1
|
Sassù F, Vomáčková Kykalová B, Vieira CS, Volf P, Loza Telleria E. Stability and suitability of housekeeping genes in phlebotomine sand flies. Sci Rep 2024; 14:23353. [PMID: 39375431 PMCID: PMC11458623 DOI: 10.1038/s41598-024-74776-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024] Open
Abstract
We investigated gene expression patterns in Lutzomyia and Phlebotomus sand fly vectors of leishmaniases. Using quantitative PCR, we assessed the expression stability of potential endogenous control genes commonly used in dipterans. We analyzed Lutzomyia longipalpis and Phlebotomus papatasi samples from L3 and L4 larval stages, adult sand flies of different sexes, diets, dsRNA injection, and Leishmania infection. Six genes were evaluated: actin, α-tubulin, GAPDH, 60 S ribosomal proteins L8 and L32 (RiboL8 and RiboL32), and elongation factor 1-α (EF1-α). EF1-α was among the most stably expressed along with RiboL8 in L. longipalpis larvae and RiboL32 in adults. In P. papatasi, EF1-α and RiboL32 were the top in larvae, while EF1-α and actin were the most stable in adults. RiboL8 and actin were the most stable genes in dissected tissues and infected guts. Additionally, five primer pairs designed for L. longipalpis or P. papatasi were effective in PCR with Lutzomyia migonei, Phlebotomus duboscqi, Phlebotomus perniciosus, and Sergentomyia schwetzi cDNA. Furthermore, L. longipalpis RiboL32 and P. papatasi α-tubulin primers were suitable for qPCR with cDNA from the other four species. Our research provides tools to enhance relative gene expression studies in sand flies, facilitating the selection of endogenous control for qPCR.
Collapse
Affiliation(s)
- Fabiana Sassù
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, Prague, 128 00, Czech Republic
| | - Barbora Vomáčková Kykalová
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, Prague, 128 00, Czech Republic
| | - Cecilia Stahl Vieira
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, Prague, 128 00, Czech Republic
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, Prague, 128 00, Czech Republic
| | - Erich Loza Telleria
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, Prague, 128 00, Czech Republic.
| |
Collapse
|
2
|
Sun L, Sun B, Chen L, Ge Q, Chen K. Identification of genes associated with the silk gland size using multi-omics in silkworm (Bombyx mori). INSECT MOLECULAR BIOLOGY 2024; 33:1-16. [PMID: 37676698 DOI: 10.1111/imb.12870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/17/2023] [Indexed: 09/08/2023]
Abstract
Silk gland size in silkworms (Bombyx mori) affects silk output. However, the molecular mechanisms by which genes regulate silk gland size remain unclear. In this study, silk glands from three pure silkworm strains (A798, A306 and XH) with different silk gland weight phenotypes were compared using transcriptomics and proteomics to identify differentially expressed genes (DEGs) and proteins (DEPs). When comparing A798 to A306 and A798 to XH, 830 and 469 DEGs were up-regulated, respectively. These genes were related to the gene ontology terms, metabolic process, transport activity and biosynthesis process. In addition, 372 and 302 up-regulated differentially expressed proteins were detected in A798 to A306 and A798 to XH, respectively, related to the gene ontology terms, ribosome and protein export, ribosome and polypeptide biosynthesis processes. Moreover, combined transcriptomics, proteomics and weighted correlation network analyses showed that five genes (BGIBMGA002524, BGIBMGA002629, BGIBMGA005659, BGIBMGA005711 and BGIBMGA010889) were significantly associated with the silk gland weight. Reverse Transcription-quantitative real-time Polymerase Chain Reaction (RT-qPCR) and Enzyme linked immunosorbent assay (ELISA) were used to verify the mRNA and protein expression of five genes in the silk glands and tissues of 18 silkworm strains. The results showed that four genes have higher expression levels in heavier silk glands. These genes are associated with glycogen metabolism, fatty acid synthesis and branched chain amino acid metabolism, thus potentially promoting growth and silk protein synthesis. These findings provide valuable insights into the molecular mechanisms underlying the relationship between silk gland weight and silk yield in silkworms.
Collapse
Affiliation(s)
- Lindan Sun
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Binbin Sun
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Liang Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Qi Ge
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
3
|
Wulff JP, Temeyer KB, Tidwell JP, Schlechte KG, Lohmeyer KH, Pietrantonio PV. Periviscerokinin (Cap 2b; CAPA) receptor silencing in females of Rhipicephalus microplus reduces survival, weight and reproductive output. Parasit Vectors 2022; 15:359. [PMID: 36203198 PMCID: PMC9535995 DOI: 10.1186/s13071-022-05457-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The cattle fever tick, Rhipicephalus (Boophilus) microplus, is a vector of pathogens causative of babesiosis and anaplasmosis, both highly lethal bovine diseases that affect cattle worldwide. In Ecdysozoa, neuropeptides and their G-protein-coupled receptors play a critical integrative role in the regulation of all physiological processes. However, the physiological activity of many neuropeptides is still unknown in ticks. Periviscerokinins (CAP2b/PVKs) are neuropeptides associated with myotropic and diuretic activities in insects. These peptides have been identified only in a few tick species, such as Ixodes ricinus, Ixodes scapularis and R. microplus, and their cognate receptor only characterized for the last two. METHODS Expression of the periviscerokinin receptor (Rhimi-CAP2bR) was investigated throughout the developmental stages of R. microplus and silenced by RNA interference (RNAi) in the females. In a first experiment, three double-stranded (ds) RNAs, named ds680-805, ds956-1109 and ds1102-1200, respectively, were tested in vivo. All three caused phenotypic effects, but only the last one was chosen for subsequent experiments. Resulting RNAi phenotypic variables were compared to those of negative controls, both non-injected and dsRNA beta-lactamase-injected ticks, and to positive controls injected with beta-actin dsRNA. Rhimi-CAP2bR silencing was verified by quantitative reverse-transcriptase PCR in whole females and dissected tissues. RESULTS Rhimi-CAP2bR transcript expression was detected throughout all developmental stages. Rhimi-CAP2bR silencing was associated with increased female mortality, decreased weight of surviving females and of egg masses, a delayed egg incubation period and decreased egg hatching (P < 0.05). CONCLUSIONS CAP2b/PVKs appear to be associated with the regulation of female feeding, reproduction and survival. Since the Rhimi-CAP2bR loss of function was detrimental to females, the discovery of antagonistic molecules of the CAP2b/PVK signaling system should cause similar effects. Our results point to this signaling system as a promising target for tick control.
Collapse
Affiliation(s)
- Juan P. Wulff
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475 USA
| | - Kevin B. Temeyer
- Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, United States Department of Agriculture–Agricultural Research Service, 2700 Fredericksburg Road, Kerrville, TX 78028-9184 USA
| | - Jason P. Tidwell
- Cattle Fever Tick Research Laboratory, United States Department of Agriculture–Agricultural Research Service, 22675 N. Moorefield Rd. Building 6419, Edinburg, TX 78541-5033 USA
| | - Kristie G. Schlechte
- Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, United States Department of Agriculture–Agricultural Research Service, 2700 Fredericksburg Road, Kerrville, TX 78028-9184 USA
| | - Kimberly H. Lohmeyer
- Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, United States Department of Agriculture–Agricultural Research Service, 2700 Fredericksburg Road, Kerrville, TX 78028-9184 USA
| | | |
Collapse
|
4
|
Wulff JP, Temeyer KB, Tidwell JP, Schlechte KG, Xiong C, Lohmeyer KH, Pietrantonio PV. Pyrokinin receptor silencing in females of the southern cattle tick Rhipicephalus (Boophilus) microplus is associated with a reproductive fitness cost. Parasit Vectors 2022; 15:252. [PMID: 35818078 PMCID: PMC9272880 DOI: 10.1186/s13071-022-05349-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/28/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Rhipicephalus microplus is the vector of deadly cattle pathogens, especially Babesia spp., for which a recombinant vaccine is not available. Therefore, disease control depends on tick vector control. However, R. microplus populations worldwide have developed resistance to available acaricides, prompting the search for novel acaricide targets. G protein-coupled receptors (GPCRs) are involved in the regulation of many physiological processes and have been suggested as druggable targets for the control of arthropod vectors. Arthropod-specific signaling systems of small neuropeptides are being investigated for this purpose. The pyrokinin receptor (PKR) is a GPCR previously characterized in ticks. Myotropic activity of pyrokinins in feeding-related tissues of Rhipicephalus sanguineus and Ixodes scapularis was recently reported. METHODS The R. microplus pyrokinin receptor (Rhimi-PKR) was silenced through RNA interference (RNAi) in female ticks. To optimize RNAi, a dual-luciferase assay was applied to determine the silencing efficiency of two Rhimi-PKR double-stranded RNAs (dsRNA) prior to injecting dsRNA in ticks to be placed on cattle. Phenotypic variables of female ticks obtained at the endpoint of the RNAi experiment were compared to those of control female ticks (non-injected and beta-lactamase dsRNA-injected). Rhimi-PKR silencing was verified by quantitative reverse-transcriptase PCR in whole females and dissected tissues. RESULTS The Rhimi-PKR transcript was expressed in all developmental stages. Rhimi-PKR silencing was confirmed in whole ticks 4 days after injection, and in the tick carcass, ovary and synganglion 6 days after injection. Rhimi-PKR silencing was associated with an increased mortality and decreased weight of both surviving females and egg masses (P < 0.05). Delays in repletion, pre-oviposition and incubation periods were observed (P < 0.05). CONCLUSIONS Rhimi-PKR silencing negatively affected female reproductive fitness. The PKR appears to be directly or indirectly associated with the regulation of female feeding and/or reproductive output in R. microplus. Antagonists of the pyrokinin signaling system could be explored for tick control.
Collapse
Affiliation(s)
- Juan P. Wulff
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475 USA
| | - Kevin B. Temeyer
- Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), 2700 Fredericksburg Road, Kerrville, TX 78028-9184 USA
| | - Jason P. Tidwell
- Cattle Fever Tick Research Laboratory, USDA-ARS, 22675 N. Moorefield Rd. Building 6419, Edinburg, TX 78541-5033 USA
| | - Kristie G. Schlechte
- Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), 2700 Fredericksburg Road, Kerrville, TX 78028-9184 USA
| | - Caixing Xiong
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475 USA
| | - Kimberly H. Lohmeyer
- Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), 2700 Fredericksburg Road, Kerrville, TX 78028-9184 USA
| | - Patricia V. Pietrantonio
- Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), 2700 Fredericksburg Road, Kerrville, TX 78028-9184 USA
| |
Collapse
|
5
|
Brar GS, Kaur G, Singh S, Shukla J, Pandher S. Identification and validation of stage-specific reference genes for gene expression analysis in Callosobruchus maculatus (Coleoptera: Bruchidae). Gene Expr Patterns 2022; 43:119233. [DOI: 10.1016/j.gep.2022.119233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 11/26/2022]
|
6
|
Feng M, He Z, Wang Y, Yan X, Zhang J, Hu Z, Wu W. Isolation of the Binding Protein of Periplocoside E from BBMVs in Midgut of the Oriental Amyworm Mythimna separata Walker (Lepidoptera: Noctuidae) through Affinity Chromatography. Toxins (Basel) 2016; 8:E139. [PMID: 27153092 PMCID: PMC4885054 DOI: 10.3390/toxins8050139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 11/16/2022] Open
Abstract
Periplocosides, which are insecticidal compounds isolated from the root bark of Periploca sepium Bunge, can affect the digestive system of insects. However, the mechanism though which periplocosides induces a series of symptoms remains unknown. In this study, affinity chromatography was conducted by coupling periplocoside E-semi-succinic acid ester with epoxy amino hexyl (EAH) sepharose 4B. Sodium dodecyl sulfonate-polyacrylamide gelelectrophoresis (SDS-PAGE) was performed to analyze the fraction eluted by periplocoside E. Eight binding proteins (luciferin 4-monooxygenase, aminopeptidase N, aminopeptidase N3, nicotinamide adenine dinucleotide health (NADH) dehydrogenase subunit 5, phosphatidylinositol 3-phosphate 3-phosphatase myotubularin, actin, uncharacterized family 31 glucosidase KIAA1161, and 2OG-Fe(2) oxygenase superfamily protein) were obtained and identified through liquid chromatography/quadrupole-time of flight-mass spectrometry (LC/Q-TOF-MS) analysis of the midgut epithelium cells of Mythimna separata larvae. Aminopeptidase N and N3 are potential putative targets of periplocosides. This study establishes the foundation for further research on the mechanism of action and target localization of periplocosides in agricultural pests.
Collapse
Affiliation(s)
- Mingxing Feng
- Key Laboratory of Botanical Pesticide R & D in Shaanxi Province, Yangling 712100, Shaanxi, China.
- Institute of Pesticide Science, College of Plant Protection, Northwest A & F University, Yangling 712100, Shaanxi, China.
| | - Zhenyu He
- Key Laboratory of Botanical Pesticide R & D in Shaanxi Province, Yangling 712100, Shaanxi, China.
| | - Yuanyuan Wang
- Institute of Pesticide Science, College of Plant Protection, Northwest A & F University, Yangling 712100, Shaanxi, China.
| | - Xiufang Yan
- Institute of Pesticide Science, College of Plant Protection, Northwest A & F University, Yangling 712100, Shaanxi, China.
| | - Jiwen Zhang
- Key Laboratory of Botanical Pesticide R & D in Shaanxi Province, Yangling 712100, Shaanxi, China.
| | - Zhaonong Hu
- Key Laboratory of Botanical Pesticide R & D in Shaanxi Province, Yangling 712100, Shaanxi, China.
- Institute of Pesticide Science, College of Plant Protection, Northwest A & F University, Yangling 712100, Shaanxi, China.
| | - Wenjun Wu
- Key Laboratory of Botanical Pesticide R & D in Shaanxi Province, Yangling 712100, Shaanxi, China.
- Institute of Pesticide Science, College of Plant Protection, Northwest A & F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
7
|
Jin T, Zeng L, Lin YY, Lu YY, Liang GW. Characteristics of protein variants in trichlorphon-resistant Bactrocera dorsalis (Diptera; Tephritidae) larvae. GENETICS AND MOLECULAR RESEARCH 2012; 11:2608-19. [DOI: 10.4238/2012.july.10.12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Nguyen TTA, Boudreault S, Michaud D, Cloutier C. Proteomes of the aphid Macrosiphum euphorbiae in its resistance and susceptibility responses to differently compatible parasitoids. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:730-9. [PMID: 18549959 DOI: 10.1016/j.ibmb.2008.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 04/10/2008] [Accepted: 04/22/2008] [Indexed: 05/15/2023]
Abstract
Host insects are either susceptible or resistant to parasitoids, where resistant hosts express immunity factors and compatible parasitoids express virulence factors that may reveal the manipulation of susceptible hosts. Using proteomics we compared responses of the same host, the aphid Macrosiphum euphorbiae, challenged by a well-adapted parasitoid Aphidius nigripes or by a less adapted relative, Aphidius ervi. The host was found to be equally acceptable to both parasitoids, but while A. nigripes normally developed and killed hosts (high susceptibility), development of the incompatible A. ervi was arrested at the primary egg stage (high resistance). Two-dimensional gels at two stages of parasitism revealed divergence in patterns of protein regulation of the M. euphorbiae host, responding to A. ervi or A. nigripes, with the greatest number of protein modulations in the host resistance response. In A. ervi-resistant hosts, proPO was strongly up-regulated, as were also three cuticle proteins, suggesting a PO basis and exoskeleton reinforcement as early and late responses of M. euphorbiae to the risk of parasitism. Resistance also correlated with up-regulation of antioxidative, energy-related, cytoskeleton and heat shock proteins. In A. nigripes-susceptible hosts, various proteins implicated in host and bacterial symbiont metabolism were significantly altered, suggesting complex host nutritional modulation. Over-expression of energy-related proteins also increased when A. nigripes established and developed. Aphid proteomes of compatible and incompatible Aphidius parasitism provide an integrative basis for consolidating our knowledge of host-parasitoid interactions.
Collapse
Affiliation(s)
- Thi Thuy An Nguyen
- Département de biologie, Université Laval, Pavillion Vachon, Que., Canada G1V 0A6
| | | | | | | |
Collapse
|
9
|
Horigane M, Ogihara K, Nakajima Y, Honda H, Taylor D. Identification and expression analysis of an actin gene from the soft tick, Ornithodoros moubata (Acari: Argasidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2007; 64:186-99. [PMID: 17366597 DOI: 10.1002/arch.20170] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Actin genes are found in all living organisms and highly conserved in various animals as shown by numerous studies on actin gene expression and function. Because of this ubiquitous nature of actin, it is often used as an internal control in gene expression studies. To clarify the suitability of actin gene as an internal control in soft ticks, isolation and expression analyses of an actin gene from Ornithodoros moubata was performed. An actin gene of Ornithodoros moubata (OmAct2, GenBank accession no. AB208021) with 1,131 bp and 376 amino acid residues was identified. The homology of OmAct2 with other arthropod actin genes was greater than 80% in nucleotides and 99% in amino acids. OmAct2 gene was classified as a cytoskeletal actin type by absence of muscle-specific amino acids commonly found in insects and ubiquitous expression in all stages and both sexes. Southern blot revealed that O. moubata has four to seven actin genes. In addition, actin expression analyzed by real-time PCR before and after blood feeding was not significantly different indicating OmAct2 is an appropriate internal control for the analysis of gene expression in these ticks.
Collapse
Affiliation(s)
- Mari Horigane
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba Ibaraki, Japan
| | | | | | | | | |
Collapse
|
10
|
Abstract
This is the first of a projected series of canonic reviews covering all invertebrate muscle literature prior to 2005 and covers muscle genes and proteins except those involved in excitation-contraction coupling (e.g., the ryanodine receptor) and those forming ligand- and voltage-dependent channels. Two themes are of primary importance. The first is the evolutionary antiquity of muscle proteins. Actin, myosin, and tropomyosin (at least, the presence of other muscle proteins in these organisms has not been examined) exist in muscle-like cells in Radiata, and almost all muscle proteins are present across Bilateria, implying that the first Bilaterian had a complete, or near-complete, complement of present-day muscle proteins. The second is the extraordinary diversity of protein isoforms and genetic mechanisms for producing them. This rich diversity suggests that studying invertebrate muscle proteins and genes can be usefully applied to resolve phylogenetic relationships and to understand protein assembly coevolution. Fully achieving these goals, however, will require examination of a much broader range of species than has been heretofore performed.
Collapse
Affiliation(s)
- Scott L Hooper
- Neuroscience Program, Department of Biological Sciences, Irvine Hall, Ohio University, Athens, Ohio 45701, USA.
| | | |
Collapse
|
11
|
Vyazunova I, Lan Q. Stage-specific expression of two actin genes in the yellow fever mosquito, Aedes aegypti. INSECT MOLECULAR BIOLOGY 2004; 13:241-249. [PMID: 15157225 DOI: 10.1111/j.0962-1075.2004.00481.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Abstract The expression patterns of two muscle-specific actin genes were studied in the yellow fever mosquito, Aedes aegypti. The coding sequence of AeAct-2 exhibits between 82 and 85% similarity with coding sequences of the Drosophila melanogaster and predicted Anopheles gambiae actin genes. The transcription of the AeAct-2 gene was differentially regulated during developmental stages with higher levels of expression in larvae and lower levels in pupae and adults. The AeAct-2 gene is mainly expressed in the head and body wall tissues. Transcripts of the AeAct-3 gene are not detectable in larvae until late 4th instar and the level increased in male pupae and early male adults. The main site of expression of the AeAct-3 gene was the thoracic tissue. Thus, AeAct-3 is the first reported male-specific actin gene in mosquitoes.
Collapse
Affiliation(s)
- I Vyazunova
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | | |
Collapse
|
12
|
Mounier N, Sparrow JC. Structural comparisons of muscle and nonmuscle actins give insights into the evolution of their functional differences. J Mol Evol 1997; 44:89-97. [PMID: 9010140 DOI: 10.1007/pl00006125] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Actin is a highly conserved protein although many isoforms exist. In vertebrates and insects the different actin isoforms can be grouped by their amino acid sequence and tissue-specific gene expression into muscle and nonmuscle actins, suggesting that the different actins may have a functional significance. We ask here whether atomic models for G- and F-actins may help to explain this functional diversity. Using a molecular graphics program we have mapped the few amino acids that differ between isoactins. A small number of residues specific for muscle actins are buried in internal positions and some present a remarkable organization. Within the molecule, the replacements observed between muscle and nonmuscle actins are often accompanied by compensatory changes. The others are dispersed on the protein surface, except for a cluster located at the N-terminus which protrudes outward. Only a few of these residues specific for muscle actins are present in known ligand binding sites except the N-terminus, which has a sequence specific for each isoactin and is directly implicated in the binding to myosin. When we simulated the replacements of side chains of residues specific for muscle actins to those specific for nonmuscle actins, the N-terminus appears to be less compact and more flexible in nonmuscle actins. This would represent the first conformational grounds for proposing that muscle and nonmuscle actins may be functionally distinguishable. The rest of the molecule is very similar or identical in all the actins, except for a possible higher internal flexibility in muscle actins. We propose that muscle actin genes have evolved from genes of nonmuscle actins by substitutions leading to some conformational changes in the protruding N-terminus and the internal dynamics of the main body of the protein.
Collapse
Affiliation(s)
- N Mounier
- Centre de Génétique Moléculaire et Cellularire, Université Lyon 1, 43 boulevard du 11 Novembre 1918, 69 622 Villeurbanne, France
| | | |
Collapse
|