1
|
Yasmin J, Ahmed MR, Wakholi C, Lohumi S, Mukasa P, Kim G, Kim J, Lee H, Cho BK. Near-infrared hyperspectral imaging for online measurement of the viability detection of naturally aged watermelon seeds. FRONTIERS IN PLANT SCIENCE 2022; 13:986754. [PMID: 36420027 PMCID: PMC9676662 DOI: 10.3389/fpls.2022.986754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
The viability status of seeds before sowing is important to farmers as it allows them to make yield predictions. Monitoring the seed quality in a rapid and nondestructive manner may create a perfect solution, especially for industrial sorting applications. However, current offline laboratory-based strategies employed for the monitoring of seed viability are time-consuming and thus cannot satisfy industrial needs where there is a substantial number of seeds to be analyzed. In this study, we describe a prototype online near-infrared (NIR) hyperspectral imaging system that can be used for the rapid detection of seed viability. A wavelength range of 900-1700 nm was employed to obtain spectral images of three different varieties of naturally aged watermelon seed samples. The partial least square discriminant analysis (PLS-DA) model was employed for real-time viability prediction for seed samples moving through a conveyor unit at a speed of 49 mm/sec. A suction unit was further incorporated to develop the online system and it was programmatically controlled to separate the detected viable seeds from nonviable ones. For an external validation sample set showed classification accuracy levels of 91.8%, 80.7%, and 77.8% in relation to viability for the three varieties of watermelon seed with healthy seedling growth. The regression coefficients of the classification model distinguished some chemical differences in viable and nonviable seed which was verified by the chromatographic analysis after the detection of the proposed online system. The results demonstrated that the developed online system with the viability prediction model has the potential to be used in the seed industry for the quality monitoring of seeds.
Collapse
Affiliation(s)
- Jannat Yasmin
- Department of Biosystems Machinery Engineering, College of Agricultural and Life Science, Chungnam National University, Daejeon, South Korea
| | - Mohammed Raju Ahmed
- Department of Biosystems Machinery Engineering, College of Agricultural and Life Science, Chungnam National University, Daejeon, South Korea
| | - Collins Wakholi
- Department of Biosystems Machinery Engineering, College of Agricultural and Life Science, Chungnam National University, Daejeon, South Korea
| | - Santosh Lohumi
- Department of Biosystems Machinery Engineering, College of Agricultural and Life Science, Chungnam National University, Daejeon, South Korea
| | - Perez Mukasa
- Department of Biosystems Machinery Engineering, College of Agricultural and Life Science, Chungnam National University, Daejeon, South Korea
| | - Geonwoo Kim
- Department of Bio-Industrial Machinery Engineering, College of Agriculture and Life Science, Gyeongsang National University, Jinju-si, Gyeongsangnam-do, South Korea
- Institute of Smart Farm, Gyeongsang National University, Jinju-si, Gyeongsangnam-do, South Korea
| | - Juntae Kim
- Department of Biosystems Machinery Engineering, College of Agricultural and Life Science, Chungnam National University, Daejeon, South Korea
| | - Hoonsoo Lee
- Department of Biosystems Engineering, College of Agriculture, Life & Environment Science, Chungbuk National University, Cheongju, Chungbuk, South Korea
| | - Byoung-Kwan Cho
- Department of Biosystems Machinery Engineering, College of Agricultural and Life Science, Chungnam National University, Daejeon, South Korea
- Department of Smart Agricultural Systems, College of Agricultural and Life Science, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
2
|
Holt C. A quantitative calcium phosphate nanocluster model of the casein micelle: the average size, size distribution and surface properties. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 50:847-866. [PMID: 33866398 DOI: 10.1007/s00249-021-01533-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/22/2021] [Accepted: 03/28/2021] [Indexed: 10/21/2022]
Abstract
Caseins (αS1, αS2, β and κ) are the main protein fraction of bovine milk. Together with nanoclusters of amorphous calcium phosphate (CaP) and divalent cations, they combine to form a polydisperse distribution of particles called casein micelles. A casein micelle model is proposed which is consistent with the way in which intrinsically disordered proteins interact through predominantly polar, short, linear, motifs. Using the model, an expression is derived for the size distribution of casein micelles formed when caseins bind to the CaP nanoclusters and the complexes further associate with each other and the remaining mixture of free caseins. The result is a refined coat-core model in which the core is formed mainly by the nanocluster complexes and the coat is formed exclusively by the free caseins. Example calculations of the size distribution and surface composition of an average bovine milk are compared with experiment. The average size, size distribution and surface composition of the micelles is shown to depend on the affinity of the nanocluster complexes for each other in competition with their affinity for free caseins, and on the concentrations of free caseins, calcium ions and other salts in the continuous phase.
Collapse
Affiliation(s)
- Carl Holt
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
3
|
Read T, Fortun-Lamothe L, Pascal G, Le Boulch M, Cauquil L, Gabinaud B, Bannelier C, Balmisse E, Destombes N, Bouchez O, Gidenne T, Combes S. Diversity and Co-occurrence Pattern Analysis of Cecal Microbiota Establishment at the Onset of Solid Feeding in Young Rabbits. Front Microbiol 2019; 10:973. [PMID: 31134019 PMCID: PMC6524096 DOI: 10.3389/fmicb.2019.00973] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/18/2019] [Indexed: 12/20/2022] Open
Abstract
This study aimed to evaluate how the feeding strategy of rabbit kits at the onset of solid feed intake could affect ecological diversity and co-occurrence patterns of the cecal bacterial community. From birth to 18 days of age kits were exclusively milk-fed, and between 18 and 35 days the young rabbits also had access to solid feed. After weaning at (35 days), young rabbits were exclusively fed solid feed. Three experimental feeds were used: a high concentrate diet [H: 10.16 MJ digestible energy (DE)/kg and 15.3% crude protein (CP)], a low concentrate diet (L: 9.33 MJ DE/kg and 14.7% CP) and a reproductive female diet (R: 10.57 MJ DE/kg and 17.3% CP). The rabbit kits (n = 357) were divided into three groups, differing by the diet received during two periods: from 18 to 28 and from 28 to 49 days of age. In the groups LL and HH, rabbit kits were fed L or H diets, respectively, during both periods. Kits in the group RL received feeds R and L from 18 to 28 and 28 to 49 days of age, respectively. Cecal bacterial communities of 10 rabbits per group were carried out at 18, 28, 35, 43 and 49 days of age by MiSeq Illumina sequencing 16S rRNA encoding genes. Between 18 and 28 days of age, solid feed intake was higher in the group RL compared to the other two groups (+24%; P < 0.01). Overall, 13.4% of the OTUs detected were present in the cecal ecosystem from 18 to 49 days old, whereas 17.4% were acquired with the onset of solid feeding and kept from 28 days on. Exclusive milk consumption constrains the bacterial community toward a similar structure but high phylogenetic beta-diversity. Introduction of solid feed induced a sharp change of microbial community structure and decreased phylogenetic diversity. A strong relationship in bacterial community network occurred only from 43 days on. Our feeding strategy at the onset of solid feed ingestion exhibited only a moderate effect on the microbial community structure (P = 0.072), although the LL group seemed to reach faster maturity compared to the two other groups.
Collapse
Affiliation(s)
- Tehya Read
- GenPhySE, Université de Toulouse, INRA, ENVT, Toulouse INP, Castanet Tolosan, France.,Terrena, Ancenis, France
| | | | - Géraldine Pascal
- GenPhySE, Université de Toulouse, INRA, ENVT, Toulouse INP, Castanet Tolosan, France
| | - Malo Le Boulch
- GenPhySE, Université de Toulouse, INRA, ENVT, Toulouse INP, Castanet Tolosan, France
| | - Laurent Cauquil
- GenPhySE, Université de Toulouse, INRA, ENVT, Toulouse INP, Castanet Tolosan, France
| | - Beatrice Gabinaud
- GenPhySE, Université de Toulouse, INRA, ENVT, Toulouse INP, Castanet Tolosan, France
| | - Carole Bannelier
- GenPhySE, Université de Toulouse, INRA, ENVT, Toulouse INP, Castanet Tolosan, France
| | | | | | | | - Thierry Gidenne
- GenPhySE, Université de Toulouse, INRA, ENVT, Toulouse INP, Castanet Tolosan, France
| | - Sylvie Combes
- GenPhySE, Université de Toulouse, INRA, ENVT, Toulouse INP, Castanet Tolosan, France
| |
Collapse
|
4
|
Hue-Beauvais C, Miranda G, Aujean E, Jaffrezic F, Devinoy E, Martin P, Charlier M. Diet-induced modifications to milk composition have long-term effects on offspring growth in rabbits. J Anim Sci 2017; 95:761-770. [PMID: 28380600 DOI: 10.2527/jas.2016.0847] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
It has been clearly demonstrated that the maternal nutritional status during pregnancy and lactation has long-term effects on offspring health. In mammals, milk represents the first maternal support provided to the newborns so that its composition may play a major role in long-term programming. We therefore assessed the effects of maternal high-fat/high-sugar obesogenic (OD) or control (CD) diets on offspring growth and adiposity in the rabbit. Between 7 and 20 wk of age, the BW gain of OD milk-fed rabbits was higher than that of CD milk-fed rabbits ( < 0.05). Body fat mass measurements at 21 wk of age revealed a significant increase in body adiposity as a function of milk ingested during the neonatal period, in both female and male offspring ( < 0.05). A marked weight gain difference was observed according to the milk in both female and male offspring. Moreover, we investigated the composition in major proteins and leptin levels in milk from OD or CD diet-fed dams. Liquid chromatography-mass spectrometry analysis of individual CD skimmed milk samples enabled identification and quantification of the rabbit main milk proteins and of their main phosphorylated isoforms at 2 different stages of lactation (3 and 10 d). Here we show that the OD diet induced a reduction in the whey acidic protein content concomitantly with both an increase in serum albumin and lactoferrin contents and in the phosphorylated isoforms of the main milk proteins. Furthermore, a sharp rise in leptin levels was observed in the milk of OD diet-fed dams on Day 10 of lactation when compared with CD diet animals ( < 0.05). Taken together, these findings provide evidence that lactation is a critical window of development during which exposure to a deleterious diet is highly detrimental to long-term outcomes. Moreover, these insights suggest that it may be possible to prevent at least some of the adverse effects of inadequate maternal nutrition on the long-term metabolic outcomes of the offspring through nutritional interventions applied during the lactation period.
Collapse
|
5
|
|
6
|
Holt C, Carver JA, Ecroyd H, Thorn DC. Invited review: Caseins and the casein micelle: their biological functions, structures, and behavior in foods. J Dairy Sci 2013; 96:6127-46. [PMID: 23958008 DOI: 10.3168/jds.2013-6831] [Citation(s) in RCA: 286] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 06/09/2013] [Indexed: 12/27/2022]
Abstract
A typical casein micelle contains thousands of casein molecules, most of which form thermodynamically stable complexes with nanoclusters of amorphous calcium phosphate. Like many other unfolded proteins, caseins have an actual or potential tendency to assemble into toxic amyloid fibrils, particularly at the high concentrations found in milk. Fibrils do not form in milk because an alternative aggregation pathway is followed that results in formation of the casein micelle. As a result of forming micelles, nutritious milk can be secreted and stored without causing either pathological calcification or amyloidosis of the mother's mammary tissue. The ability to sequester nanoclusters of amorphous calcium phosphate in a stable complex is not unique to caseins. It has been demonstrated using a number of noncasein secreted phosphoproteins and may be of general physiological importance in preventing calcification of other biofluids and soft tissues. Thus, competent noncasein phosphoproteins have similar patterns of phosphorylation and the same type of flexible, unfolded conformation as caseins. The ability to suppress amyloid fibril formation by forming an alternative amorphous aggregate is also not unique to caseins and underlies the action of molecular chaperones such as the small heat-shock proteins. The open structure of the protein matrix of casein micelles is fragile and easily perturbed by changes in its environment. Perturbations can cause the polypeptide chains to segregate into regions of greater and lesser density. As a result, the reliable determination of the native structure of casein micelles continues to be extremely challenging. The biological functions of caseins, such as their chaperone activity, are determined by their composition and flexible conformation and by how the casein polypeptide chains interact with each other. These same properties determine how caseins behave in the manufacture of many dairy products and how they can be used as functional ingredients in other foods.
Collapse
Affiliation(s)
- C Holt
- Institute of Molecular, Cell and Systems Biology, School of Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| | | | | | | |
Collapse
|
7
|
van Veen HA, Koiter J, Vogelezang CJM, van Wessel N, van Dam T, Velterop I, van Houdt K, Kupers L, Horbach D, Salaheddine M, Nuijens JH, Mannesse MLM. Characterization of recombinant human C1 inhibitor secreted in milk of transgenic rabbits. J Biotechnol 2012; 162:319-26. [PMID: 22995741 DOI: 10.1016/j.jbiotec.2012.09.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 09/06/2012] [Indexed: 10/27/2022]
Abstract
C1 inhibitor (C1INH) is a single-chain glycoprotein that inhibits activation of the contact system of coagulation and the complement system. C1INH isolated from human blood plasma (pd-hC1INH) is used for the management of hereditary angioedema (HAE), a disease caused by heterozygous deficiency of C1INH, and is a promise for treatment of ischemia-reperfusion injuries like acute myocardial or cerebral infarction. To obtain large quantities of C1INH, recombinant human C1INH (rhC1INH) was expressed in the milk of transgenic rabbits (12 g/l) harboring genomic human C1INH sequences fused to 5' bovine αS(1) casein promoter sequences. Recombinant hC1INH was isolated from milk to a specific activity of 6.1 U/mg and a purity of 99%; by size-exclusion chromatography the 1% impurities consisted of multimers and N-terminal cleaved C1INH species. Mass spectrometric analysis of purified rhC1INH revealed a relative molecular mass (M(r)) of 67,200. Differences in M(r) on SDS PAGE and mass spectrometric analysis between rhC1INH and pd-hC1INH are explained by differential glycosylation (calculated carbohydrate contents of 21% and 28%, respectively), since protein sequencing analysis of rhC1INH revealed intact N- and C-termini. Host-related impurity analysis by ELISA revealed trace amounts of rabbit protein (approximately 10 ppm) in purified batches, but not endogenous rabbit C1INH. The kinetics of inhibition of the target proteases C1s, Factor XIIa, kallikrein and Factor XIa by rhC1INH and pd-hC1INH, indicated comparable inhibitory potency and specificity. Recently, rhC1INH (Ruconest(®)) has been approved by the European Medicines Agency for the treatment of acute attacks of HAE.
Collapse
|
8
|
Fischer B, Chavatte-Palmer P, Viebahn C, Navarrete Santos A, Duranthon V. Rabbit as a reproductive model for human health. Reproduction 2012; 144:1-10. [DOI: 10.1530/rep-12-0091] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The renaissance of the laboratory rabbit as a reproductive model for human health is closely related to the growing evidence of periconceptional metabolic programming and its determining effects on offspring and adult health. Advantages of rabbit reproduction are the exact timing of fertilization and pregnancy stages, high cell numbers and yield in blastocysts, relatively late implantation at a time when gastrulation is already proceeding, detailed morphologic and molecular knowledge on gastrulation stages, and a hemochorial placenta structured similarly to the human placenta. To understand, for example, the mechanisms of periconceptional programming and its effects on metabolic health in adulthood, these advantages help to elucidate even subtle changes in metabolism and development during the pre- and peri-implantation period and during gastrulation in individual embryos. Gastrulation represents a central turning point in ontogenesis in which a limited number of cells program the development of the three germ layers and, hence, the embryo proper. Newly developed transgenic and molecular tools offer promising chances for further scientific progress to be attained with this reproductive model species.
Collapse
|
9
|
|
10
|
Hue-Beauvais C, Chavatte-Palmer P, Aujean E, Dahirel M, Laigre P, Péchoux C, Bouet S, Devinoy E, Charlier M. An obesogenic diet started before puberty leads to abnormal mammary gland development during pregnancy in the rabbit. Dev Dyn 2011; 240:347-56. [DOI: 10.1002/dvdy.22536] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2010] [Indexed: 11/10/2022] Open
|
11
|
Bösze Z, Baranyi M, Whitelaw CBA. Producing recombinant human milk proteins in the milk of livestock species. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 606:357-93. [PMID: 18183938 DOI: 10.1007/978-0-387-74087-4_15] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Recombinant human proteins produced by the mammary glands of genetically modified transgenic livestock mammals represent a special aspect of milk bioactive components. For therapeutic applications, the often complex posttranslational modifications of human proteins should be recapitulated in the recombinant products. Compared to alternative production methods, mammary gland production is a viable option, underlined by a number of transgenic livestock animal models producing abundant biologically active foreign proteins in their milk. Recombinant proteins isolated from milk have reached different phases of clinical trials, with the first marketing approval for human therapeutic applications from the EMEA achieved in 2006.
Collapse
|
12
|
Bouguyon E, Beauvallet C, Huet JC, Chanat E. Disulphide bonds in casein micelle from milk. Biochem Biophys Res Commun 2006; 343:450-8. [PMID: 16546124 DOI: 10.1016/j.bbrc.2006.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Accepted: 03/02/2006] [Indexed: 11/21/2022]
Abstract
Mammary epithelial cells synthesised and secreted caseins, the major milk proteins in most mammals, as large aggregates called micelles into the alveolar lumen they surround. We investigated the implication of the highly conserved cysteine(s) of kappa-casein in disulphide bond formation in casein micelles from several species. Dimers were found in all milks studied, confirming previous observation in ruminants. More importantly, the study of interchain disulphide bridges in mouse and rat casein micelles revealed that any casein possessing a cysteine is engaged in disulphide bond interchange; these species express four or five cysteine-containing caseins, respectively. We found that the main rodent caseins form both homo- and heterodimers. Additionally, disulphide bond formation among milk proteins was specific since the interaction of the caseins with cysteine-containing whey proteins was not observed in native casein micelles.
Collapse
Affiliation(s)
- Edwige Bouguyon
- Institut National de la Recherche Agronomique, Laboratoire de Génomique et Physiologie de la Lactation, Jouy-en-Josas, F-78352, France
| | | | | | | |
Collapse
|
13
|
Péchoux C, Boisgard R, Chanat E, Lavialle F. Ca(2+)-independent phospholipase A2 participates in the vesicular transport of milk proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1743:317-29. [PMID: 15843044 DOI: 10.1016/j.bbamcr.2005.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Revised: 01/12/2005] [Accepted: 01/13/2005] [Indexed: 11/16/2022]
Abstract
Changes in the lipid composition of intracellular membranes are believed to take part in the molecular processes that sustain traffic between organelles of the endocytic and exocytic transport pathways. Here, we investigated the participation of the calcium-independent phospholipase A2 in the secretory pathway of mammary epithelial cells. Treatment with bromoenol lactone, a suicide substrate which interferes with the production of lysophospholipids by the calcium-independent phospholipase A2, resulted in the reduction of milk proteins secretion. The inhibitor slowed down transport of the caseins from the endoplasmic reticulum to the Golgi apparatus and affected the distribution of p58 and p23, indicating that the optimal process of transport of these proteins between the endoplasmic reticulum, the endoplasmic reticulum/Golgi intermediate compartment and/or the cis-side of the Golgi was dependent upon the production of lysolipids. Moreover, bromoenol lactone was found to delay the rate of protein transport from the trans-Golgi network to the plasma membrane. Concomitantly, membrane-bound structures containing casein accumulated in the juxtanuclear Golgi region. We concluded from these results that efficient formation of post-Golgi carriers also requires the phospholipase activity. These data further support the participation of calcium-independent phospholipase A2 in membrane trafficking and shed a new light on the tubulo/vesicular transport of milk protein through the secretory pathway.
Collapse
Affiliation(s)
- Christine Péchoux
- Institut National de la Recherche Agronomique, Laboratoire de Génomique et Physiologie de la Lactation. F-78352 Jouy-en-Josas Cedex, France
| | | | | | | |
Collapse
|
14
|
Jura J, Jura J, Murzyn K, Wegrzyn P, Zarebski A. Cloning and characterization of 5' upstream promoter region of rat WAP gene. ACTA ACUST UNITED AC 2004; 1727:58-64. [PMID: 15652158 DOI: 10.1016/j.bbaexp.2004.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2004] [Revised: 11/16/2004] [Accepted: 11/23/2004] [Indexed: 11/25/2022]
Abstract
Regulatory regions of genes encoding milk proteins are frequently used to produce in the mammary gland of transgenic animals a variety of pharmaceutically and medically important human proteins. One such example is the whey acidic protein (WAP) promoter region, identified so far in the genome of mouse, rat, rabbit, camel, pig, brushtail possum and Tammar wallaby. The aim of the present study was cloning and characterization of the 5' upstream promoter region of rat WAP gene. Using Genome Walking procedure, we cloned the region extending from -849 to -3671 bp. We have shown that there are two conserved regions highly similar to hypersensitive sites present in mouse and rabbit upstream region of WAP gene with binding sites for STAT5 transcription factor, essential for expression of WAP gene in mammary glands during lactation. We characterized dispersed and tandem repeats in the upstream region of rat WAP gen localized not far away from the translation initiation site.
Collapse
Affiliation(s)
- Jacek Jura
- Department of Animal Reproduction, National Research Institute of Animal Production, 32-083 Balice/Kraków, Poland.
| | | | | | | | | |
Collapse
|
15
|
Bosze Z, Hiripi L, Carnwath JW, Niemann H. The transgenic rabbit as model for human diseases and as a source of biologically active recombinant proteins. Transgenic Res 2004; 12:541-53. [PMID: 14601653 DOI: 10.1023/a:1025816809372] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Until recently, transgenic rabbits were produced exclusively by pronuclear microinjection which results in additive random insertional transgenesis; however, progress in somatic cell cloning based on nuclear transfer will soon make it possible to produce rabbits with modifications to specific genes by the combination of homologous recombination and subsequent prescreening of nuclear donor cells. Transgenic rabbits have been found to be excellent animal models for inherited and acquired human diseases including hypertrophic cardiomyopathy, perturbed lipoprotein metabolism and atherosclerosis. Transgenic rabbits have also proved to be suitable bioreactors for the production of recombinant protein both on an experimental and a commercial scale. This review summarizes recent research based on the transgenic rabbit model.
Collapse
Affiliation(s)
- Zs Bosze
- Department of Animal Biology, Agricultural Biotechnology Center Gödöllo, Hungary.
| | | | | | | |
Collapse
|
16
|
Millot B, Montoliu L, Fontaine ML, Mata T, Devinoy E. Hormone-induced modifications of the chromatin structure surrounding upstream regulatory regions conserved between the mouse and rabbit whey acidic protein genes. Biochem J 2003; 372:41-52. [PMID: 12580766 PMCID: PMC1223369 DOI: 10.1042/bj20021894] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2002] [Revised: 01/09/2003] [Accepted: 02/11/2003] [Indexed: 02/04/2023]
Abstract
The upstream regulatory regions of the mouse and rabbit whey acidic protein (WAP) genes have been used extensively to target the efficient expression of foreign genes into the mammary gland of transgenic animals. Therefore both regions have been studied to elucidate fully the mechanisms controlling WAP gene expression. Three DNase I-hypersensitive sites (HSS0, HSS1 and HSS2) have been described upstream of the rabbit WAP gene in the lactating mammary gland and correspond to important regulatory regions. These sites are surrounded by variable chromatin structures during mammary-gland development. In the present study, we describe the upstream sequence of the mouse WAP gene. Analysis of genomic sequences shows that the mouse WAP gene is situated between two widely expressed genes (Cpr2 and Ramp3). We show that the hypersensitive sites found upstream of the rabbit WAP gene are also detected in the mouse WAP gene. Further, they encompass functional signal transducer and activator of transcription 5-binding sites, as has been observed in the rabbit. A new hypersensitive site (HSS3), not specific to the mammary gland, was mapped 8 kb upstream of the rabbit WAP gene. Unlike the three HSSs described above, HSS3 is also detected in the liver, but similar to HSS1, it does not depend on lactogenic hormone treatments during cell culture. The region surrounding HSS3 encompasses a potential matrix attachment region, which is also conserved upstream of the mouse WAP gene and contains a functional transcription factor Ets-1 (E26 transformation-specific-1)-binding site. Finally, we demonstrate for the first time that variations in the chromatin structure are dependent on prolactin alone.
Collapse
Affiliation(s)
- Benjamin Millot
- Unité de Biologie Cellulaire et Moléculaire, Institut National de la Recherche Agronomique, 78 352 Jouy en josas Cedex, France
| | | | | | | | | |
Collapse
|
17
|
Abstracts from the Second International Workshop on Mammary Gland Biotechnology. Lecture Hall of the National Committee for Technical Development (OMFB), Budapest, Hungary, August 30–31, 2001. CLONING AND STEM CELLS 2001. [DOI: 10.1089/153623001753205133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Boisgard R, Chanat E, Lavialle F, Pauloin A, Ollivier-Bousquet M. Roads taken by milk proteins in mammary epithelial cells. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s0301-6226(01)00197-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Boisgard R, Chanat E. Phospholipase D-dependent and -independent mechanisms are involved in milk protein secretion in rabbit mammary epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1495:281-96. [PMID: 10699466 DOI: 10.1016/s0167-4889(99)00167-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phospholipase D has been implicated in membrane traffic in the secretory pathway of yeast and of some mammalian cell lines. Here we investigated the involvement of phospholipase D in protein transport at various steps of the secretory pathway of mammary epithelial cells. Treatment of rabbit mammary explants with butanol, which blocks the formation of phosphatidic acid, decreased the secretion of caseins and to a lesser extent that of whey acidic protein. Butanol interfered with both the endoplasmic reticulum to Golgi complex transport of the caseins and secretory vesicle formation from the trans-Golgi network. In contrast, the transport of whey acidic protein to the Golgi was less affected. Activation of protein kinase C enhanced the overall secretion of both markers and interestingly, this stimulation of secretion was maintained for whey acidic protein in the presence of butanol. Transphosphatidylation assays demonstrated the existence of a constitutive phospholipase D activity which was stimulated by the activation of protein kinase C. We conclude that phospholipase D plays a role in casein transport from the endoplasmic reticulum to the Golgi and in the secretory vesicle formation from the trans-Golgi network. Moreover, our results suggest a differential requirement for phospholipase D in the secretion of caseins and that of whey acidic protein.
Collapse
Affiliation(s)
- R Boisgard
- Institut National de la Recherche Agronomique, Laboratoire de Biologie Cellulaire et Moleculaire, F-78352, Jouy-en-Josas, France
| | | |
Collapse
|
20
|
Castro FO, Limonta J, Rodriguez A, Aguirre A, de la Fuente J, Aguilar A, Ramos B, Hayes O. Transgenic rabbits for the production of biologically-active recombinant proteins in the milk. GENETIC ANALYSIS : BIOMOLECULAR ENGINEERING 1999; 15:179-87. [PMID: 10596760 DOI: 10.1016/s1050-3862(99)00024-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The use of live bioreactors for the expression of human genes in the mammary gland of transgenic animals is one of the most cost-effective ways for the production of valuable recombinant therapeutic proteins. Among the transgenic species used so far, rabbits are good candidates for the expression of tens to hundreds of grams of complex proteins in the milk during lactation. The lactating mammary gland of rabbits has proven to be effective in the processing of complex proteins. In this work. the potential use of rabbits as bioreactors is discussed based on our results and the published data.
Collapse
Affiliation(s)
- F O Castro
- Mammalian Cell Genetics Division, Centro de Ingeniería Genética y Biotecnologia, La Habana, Havana, Cuba.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Ranganathan S, Simpson KJ, Shaw DC, Nicholas KR. The whey acidic protein family: a new signature motif and three-dimensional structure by comparative modeling. J Mol Graph Model 1999; 17:106-13, 134-6. [PMID: 10680116 DOI: 10.1016/s1093-3263(99)00023-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Whey acidic proteins (WAP) from the mouse, rat, rabbit, camel, and pig comprise two "four-disulfide core" domains. From a detailed analysis of all sequences containing this domain, we propose a new PROSITE motif ([KRHGVLN]-X-¿PF¿-X-[CF]-[PQSVLI]-X(9,19)-C-¿P¿-X-[DN]-X-¿N¿ -[CE]-X(5)-C-C) to accurately identify new four-disulfide core proteins. A consensus model for the WAP proteins is proposed, based on the human mucous proteinase inhibitor crystal structure. This article presents a detailed atomic model for the two-domain porcine WAP sequence by comparative modeling. Surface electrostatic potential calculations indicate that the second domain of the pig WAP model is similar to the functional human mucous proteinase inhibitor domains, whereas the first domain may be nonfunctional.
Collapse
Affiliation(s)
- S Ranganathan
- Australian Genomic Information Centre, University of Sydney, New South Wales, Australia.
| | | | | | | |
Collapse
|
22
|
Zinovieva N, Lassnig C, Schams D, Besenfelder U, Wolf E, Müller S, Frenyo L, Seregi J, Müller M, Brem G. Stable production of human insulin-like growth factor 1 (IGF-1) in the milk of hemi- and homozygous transgenic rabbits over several generations. Transgenic Res 1998; 7:437-47. [PMID: 10341452 DOI: 10.1023/a:1008831028620] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
One transgenic rabbit line was generated carrying a fusion gene consisting of the cDNA for human IGF-1 fused to a mammary gland specific expression cassette derived from bovine alpha-S1-casein sequences. Transgene expression was shown to be strictly tissue and lactation period specific. The transgenic rabbit line was bred for six generations. All transgenic animals showed stable production of biologically active IGF-1 over the generations and no apparent effect on the physiological or reproductive performance was observed. The absence of adverse effects on homozygous transgenic rabbits suggested the absence of insertional mutagenesis. Eight hemizygous transgenic offspring analysed produced on average 363 +/- 12 micrograms/ml (ranging from 223 +/- 61 to 484 +/- 39 micrograms/ml) mature human IGF-1 in their milk, whereas three homozygous animals produced on average 543 +/- 41 micrograms/ml (ranging from 360 +/- 15 to 678 +/- 80 micrograms/ml). Homozygous hulGF-1 females clearly showed a significantly increased production performance of the recombinant protein.
Collapse
Affiliation(s)
- N Zinovieva
- Research Center for Milk and Food Weihenstephan, TU Munich, Freising-Weihenstephan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Baranyi M, Aszodi A, Devinoy E, Fontaine ML, Houdebine LM, Bösze Z. Structure of the rabbit kappa-casein encoding gene: expression of the cloned gene in the mammary gland of transgenic mice. Gene 1996; 174:27-34. [PMID: 8863725 DOI: 10.1016/0378-1119(96)00274-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The rabbit kappa-casein (kappa-Cas) encoding gene has been isolated as a series of overlapping DNA fragments cloned from a rabbit genomic library constructed in bacteriophage lambda EMBL3. The clones harboured the 7.5-kb gene flanked by about 2.1 kb upstream and 9 kb downstream sequences. The cloned gene is the most frequently occurring of two kappa-Cas alleles identified in New Zealand rabbits. Comparison of the corresponding domains in rabbit and bovine kappa-Cas shows that both genes comprise 5 exons and that the exon/intron boundary positions are conserved whereas the introns have diverged considerably. The first three introns are shorter in the rabbit, the second intron showing the greatest difference between the two species: 1.35 kb instead of 5.8 kb in the bovine gene. Repetitive sequence motives reminiscent of the rabbit C type repeat and the complementary inverted C type repeat were identified in the fourth and first introns, respectively. Transgenic mice were produced by microinjecting into mouse oocytes an isolated genomic DNA fragment which contained the entire kappa-Cas coding region, together with 2.1-kb 5' and 4.0-kb 3' flanking region. Expression of transgene rabbit kappa-Cas mRNA could be detected in the mammary gland of lactating transgenic mice and the production of rabbit kappa-Cas was detected in milk using species-specific antibodies. The cloned gene is thus functional.
Collapse
Affiliation(s)
- M Baranyi
- Institute for Animal Sciences, Agricultural Biotechnology Center, Gödöllö, Hungary
| | | | | | | | | | | |
Collapse
|