yuasa H, Kajitani R, Gotoh Y, Ogura Y, Yoshimura D, Toyoda A, Tang SL, Higashimura Y, Sweatman H, Forsman Z, Bronstein O, Eyal G, Thongtham N, Itoh T, Hayashi T, Yasuda N. A ubiquitous subcuticular bacterial symbiont of a coral predator, the crown-of-thorns starfish, in the Indo-Pacific. MICROBIOME 2020; 8:123. [PMID: 32831146 PMCID: PMC7444263 DOI: 10.1186/s40168-020-00880-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Population outbreaks of the crown-of-thorns starfish (Acanthaster planci sensu lato; COTS), a primary predator of reef-building corals in the Indo-Pacific Ocean, are a major threat to coral reefs. While biological and ecological knowledge of COTS has been accumulating since the 1960s, little is known about its associated bacteria. The aim of this study was to provide fundamental information on the dominant COTS-associated bacteria through a multifaceted molecular approach. METHODS A total of 205 COTS individuals from 17 locations throughout the Indo-Pacific Ocean were examined for the presence of COTS-associated bacteria. We conducted 16S rRNA metabarcoding of COTS to determine the bacterial profiles of different parts of the body and generated a full-length 16S rRNA gene sequence from a single dominant bacterium, which we designated COTS27. We performed phylogenetic analysis to determine the taxonomy, screening of COTS27 across the Indo-Pacific, FISH to visualize it within the COTS tissues, and reconstruction of the bacterial genome from the hologenome sequence data. RESULTS We discovered that a single bacterium exists at high densities in the subcuticular space in COTS forming a biofilm-like structure between the cuticle and the epidermis. COTS27 belongs to a clade that presumably represents a distinct order (so-called marine spirochetes) in the phylum Spirochaetes and is universally present in COTS throughout the Indo-Pacific Ocean. The reconstructed genome of COTS27 includes some genetic traits that are probably linked to adaptation to marine environments and evolution as an extracellular endosymbiont in subcuticular spaces. CONCLUSIONS COTS27 can be found in three allopatric COTS species, ranging from the northern Red Sea to the Pacific, implying that the symbiotic relationship arose before the speciation events (approximately 2 million years ago). The universal association of COTS27 with COTS and nearly mono-specific association at least with the Indo-Pacific COTS provides a useful model system for studying symbiont-host interactions in marine invertebrates and may have applications for coral reef conservation. Video Abstract.
Collapse
Affiliation(s)
- Naohisa Wada
- Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, Miyazaki, Miyazaki, 889-2192, Japan
- Biodiversity Research Center, Academia Sinica, No.128, Sec 2, Academia Rd, Nangang, Taipei, 11529, Taiwan
| | - Hideaki Yuasa
- School of Life Science and Technology, Department of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Rei Kajitani
- School of Life Science and Technology, Department of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Yasuhiro Gotoh
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshitoshi Ogura
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Dai Yoshimura
- School of Life Science and Technology, Department of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Atsushi Toyoda
- Center for Information Biology, National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
| | - Sen-Lin Tang
- Biodiversity Research Center, Academia Sinica, No.128, Sec 2, Academia Rd, Nangang, Taipei, 11529, Taiwan
| | - Yukihiro Higashimura
- Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, Miyazaki, Miyazaki, 889-2192, Japan
| | - Hugh Sweatman
- Australian Institute of Marine Science, PMB No.3, Townsville, QLD, 4810, Australia
| | - Zac Forsman
- Hawai'i Institute of Marine Biology, School of Ocean & Earth Sciences & Technology, University of Hawai'i at Mānoa, Coconut Island, Kāne'ohe, HI, USA
| | - Omri Bronstein
- George S. Wise Faculty of Life Sciences, School of Zoology, Tel Aviv University, 6997801, Tel Aviv, Israel
- The Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel-Aviv University, Tel-Aviv, 6997801, Israel
| | - Gal Eyal
- ARC Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 5290002, Ramat Gan, Israel
| | | | - Takehiko Itoh
- School of Life Science and Technology, Department of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Nina Yasuda
- Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, Miyazaki, Miyazaki, 889-2192, Japan.
| |
Collapse
|
4
|
Lawrence SA, O'Toole R, Taylor MW, Davy SK. Subcuticular bacteria associated with two common New Zealand echinoderms: Characterization using 16S rRNA sequence analysis and fluorescence in situ hybridization. THE BIOLOGICAL BULLETIN 2010; 218:95-104. [PMID: 20203257 DOI: 10.1086/bblv218n1p95] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Many echinoderms contain subcuticular bacteria (SCB), symbionts which reside in the lumen between the host's epidermal cells and outer cuticle. This relationship is common, existing in about 60% of echinoderms studied so far, yet the function of SCB remains largely unknown. In this study, phylogenetic analysis was carried out on 16S rRNA sequences obtained from echinoderm-associated bacteria, resulting in the identification of four species of putative SCB. All four bacteria were identified from the holothurian Stichopus mollis, and two of the four were also found in the asteroid Patiriella sp. Two of these bacteria belong to the Alphaproteobacteria, and two to the Gammaproteobacteria. In addition to phylogenetic analysis, fluorescence in situ hybridization (FISH) assays were carried out on Patiriella sp., S. mollis, and the asteroid Astrostole scabra. Results showed that Patiriella sp. and S. mollis contain SCB, in agreement with the phylogenetic analysis, while SCB were not detected in A. scabra. Of the bacteria detected using FISH, more than 80% were recognized as belonging to the Alphaproteobacteria in both host species. However, in S. mollis about 20% of the detected SCB successfully hybridized with the Gammaproteobacteria-specific probe, whereas bacteria belonging to this class were never observed in Patiriella sp. This is only the second study to characterize SCB by molecular means, and is the first to identify SCB in situ using FISH.
Collapse
|
5
|
Ferrer RP, Zimmer RK. Chemosensory reception, behavioral expression, and ecological interactions at multiple trophic levels. J Exp Biol 2007; 210:1776-85. [PMID: 17488941 DOI: 10.1242/jeb.001727] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYChemoreception may function throughout an entire animal lifetime, with independent, stage-specific selection pressures leading to changes in physiological properties, behavioral expression, and hence, trophic interactions. When the California newt (Taricha torosa) metamorphoses from an entirely aquatic larva to a semi-terrestrial juvenile/adult form, its chemosensory organs undergo dramatic reorganization. The relationship between newt life-history stage and chemosensory-mediated behavior was established by comparing responses of adults (as determined here) to those of conspecific larvae (as studied previously). Bioassays were performed in mountain streams,testing responses of free-ranging adults to 13 individual l-amino acids. Relative to stream water (controls), adults turned immediately upcurrent and moved to the source of arginine, glycine or alanine release. These responses were indicative of predatory search. Arginine was the strongest attractant tested, with a response threshold (median effective dose)of 8.3×10–7 mol l–1 (uncorrected for dilution associated with chemical release and delivery). In contrast to adult behavior, arginine suppressed cannibal-avoidance and failed to evoke search reactions in larvae. For a common set of arginine analogs, the magnitudes of adult attraction and larval suppression were not positively correlated. Suppression of cannibal-avoidance behavior in larvae was unaffected by most structural modifications of the arginine molecule. Adult behavior, on the other hand, was strongly influenced by even subtle alterations in the parent compound. Reactions to arginine in both adults and larvae were eliminated by blocking the external openings of the nasal cavity.Stimulating adult predatory search in one case and inhibiting larval cannibal avoidance in the other, arginine is a chemical signal with opposing behavioral effects and varying ecological consequences. Significant differences between responses of adults and larvae to changes in arginine structure suggest alternative, chemosensory receptor targets. Although arginine reception functions throughout an entire newt lifetime, an ontogenetic shift in larval and adult chemoreceptive ability changes behavioral expression, and thus, reflects the unique selection pressures that act at each life-history stage.
Collapse
Affiliation(s)
- Ryan P Ferrer
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California 90095-1606, USA
| | | |
Collapse
|