Noronha-Blob L, Sturm BL, Lowe VC, Jackson KN, Kachur JF. In vitro and in vivo antimuscarinic effects of (-)cis 2,3-dihydro-3-(4-methylpiperazinylmethyl)-2-phenyl-1,5 benzothiazepin-4-(5H)one HCl (BTM-1086) in guinea pig peripheral tissues.
Life Sci 1990;
46:1223-31. [PMID:
2338887 DOI:
10.1016/0024-3205(90)90497-f]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The potency and selectivity of (-)cis-2,3-dihydro-3-(4-methylpiperazinylmethyl)-2-phenyl-1,5 benzothiazepin-4-(5H)one HCl (BTM-1086) for muscarinic receptor subtypes was compared in functional assay systems, in guinea pig peripheral tissues, to known reference drugs: atropine (nonselective), pirenzepine (M1), AF-DX 116 (M2) and HHSiD (M3). Like atropine, BTM-1086 was a potent, nonselective, competitive muscarinic antagonist with no detectable antispasmodic activity in urinary bladder or ileal muscle. In vivo, in the guinea pig cystometrogram, BTM-1086 depressed intravesical bladder pressure (PvesP) with the same efficacy and potency as oxybutynin, a drug used clinically for the treatment of urinary incontinence. The pharmacological profile of BTM-1086, however, suggests that it may not be suitable for development for bladder dysfunction disorders.
Collapse