1
|
Safronov BV, Szucs P. Novel aspects of signal processing in lamina I. Neuropharmacology 2024; 247:109858. [PMID: 38286189 DOI: 10.1016/j.neuropharm.2024.109858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 01/31/2024]
Abstract
The most superficial layer of the spinal dorsal horn, lamina I, is a key element of the nociceptive processing system. It contains different types of projection neurons (PNs) and local-circuit neurons (LCNs) whose functional roles in the signal processing are poorly understood. This article reviews recent progress in elucidating novel anatomical features and physiological properties of lamina I PNs and LCNs revealed by whole-cell recordings in ex vivo spinal cord. This article is part of the Special Issue on "Ukrainian Neuroscience".
Collapse
Affiliation(s)
- Boris V Safronov
- Neuronal Networks Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| | - Peter Szucs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; HUN-REN-DE Neuroscience Research Group, Debrecen, Hungary
| |
Collapse
|
2
|
Kókai É, Alsulaiman WAA, Dickie AC, Bell AM, Goffin L, Watanabe M, Gutierrez-Mecinas M, Todd AJ. Characterisation of deep dorsal horn projection neurons in the spinal cord of the Phox2a::Cre mouse line. Mol Pain 2022; 18:17448069221119614. [PMID: 36000342 PMCID: PMC9445510 DOI: 10.1177/17448069221119614] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Projection neurons belonging to the anterolateral system (ALS) underlie the perception of pain, skin temperature and itch. Many ALS cells are located in laminae III-V of the dorsal horn and the adjacent lateral white matter. However, relatively little is known about the excitatory synaptic input to these deep ALS cells, and therefore about their engagement with the neuronal circuitry of the region. We have used a recently developed mouse line, Phox2a::Cre, to investigate a population of deep dorsal horn ALS neurons known as "antenna cells", which are characterised by dense innervation from peptidergic nociceptors, and to compare these with other ALS cells in the deep dorsal horn and lateral white matter. We show that these two classes differ, both in the density of excitatory synapses, and in the source of input at these synapses. Peptidergic nociceptors account for around two-thirds of the excitatory synapses on the antenna cells, but for only a small proportion of the input to the non-antenna cells. Conversely, boutons with high levels of VGLUT2, which are likely to originate mainly from glutamatergic spinal neurons, account for only ∼5% of the excitatory synapses on antenna cells, but for a much larger proportion of the input to the non-antenna cells. VGLUT1 is expressed by myelinated low-threshold mechanoreceptors and corticospinal axons, and these innervate both antenna and non-antenna cells. However, the density of VGLUT1 input to the non-antenna cells is highly variable, consistent with the view that these neurons are functionally heterogeneous.
Collapse
Affiliation(s)
- Éva Kókai
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Wafa AA Alsulaiman
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Allen C Dickie
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Andrew M Bell
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Luca Goffin
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo, Japan
| | - Maria Gutierrez-Mecinas
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Andrew J Todd
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
3
|
Dorsal Horn of Mouse Lumbar Spinal Cord Imaged with CLARITY. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3689380. [PMID: 32855963 PMCID: PMC7443243 DOI: 10.1155/2020/3689380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/30/2020] [Indexed: 11/17/2022]
Abstract
The organization of the mouse spinal dorsal horn has been delineated in 2D for the six Rexed laminae in our publication Atlas of the Spinal Cord: Mouse, Rat, Rhesus, Marmoset, and Human. In the present study, the tissue clearing technique CLARITY was used to observe the cyto- and chemoarchitecture of the mouse spinal cord in 3D, using a variety of immunohistochemical markers. We confirm prior observations regarding the location of glycine and serotonin immunoreactivities. Novel observations include the demonstration of numerous calcitonin gene-related peptide (CGRP) perikarya, as well as CGRP fibers and terminals in all laminae of the dorsal horn. We also observed sparse choline acetyltransferase (ChAT) immunoreactivity in small perikarya and fibers and terminals in all dorsal horn laminae, while gamma aminobutyric acid (GABA) and glutamate decarboxylase-67 (GAD67) immunoreactivities were found only in small perikarya and fibers. Finally, numerous serotonergic fibers were observed in all laminae of the dorsal horn. In conclusion, CLARITY confirmed the 2D immunohistochemical properties of the spinal cord. Furthermore, we observed novel anatomical characteristics of the spinal cord and demonstrated that CLARITY can be used on spinal cord tissue to examine many proteins of interest.
Collapse
|
4
|
Polgár E, Bell AM, Gutierrez-Mecinas M, Dickie AC, Akar O, Costreie M, Watanabe M, Todd AJ. Substance P-expressing Neurons in the Superficial Dorsal Horn of the Mouse Spinal Cord: Insights into Their Functions and their Roles in Synaptic Circuits. Neuroscience 2020; 450:113-125. [PMID: 32634530 PMCID: PMC7717171 DOI: 10.1016/j.neuroscience.2020.06.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 11/26/2022]
Abstract
Substance P-expressing radial cells in lamina II receive half of their excitatory synaptic input from other interneurons. They are preferentially innervated by transient central cells that express eGFP in a GRP-eGFP mouse line. Around 40% of projection neurons in lamina I express Tac1, the gene for substance P. Silencing Tac1 cells in the dorsal horn reduces reflex responses to cold and radiant heat.
The tachykinin peptide substance P (SP) is expressed by many interneurons and some projection neurons in the superficial dorsal horn of the spinal cord. We have recently shown that SP-expressing excitatory interneurons in lamina II correspond largely to a morphological class known as radial cells. However, little is known about their function, or their synaptic connectivity. Here we use a modification of the Brainbow technique to define the excitatory synaptic input to SP radial cells. We show that around half of their excitatory synapses (identified by expression of Homer) are from boutons with VGLUT2, which are likely to originate mainly from local interneurons. The remaining synapses presumably include primary afferents, which generally have very low levels of VGLUT2. Our results also suggest that the SP cells are preferentially innervated by a population of excitatory interneurons defined by expression of green fluorescent protein under control of the gene for gastrin-releasing peptide, and that they receive sparser input from other types of excitatory interneuron. We show that around 40% of lamina I projection neurons express Tac1, the gene encoding substance P. Finally, we show that silencing Tac1-expressing cells in the dorsal horn results in a significant reduction in reflex responses to cold and radiant heat, but does not affect withdrawal to von Frey hairs, or chloroquine-evoked itch.
Collapse
Affiliation(s)
- Erika Polgár
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Andrew M Bell
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Maria Gutierrez-Mecinas
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Allen C Dickie
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Oğuz Akar
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Miruna Costreie
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo 060-8638, Japan
| | - Andrew J Todd
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
5
|
Bai Y, Li MY, Ma JB, Li JN, Teng XY, Chen YB, Yin JB, Huang J, Chen J, Zhang T, Qiu XT, Chen T, Li H, Wu SX, Peng YN, Li X, Kou ZZ, Li YQ. Enkephalinergic Circuit Involved in Nociceptive Modulation in the Spinal Dorsal Horn. Neuroscience 2020; 429:78-91. [PMID: 31917345 DOI: 10.1016/j.neuroscience.2019.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 11/24/2022]
Abstract
Enkephalin (ENK) has been implicated in pain modulation within the spinal dorsal horn (SDH). Revealing the mechanisms underlying ENK analgesia entails the anatomical and functional knowledge of spinal ENK-ergic circuits. Herein, we combined morphological and electrophysiological studies to unravel local ENK-ergic circuitry within the SDH. First, the distribution pattern of spinal ENK-ergic neurons was observed in adult preproenkephalin (PPE)-GFP knock-in mice. Next, the retrograde tracer tetramethylrhodamine (TMR) or horseradish peroxidase (HRP) was injected into the parabrachial nucleus (PBN) in PPE-GFP mice. Immunofluorescent staining showed I-isolectin B4 (IB4) labeled non-peptidergic afferents were in close apposition to TMR-labeled PBN-projecting neurons within lamina I as well as PPE-immunoreactivity (-ir) neurons within lamina II. Some TMR-labeled neurons were simultaneously in close association with both IB4 and PPE-ir terminals. Synaptic connections of these components were further confirmed by electron microscopy. Finally, TMR was injected into the PBN in adult C57BL/6 mice. Whole-cell patch recordings showed that δ-opioid receptor (DOR) agonist, [D-Pen2,5]-enkephalin (DPDPE, 1 µM), significantly reduced the frequency of miniature excitatory postsynaptic current (mEPSC) and decreased the activity of TMR-labeled neurons. In conclusion, spinal ENKergic neurons receive direct excitatory inputs from primary afferents, which might be directly recruited to release ENK under the condition of noxious stimuli; ENK could inhibit the glutamatergic transmission towards projecting neurons via presynaptic and postsynaptic DORs. These morphological and functional evidence may explain the mechanisms underlying the analgesic effects exerted by ENK within the SDH.
Collapse
Affiliation(s)
- Yang Bai
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Meng-Ying Li
- Department of Endocrinology and Metabolism, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jiang-Bo Ma
- Department of Anatomy, Histology and Embryology, Ningxia Medical University, Yinchuan, China
| | - Jia-Ni Li
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Xiao-Yu Teng
- Department of Anatomy, Guangxi Medical University, Nanning, China
| | - Ying-Biao Chen
- Department of Anatomy, Fujian Health College, Fuzhou, China
| | - Jun-Bin Yin
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Jing Huang
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Jing Chen
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Ting Zhang
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Xin-Tong Qiu
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Tao Chen
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Hui Li
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Sheng-Xi Wu
- Department of Neurobiology, The Fourth Military Medical University, Xi'an, China
| | - Ya-Nan Peng
- Joint Laboratory of Neuroscience at Hainan Medical University and The Fourth Military Medical University, Hainan Medical University, Haikou, China
| | - Xiang Li
- Department of Orthopaedics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China.
| | - Zhen-Zhen Kou
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China.
| | - Yun-Qing Li
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China; Joint Laboratory of Neuroscience at Hainan Medical University and The Fourth Military Medical University, Hainan Medical University, Haikou, China.
| |
Collapse
|
6
|
Gutierrez-Mecinas M, Davis O, Polgár E, Shahzad M, Navarro-Batista K, Furuta T, Watanabe M, Hughes DI, Todd AJ. Expression of Calretinin Among Different Neurochemical Classes of Interneuron in the Superficial Dorsal Horn of the Mouse Spinal Cord. Neuroscience 2018; 398:171-181. [PMID: 30553791 PMCID: PMC6347472 DOI: 10.1016/j.neuroscience.2018.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/21/2018] [Accepted: 12/05/2018] [Indexed: 01/17/2023]
Abstract
Around 75% of neurons in laminae I-II of the mouse dorsal horn are excitatory interneurons, and these are required for normal pain perception. We have shown that four largely non-overlapping excitatory interneuron populations can be defined by expression of the neuropeptides neurotensin, neurokinin B (NKB), gastrin-releasing peptide (GRP) and substance P. In addition, we recently identified a population of excitatory interneurons in glabrous skin territory that express dynorphin. The calcium-binding protein calretinin is present in many excitatory neurons in this region, but we know little about its relation to these neuropeptide markers. Here we show that calretinin is differentially expressed, being present in the majority of substance P-, GRP- and NKB-expressing cells, but not in the neurotensin or dynorphin cells. Calretinin-positive cells have been implicated in detection of noxious mechanical stimuli, but are not required for tactile allodynia after neuropathic pain. Our findings are therefore consistent with the suggestion that neuropathic allodynia involves the neurotensin and/or dynorphin excitatory interneuron populations. Around a quarter of inhibitory interneurons in lamina I-II contain calretinin, and recent transcriptomic studies suggest that these co-express substance P. We confirm this, by showing that inhibitory Cre-expressing cells in a Tac1Cre knock-in mouse are calretinin-immunoreactive. Interestingly, there is evidence that these cells express low levels of peptidylglycine alpha-amidating monooxygenase, an enzyme required for maturation of neuropeptides. This may explain our previous finding that although the substance P precursor preprotachykinin A can be detected in some inhibitory interneurons, very few inhibitory axonal boutons are immunoreactive for substance P.
Collapse
Affiliation(s)
- Maria Gutierrez-Mecinas
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Olivia Davis
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Erika Polgár
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Mahvish Shahzad
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Keila Navarro-Batista
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Takahiro Furuta
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, 1-8 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo 060-8638, Japan
| | - David I Hughes
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Andrew J Todd
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
7
|
Merighi A. The histology, physiology, neurochemistry and circuitry of the substantia gelatinosa Rolandi (lamina II) in mammalian spinal cord. Prog Neurobiol 2018; 169:91-134. [PMID: 29981393 DOI: 10.1016/j.pneurobio.2018.06.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 06/07/2018] [Accepted: 06/30/2018] [Indexed: 02/06/2023]
Abstract
The substantia gelatinosa Rolandi (SGR) was first described about two centuries ago. In the following decades an enormous amount of information has permitted us to understand - at least in part - its role in the initial processing of pain and itch. Here, I will first provide a comprehensive picture of the histology, physiology, and neurochemistry of the normal SGR. Then, I will analytically discuss the SGR circuits that have been directly demonstrated or deductively envisaged in the course of the intensive research on this area of the spinal cord, with particular emphasis on the pathways connecting the primary afferent fibers and the intrinsic neurons. The perspective existence of neurochemically-defined sets of primary afferent neurons giving rise to these circuits will be also discussed, with the proposition that a cross-talk between different subsets of peptidergic fibers may be the structural and functional substrate of additional gating mechanisms in SGR. Finally, I highlight the role played by slow acting high molecular weight modulators in these gating mechanisms.
Collapse
Affiliation(s)
- Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, I-10095 Grugliasco (TO), Italy.
| |
Collapse
|
8
|
Preprotachykinin A is expressed by a distinct population of excitatory neurons in the mouse superficial spinal dorsal horn including cells that respond to noxious and pruritic stimuli. Pain 2017; 158:440-456. [PMID: 27902570 PMCID: PMC5302415 DOI: 10.1097/j.pain.0000000000000778] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Expression of the substance P precursor preprotachykinin A defines a distinct population of superficial dorsal horn excitatory neurons, many of which respond to noxious or pruritic stimuli. The superficial dorsal horn, which is the main target for nociceptive and pruritoceptive primary afferents, contains a high density of excitatory interneurons. Our understanding of their roles in somatosensory processing has been restricted by the difficulty of distinguishing functional populations among these cells. We recently defined 3 nonoverlapping populations among the excitatory neurons, based on the expression of neurotensin, neurokinin B, and gastrin-releasing peptide. Here we identify and characterise another population: neurons that express the tachykinin peptide substance P. We show with immunocytochemistry that its precursor protein (preprotachykinin A, PPTA) can be detected in ∼14% of lamina I-II neurons, and these are concentrated in the outer part of lamina II. Over 80% of the PPTA-positive cells lack the transcription factor Pax2 (which determines an inhibitory phenotype), and these account for ∼15% of the excitatory neurons in this region. They are different from the neurotensin, neurokinin B, or gastrin-releasing peptide neurons, although many of them contain somatostatin, which is widely expressed among superficial dorsal horn excitatory interneurons. We show that many of these cells respond to noxious thermal and mechanical stimuli and to intradermal injection of pruritogens. Finally, we demonstrate that these cells can also be identified in a knock-in Cre mouse line (Tac1Cre), although our findings suggest that there is an additional population of neurons that transiently express PPTA. This population of substance P–expressing excitatory neurons is likely to play an important role in the transmission of signals that are perceived as pain and itch.
Collapse
|
9
|
Boyle KA, Gutierrez-Mecinas M, Polgár E, Mooney N, O'Connor E, Furuta T, Watanabe M, Todd AJ. A quantitative study of neurochemically defined populations of inhibitory interneurons in the superficial dorsal horn of the mouse spinal cord. Neuroscience 2017; 363:120-133. [PMID: 28860091 PMCID: PMC5648048 DOI: 10.1016/j.neuroscience.2017.08.044] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/18/2017] [Accepted: 08/23/2017] [Indexed: 12/31/2022]
Abstract
Neurochemistry of lamina I–II inhibitory neurons in mouse is similar to that in rat. Five neurochemical classes account for all lamina I–II inhibitory neurons in mouse. Excitatory dynorphin cells are largely restricted to glabrous skin territory.
Around a quarter of neurons in laminae I–II of the dorsal horn are inhibitory interneurons. These play an important role in modulating somatosensory information, including that perceived as pain or itch. Previous studies in rat identified four largely non-overlapping neurochemical populations among these cells, defined by expression of galanin, neuropeptide Y (NPY), neuronal nitric oxide synthase (nNOS) or parvalbumin. The galanin cells were subsequently shown to coexpress dynorphin. Several recent studies have used genetically modified mice to investigate the function of different interneuron populations, and it is therefore important to determine whether the same pattern applies in mouse, and to estimate the relative sizes of these populations. We show that the neurochemical organization of inhibitory interneurons in mouse superficial dorsal horn is similar to that in the rat, although a larger proportion of these neurons (33%) express NPY. Between them, these four populations account for ∼75% of inhibitory cells in laminae I–II. Since ∼25% of inhibitory interneurons in this region belong to a novel calretinin-expressing type, our results suggest that virtually all inhibitory interneurons in superficial dorsal horn can be assigned to one of these five neurochemical populations. Although our main focus was inhibitory neurons, we also identified a population of excitatory dynorphin-expressing cells in laminae I–II that are largely restricted to the medial part of the mid-lumbar dorsal horn, corresponding to glabrous skin territory. These findings are important for interpretation of studies using molecular-genetic techniques to manipulate the functions of interneuron populations to investigate their roles in somatosensory processing.
Collapse
Affiliation(s)
- Kieran A Boyle
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Maria Gutierrez-Mecinas
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Erika Polgár
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Nicole Mooney
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Emily O'Connor
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Takahiro Furuta
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo 060-8638, Japan
| | - Andrew J Todd
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
10
|
Neuronal networks and nociceptive processing in the dorsal horn of the spinal cord. Neuroscience 2016; 338:230-247. [PMID: 27595888 DOI: 10.1016/j.neuroscience.2016.08.048] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/23/2016] [Accepted: 08/28/2016] [Indexed: 12/31/2022]
Abstract
The dorsal horn (DH) of the spinal cord receives a variety of sensory information arising from the inner and outer environment, as well as modulatory inputs from supraspinal centers. This information is integrated by the DH before being forwarded to brain areas where it may lead to pain perception. Spinal integration of this information relies on the interplay between different DH neurons forming complex and plastic neuronal networks. Elements of these networks are therefore potential targets for new analgesics and pain-relieving strategies. The present review aims at providing an overview of the current knowledge on these networks, with a special emphasis on those involving interlaminar communication in both physiological and pathological conditions.
Collapse
|
11
|
Gutierrez-Mecinas M, Furuta T, Watanabe M, Todd AJ. A quantitative study of neurochemically defined excitatory interneuron populations in laminae I-III of the mouse spinal cord. Mol Pain 2016; 12:12/0/1744806916629065. [PMID: 27030714 PMCID: PMC4946630 DOI: 10.1177/1744806916629065] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/10/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Excitatory interneurons account for the majority of neurons in laminae I-III, but their functions are poorly understood. Several neurochemical markers are largely restricted to excitatory interneuron populations, but we have limited knowledge about the size of these populations or their overlap. The present study was designed to investigate this issue by quantifying the neuronal populations that express somatostatin (SST), neurokinin B (NKB), neurotensin, gastrin-releasing peptide (GRP) and the γ isoform of protein kinase C (PKCγ), and assessing the extent to which they overlapped. Since it has been reported that calretinin- and SST-expressing cells have different functions, we also looked for co-localisation of calretinin and SST. RESULTS SST, preprotachykinin B (PPTB, the precursor of NKB), neurotensin, PKCγ or calretinin were detected with antibodies, while cells expressing GRP were identified in a mouse line (GRP-EGFP) in which enhanced green fluorescent protein (EGFP) was expressed under control of the GRP promoter. We found that SST-, neurotensin-, PPTB- and PKCγ-expressing cells accounted for 44%, 7%, 12% and 21% of the neurons in laminae I-II, and 16%, 8%, 4% and 14% of those in lamina III, respectively. GRP-EGFP cells made up 11% of the neuronal population in laminae I-II. The neurotensin, PPTB and GRP-EGFP populations showed very limited overlap, and we estimate that between them they account for ~40% of the excitatory interneurons in laminae I-II. SST which is expressed by ~60% of excitatory interneurons in this region, was found in each of these populations, as well as in cells that did not express any of the other peptides. Neurotensin and PPTB were often found in cells with PKCγ, and between them, constituted around 60% of the PKCγ cells. Surprisingly, we found extensive co-localisation of SST and calretinin. CONCLUSIONS These results suggest that cells expressing neurotensin, NKB or GRP form largely non-overlapping sets that are likely to correspond to functional populations. In contrast, SST is widely expressed by excitatory interneurons that are likely to be functionally heterogeneous.
Collapse
Affiliation(s)
- Maria Gutierrez-Mecinas
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Takahiro Furuta
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo, Japan
| | - Andrew J Todd
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
12
|
Gutierrez-Mecinas M, Watanabe M, Todd AJ. Expression of gastrin-releasing peptide by excitatory interneurons in the mouse superficial dorsal horn. Mol Pain 2014; 10:79. [PMID: 25496164 PMCID: PMC4320531 DOI: 10.1186/1744-8069-10-79] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/02/2014] [Indexed: 01/31/2023] Open
Abstract
Background Gastrin-releasing peptide (GRP) and its receptor have been shown to play an important role in the sensation of itch. However, although GRP immunoreactivity has been detected in the spinal dorsal horn, there is debate about whether this originates from primary afferents or local excitatory interneurons. We therefore examined the relation of GRP immunoreactivity to that seen with antibodies that label primary afferent or excitatory interneuron terminals. We tested the specificity of the GRP antibody by preincubating with peptides with which it could potentially cross-react. We also examined tissue from a mouse line in which enhanced green fluorescent protein (EGFP) is expressed under control of the GRP promoter. Results GRP immunoreactivity was seen in both primary afferent and non-primary glutamatergic axon terminals in the superficial dorsal horn. However, immunostaining was blocked by pre-incubation of the antibody with substance P, which is present at high levels in many nociceptive primary afferents. EGFP+ cells in the GRP-EGFP mouse did not express Pax2, and their axons contained the vesicular glutamate transporter 2 (VGLUT2), indicating that they are excitatory interneurons. In most cases, their axons were also GRP-immunoreactive. Multiple-labelling immunocytochemical studies indicated that these cells did not express either of the preprotachykinin peptides, and that they generally lacked protein kinase Cγ, which is expressed by a subset of the excitatory interneurons in this region. Conclusions These results show that GRP is expressed by a distinct population of excitatory interneurons in laminae I-II that are likely to be involved in the itch pathway. They also suggest that the GRP immunoreactivity seen in primary afferents in previous studies may have resulted from cross-reaction of the GRP antibody with substance P or the closely related peptide neurokinin A.
Collapse
Affiliation(s)
| | | | - Andrew J Todd
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
13
|
Shi TJS, Xiang Q, Zhang MD, Barde S, Kai-Larsen Y, Fried K, Josephson A, Glück L, Deyev SM, Zvyagin AV, Schulz S, Hökfelt T. Somatostatin and its 2A receptor in dorsal root ganglia and dorsal horn of mouse and human: expression, trafficking and possible role in pain. Mol Pain 2014; 10:12. [PMID: 24521084 PMCID: PMC3943448 DOI: 10.1186/1744-8069-10-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 02/06/2014] [Indexed: 12/30/2022] Open
Abstract
Background Somatostatin (SST) and some of its receptor subtypes have been implicated in pain signaling at the spinal level. In this study we have investigated the role of SST and its sst2A receptor (sst2A) in dorsal root ganglia (DRGs) and spinal cord. Results SST and sst2A protein and sst2 transcript were found in both mouse and human DRGs, sst2A-immunoreactive (IR) cell bodies and processes in lamina II in mouse and human spinal dorsal horn, and sst2A-IR nerve terminals in mouse skin. The receptor protein was associated with the cell membrane. Following peripheral nerve injury sst2A-like immunoreactivity (LI) was decreased, and SST-LI increased in DRGs. sst2A-LI accumulated on the proximal and, more strongly, on the distal side of a sciatic nerve ligation. Fluorescence-labeled SST administered to a hind paw was internalized and retrogradely transported, indicating that a SST-sst2A complex may represent a retrograde signal. Internalization of sst2A was seen in DRG neurons after systemic treatment with the sst2 agonist octreotide (Oct), and in dorsal horn and DRG neurons after intrathecal administration. Some DRG neurons co-expressed sst2A and the neuropeptide Y Y1 receptor on the cell membrane, and systemic Oct caused co-internalization, hypothetically a sign of receptor heterodimerization. Oct treatment attenuated the reduction of pain threshold in a neuropathic pain model, in parallel suppressing the activation of p38 MAPK in the DRGs Conclusions The findings highlight a significant and complex role of the SST system in pain signaling. The fact that the sst2A system is found also in human DRGs and spinal cord, suggests that sst2A may represent a potential pharmacologic target for treatment of neuropathic pain.
Collapse
Affiliation(s)
- Tie-Jun Sten Shi
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kato K, Nakagawa C, Murabayashi H, Oomori Y. Expression and distribution of GABA and GABAB-receptor in the rat adrenal gland. J Anat 2014; 224:207-15. [PMID: 24252118 PMCID: PMC3969063 DOI: 10.1111/joa.12144] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2013] [Indexed: 11/29/2022] Open
Abstract
The inhibitory effects of gamma-aminobutyric acid (GABA) in the central and peripheral nervous systems and the endocrine system are mediated by two different GABA receptors: GABAA-receptor (GABAA-R) and GABAB-receptor (GABAB-R). GABAA-R, but not GABAB-R, has been observed in the rat adrenal gland, where GABA is known to be released. This study sought to determine whether both GABA and GABAB-R are present in the endocrine and neuronal elements of the rat adrenal gland, and to investigate whether GABAB-R may play a role in mediating the effects of GABA in secretory activity of these cells. GABA-immunoreactive nerve fibers were observed in the superficial cortex. Some GABA-immunoreactive nerve fibers were found to be associated with blood vessels. Double-immunostaining revealed GABA-immunoreactive nerve fibers in the cortex were choline acetyltransferase (ChAT)-immunonegative. Some GABA-immunoreactive nerve fibers ran through the cortex toward the medulla. In the medulla, GABA-immunoreactivity was seen in some large ganglion cells, but not in the chromaffin cells. Double-immunostaining also showed GABA-immunoreactive ganglion cells were nitric oxide synthase (NOS)-immunopositive. However, neither immunohistochemistry combined with fluorescent microscopy nor double-immunostaining revealed GABA-immunoreactivity in the noradrenaline cells with blue-white fluorescence or in the adrenaline cells with phenylethanolamine N-methyltransferase (PNMT)-immunoreactivity. Furthermore, GABA-immunoreactive nerve fibers were observed in close contact with ganglion cells, but not chromaffin cells. Double-immunostaining also showed that the GABA-immunoreactive nerve fibers were in close contact with NOS- or neuropeptide tyrosine (NPY)-immunoreactive ganglion cells. A few of the GABA-immunoreactive nerve fibers were ChAT-immunopositive, while most of the GABA-immunoreactive nerve fibers were ChAT-immunonegative. Numerous ChAT-immunoreactive nerve fibers were observed in close contact with the ganglion cells and chromaffin cells in the medulla. The GABAB-R-immunoreactivity was found only in ganglion cells in the medulla and not at all in the cortex. Immunohistochemistry combined with fluorescent microscopy and double-immunostaining showed no GABAB-R-immunoreactivity in noradrenaline cells with blue-white fluorescence or in adrenaline cells with PNMT-immunoreactivity. These immunoreactive ganglion cells were NOS- or NPY-immunopositive on double-immunostaining. These findings suggest that GABA from the intra-adrenal nerve fibers may have an inhibitory effect on the secretory activity of ganglion cells and cortical cells, and on the motility of blood vessels in the rat adrenal gland, mediated by GABA-Rs.
Collapse
Affiliation(s)
- Kanae Kato
- Division of Anatomy and Physiology, Japanese Red Cross Hokkaido College of NursingKitami, Japan
| | - Chieko Nakagawa
- Division of Anatomy and Physiology, Japanese Red Cross Hokkaido College of NursingKitami, Japan
| | - Hiroshi Murabayashi
- Division of Anatomy and Physiology, Japanese Red Cross Hokkaido College of NursingKitami, Japan
| | - Yukio Oomori
- Division of Anatomy and Physiology, Japanese Red Cross Hokkaido College of NursingKitami, Japan
| |
Collapse
|
15
|
Szucs P, Luz LL, Pinho R, Aguiar P, Antal Z, Tiong SYX, Todd AJ, Safronov BV. Axon diversity of lamina I local-circuit neurons in the lumbar spinal cord. J Comp Neurol 2014; 521:2719-41. [PMID: 23386329 PMCID: PMC3738926 DOI: 10.1002/cne.23311] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/26/2012] [Accepted: 01/18/2012] [Indexed: 01/21/2023]
Abstract
Spinal lamina I is a key area for relaying and integrating information from nociceptive primary afferents with various other sources of inputs. Although lamina I projection neurons have been intensively studied, much less attention has been given to local-circuit neurons (LCNs), which form the majority of the lamina I neuronal population. In this work the infrared light-emitting diode oblique illumination technique was used to visualize and label LCNs, allowing reconstruction and analysis of their dendritic and extensive axonal trees. We show that the majority of lamina I neurons with locally branching axons fall into the multipolar (with ventrally protruding dendrites) and flattened (dendrites limited to lamina I) somatodendritic categories. Analysis of their axons revealed that the initial myelinated part gives rise to several unmyelinated small-diameter branches that have a high number of densely packed, large varicosities and an extensive rostrocaudal (two or three segments), mediolateral, and dorsoventral (reaching laminae III-IV) distribution. The extent of the axon and the occasional presence of long, solitary branches suggest that LCNs may also form short and long propriospinal connections. We also found that the distribution of axon varicosities and terminal field locations show substantial heterogeneity and that a substantial portion of LCNs is inhibitory. Our observations indicate that LCNs of lamina I form intersegmental as well as interlaminar connections and may govern large numbers of neurons, providing anatomical substrate for rostrocaudal "processing units" in the dorsal horn.
Collapse
Affiliation(s)
- Peter Szucs
- Spinal Neuronal Networks Group, Institute of Molecular and Cell Biology-IBMC, University of Porto, 4150-180 Porto, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Taylor BK, Fu W, Kuphal KE, Stiller CO, Winter MK, Chen W, Corder GF, Urban JH, McCarson KE, Marvizon JC. Inflammation enhances Y1 receptor signaling, neuropeptide Y-mediated inhibition of hyperalgesia, and substance P release from primary afferent neurons. Neuroscience 2013; 256:178-94. [PMID: 24184981 DOI: 10.1016/j.neuroscience.2013.10.054] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 10/21/2013] [Accepted: 10/23/2013] [Indexed: 12/20/2022]
Abstract
Neuropeptide Y (NPY) is present in the superficial laminae of the dorsal horn and inhibits spinal nociceptive processing, but the mechanisms underlying its anti-hyperalgesic actions are unclear. We hypothesized that NPY acts at neuropeptide Y1 receptors in the dorsal horn to decrease nociception by inhibiting substance P (SP) release, and that these effects are enhanced by inflammation. To evaluate SP release, we used microdialysis and neurokinin 1 receptor (NK1R) internalization in rat. NPY decreased capsaicin-evoked SP-like immunoreactivity in the microdialysate of the dorsal horn. NPY also decreased non-noxious stimulus (paw brush)-evoked NK1R internalization (as well as mechanical hyperalgesia and mechanical and cold allodynia) after intraplantar injection of carrageenan. Similarly, in rat spinal cord slices with dorsal root attached, [Leu(31), Pro(34)]-NPY inhibited dorsal root stimulus-evoked NK1R internalization. In rat dorsal root ganglion neurons, Y1 receptors colocalized extensively with calcitonin gene-related peptide (CGRP). In dorsal horn neurons, Y1 receptors were extensively expressed and this may have masked the detection of terminal co-localization with CGRP or SP. To determine whether the pain inhibitory actions of Y1 receptors are enhanced by inflammation, we administered [Leu(31), Pro(34)]-NPY after intraplantar injection of complete Freund's adjuvant (CFA) in rat. We found that [Leu(31), Pro(34)]-NPY reduced paw clamp-induced NK1R internalization in CFA rats but not uninjured controls. To determine the contribution of increased Y1 receptor-G protein coupling, we measured [(35)S]GTPγS binding simulated by [Leu(31), Pro(34)]-NPY in mouse dorsal horn. CFA inflammation increased the affinity of Y1 receptor G-protein coupling. We conclude that Y1 receptors contribute to the anti-hyperalgesic effects of NPY by mediating the inhibition of SP release, and that Y1 receptor signaling in the dorsal horn is enhanced during inflammatory nociception.
Collapse
Affiliation(s)
- B K Taylor
- Department of Physiology, School of Medicine, University of Kentucky Medical Center, Lexington, KY 40536, USA.
| | - W Fu
- Department of Physiology, School of Medicine, University of Kentucky Medical Center, Lexington, KY 40536, USA
| | - K E Kuphal
- Division of Pharmacology, University of Missouri-Kansas City, Kansas City, MO, USA
| | - C-O Stiller
- Department of Medicine, Division of Clinical Pharmacology, Karolinska Hospital, Karolinska Institutet, Stockholm, Sweden
| | - M K Winter
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - W Chen
- Veteran Affairs Greater Los Angeles Healthcare System and Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA
| | - G F Corder
- Department of Physiology, School of Medicine, University of Kentucky Medical Center, Lexington, KY 40536, USA
| | - J H Urban
- Department of Physiology and Biophysics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - K E McCarson
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - J C Marvizon
- Veteran Affairs Greater Los Angeles Healthcare System and Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
17
|
A quantitative study of inhibitory interneurons in laminae I-III of the mouse spinal dorsal horn. PLoS One 2013; 8:e78309. [PMID: 24205193 PMCID: PMC3808353 DOI: 10.1371/journal.pone.0078309] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 09/20/2013] [Indexed: 11/19/2022] Open
Abstract
Laminae I-III of the spinal dorsal horn contain many inhibitory interneurons that use GABA and/or glycine as a neurotransmitter. Distinct neurochemical populations can be recognised among these cells, and these populations are likely to have differing roles in inhibiting pain or itch. Quantitative studies in rat have shown that inhibitory interneurons account for 25-40% of all neurons in this region. The sst2A receptor is expressed by around half the inhibitory interneurons in laminae I-II, and is associated with particular neurochemically-defined populations. Although much of the work on spinal pain mechanisms has been performed on rat, the mouse is now increasingly used as a model, due to the availability of genetically altered lines. However, quantitative information on the arrangement of interneurons is lacking in the mouse, and it is possible that there are significant species differences in neuronal organisation. In this study, we show that as in the rat, nearly all neurons in laminae I-III that are enriched with glycine also contain GABA, which suggests that GABA-immunoreactivity can be used to identify inhibitory interneurons in this region. These cells account for 26% of the neurons in laminae I-II and 38% of those in lamina III. As in the rat, the sst2A receptor is only expressed by inhibitory interneurons in laminae I-II, and is present on just over half (54%) of these cells. Antibody against the neurokinin 1 receptor was used to define lamina I, and we found that although the receptor was concentrated in this lamina, it was expressed by many fewer cells than in the rat. By estimating the total numbers of neurons in each of these laminae in the L4 segment of the mouse, we show that there are around half as many neurons in each lamina as are present in the corresponding segment of the rat.
Collapse
|
18
|
Zeilhofer HU, Wildner H, Yévenes GE. Fast synaptic inhibition in spinal sensory processing and pain control. Physiol Rev 2012; 92:193-235. [PMID: 22298656 DOI: 10.1152/physrev.00043.2010] [Citation(s) in RCA: 266] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The two amino acids GABA and glycine mediate fast inhibitory neurotransmission in different CNS areas and serve pivotal roles in the spinal sensory processing. Under healthy conditions, they limit the excitability of spinal terminals of primary sensory nerve fibers and of intrinsic dorsal horn neurons through pre- and postsynaptic mechanisms, and thereby facilitate the spatial and temporal discrimination of sensory stimuli. Removal of fast inhibition not only reduces the fidelity of normal sensory processing but also provokes symptoms very much reminiscent of pathological and chronic pain syndromes. This review summarizes our knowledge of the molecular bases of spinal inhibitory neurotransmission and its organization in dorsal horn sensory circuits. Particular emphasis is placed on the role and mechanisms of spinal inhibitory malfunction in inflammatory and neuropathic chronic pain syndromes.
Collapse
|
19
|
Green GM, Dickenson A. GABA-receptor control of the amplitude and duration of the neuronal responses to formalin in the rat spinal cord. Eur J Pain 2012; 1:95-104. [PMID: 15102410 DOI: 10.1016/s1090-3801(97)90067-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/1997] [Accepted: 05/20/1997] [Indexed: 11/16/2022]
Abstract
The GABAergic inhibitory system in the dorsal horn of the spinal cord has been implicated in the modulation of pain, including the control of nociceptive transmission during inflammation. This electrophysiological study examined the effects of the GABAA and GABAB receptor antagonists, bicuculline and CGP35348, on the magnitude and duration of the formalin response. The responses of spinal nociceptive dorsal horn neurones to subcutaneous injection of formalin into the hindpaw in the anaesthetized rat were recorded. Both phases of the formalin response were monitored, and the antagonists were administered either simultaneously with formalin or 50 min after injection of formalin. Bicuculline (50 microg), the GABAA antagonist, administered simultaneously with formalin significantly increased the magnitude of the overall response, especially the second phase, and also abolished the silent interphase period. In addition, 50 min after injection of formalin, bicuculline increased the duration of the second phase in a dose-dependent manner. CGP35348 (250 microg), the GABAB antagonist, administered 50 min after injection of formalin also increased the duration of the second phase significantly, but had no effect on the magnitude of the response or the silent interphase when administered simultaneously with formalin. These results show that GABAA- and GABAB-receptor-mediated inhibitions are involved in controlling the duration of the second phase of the formalin response, and that GABAA-receptor-mediated inhibition also contributes to the manifestation of the silent interphase period and the magnitude of the second phase. Thus, GABA neurones are critical in determining the level and duration of nociceptive information transmitted through the spinal cord during inflammation.
Collapse
Affiliation(s)
- G M Green
- Department of Pharmacology, University College, London, UK
| | | |
Collapse
|
20
|
Kadiri N, Rodeau JL, Schlichter R, Hugel S. Neurotensin inhibits background K+ channels and facilitates glutamatergic transmission in rat spinal cord dorsal horn. Eur J Neurosci 2011; 34:1230-40. [PMID: 21936876 DOI: 10.1111/j.1460-9568.2011.07846.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neurotensin (NT) is a neuropeptide involved in the modulation of nociception. We have investigated the actions of NT on cultured postnatal rat spinal cord dorsal horn (DH) neurons. NT induced an inward current associated with a decrease in membrane conductance in 46% of the neurons and increased the frequency of glutamatergic miniature excitatory synaptic currents in 37% of the neurons. Similar effects were observed in acute slices. Both effects of NT were reproduced by the selective NTS1 agonist JMV449 and blocked by the NTS1 antagonist SR48692 and the NTS1/NTS2 antagonist SR142948A. The NTS2 agonist levocabastine had no effect. The actions of NT persisted after inactivation of G(i/o) proteins by pertussis toxin but were absent after inactivation of protein kinase C (PKC) by chelerythrine or inhibition of the MAPK (ERK1/2) pathway by PD98059. Pre- and postsynaptic effects of NT were insensitive to classical voltage- and Ca(2+) -dependent K(+) channel blockers. The K(+) conductance inhibited by NT was blocked by Ba(2+) and displayed no or little inward rectification, despite the presence of strongly rectifying Ba(2+) -sensitive K(+) conductance in these neurons. This suggested that NT blocked two-pore domain (K2P) background K(+) -channels rather than inwardly rectifying K(+) channels. Zn(2+) ions, which inhibit TRESK and TASK-3 K2P channels, decreased NT-induced current. Our results indicate that in DH neurons NT activates NTS1 receptors which, via the PKC-dependent activation of the MAPK (ERK1/2) pathway, depolarize the postsynaptic neuron and increase the synaptic release of glutamate. These actions of NT might modulate the transfer and the integration of somatosensory information in the DH.
Collapse
Affiliation(s)
- Nabila Kadiri
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de Strasbourg, 21 rue René Descartes, Strasbourg, France
| | | | | | | |
Collapse
|
21
|
Role of the spinal Na+/H+ exchanger in formalin-induced nociception. Neurosci Lett 2011; 501:4-9. [DOI: 10.1016/j.neulet.2011.06.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 06/24/2011] [Accepted: 06/26/2011] [Indexed: 11/18/2022]
|
22
|
Bombardi C, Cozzi B, Nenzi A, Mazzariol S, Grandis A. Distribution of Nitrergic Neurons in the Dorsal Root Ganglia of the Bottlenose Dolphin (Tursiops truncatus). Anat Rec (Hoboken) 2011; 294:1066-73. [DOI: 10.1002/ar.21394] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 03/03/2011] [Accepted: 03/10/2011] [Indexed: 12/19/2022]
|
23
|
|
24
|
Bombardi C, Grandis A, Nenzi A, Giurisato M, Cozzi B. Immunohistochemical Localization of Substance P And Cholecystokinin in the Dorsal Root Ganglia and Spinal Cord of the Bottlenose Dolphin (Tursiops truncatus). Anat Rec (Hoboken) 2010; 293:477-84. [DOI: 10.1002/ar.20975] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Marvizón JCG, Chen W, Murphy N. Enkephalins, dynorphins, and beta-endorphin in the rat dorsal horn: an immunofluorescence colocalization study. J Comp Neurol 2009; 517:51-68. [PMID: 19711397 DOI: 10.1002/cne.22130] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
To characterize neuronal pathways that release opioid peptides in the rat dorsal horn, multiple-label immunohistochemistry, confocal microscopy, and computerized co-localization measures were used to characterize opioid-containing terminals and cells. An antibody that selectively recognized beta-endorphin labeled fibers and neurons in the ventral horn as well as fibers in the lateral funiculus and lamina X, but practically no fibers in the dorsal horn. An anti-enkephalin antibody, which recognized Leu-, Met-, and Phe-Arg-Met-enkephalin, labeled the dorsolateral funiculus and numerous puncta in laminae I-III and V of the dorsal horn. An antibody against Phe-Arg-Met-enkephalin, which did not recognize Leu- and Met-enkephalin, labeled the same puncta. Antibodies against dynorphin and prodynorphin labeled puncta and fibers in laminae I, II, and V, as well as some fibers in the rest of the dorsal horn. Dynorphin and prodynorphin immunoreactivities colocalized in some puncta and fibers, but the prodynorphin antibody additionally labeled cell bodies. There was no co-localization of dynorphin (or prodynorphin) with enkephalin (or Phe-Arg-Met-enkephalin). Enkephalin immunoreactivity did not colocalize with the C-fiber markers calcitonin gene-related peptide (CGRP), substance P, and isolectin B4. In contrast, there was some colocalization of dynorphin and prodynorphin with CGRP and substance P, but not with isolectin B4. Both enkephalin and dynorphin partly colocalized with vesicular glutamate transporter 2, a marker of glutamatergic terminals. The prodynorphin-positive neurons in the dorsal horn were distinct from neurons expressing mu-opioid receptors, neurokinin 1 receptors, and protein kinase C-gamma. These results show that enkephalins and dynorphins are present in different populations of dorsal horn neurons. In addition, dynorphin is present in some C-fibers.
Collapse
Affiliation(s)
- Juan Carlos G Marvizón
- Center for the Neurobiology of Stress, Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA.
| | | | | |
Collapse
|
26
|
Abstract
Peptides released in the spinal cord from the central terminals of nociceptors contribute to the persistent hyperalgesia that defines the clinical experience of chronic pain. Using substance P (SP) and calcitonin gene-related peptide (CGRP) as examples, this review addresses the multiple mechanisms through which peptidergic neurotransmission contributes to the development and maintenance of chronic pain. Activation of CGRP receptors on terminals of primary afferent neurons facilitates transmitter release and receptors on spinal neurons increases glutamate activation of AMPA receptors. Both effects are mediated by cAMP-dependent mechanisms. Substance P activates neurokinin receptors (3 subtypes) which couple to phospholipase C and the generation of the intracellular messengers whose downstream effects include depolarizing the membrane and facilitating the function of AMPA and NMDA receptors. Activation of neurokinin-1 receptors also increases the synthesis of prostaglandins whereas activation of neurokinin-3 receptors increases the synthesis of nitric oxide. Both products act as retrograde messengers across synapses and facilitate nociceptive signaling in the spinal cord. Whereas these cellular effects of CGRP and SP at the level of the spinal cord contribute to the development of increased synaptic strength between nociceptors and spinal neurons in the pathway for pain, the different intracellular signaling pathways also activate different transcription factors. The activated transcription factors initiate changes in the expression of genes that contribute to long-term changes in the excitability of spinal and maintain hyperalgesia.
Collapse
Affiliation(s)
- V S Seybold
- Department of Neuroscience, University of Minnesota, 6-145 Jackson Hall, 321 Church St., S.E., Minneapolis, MN 55455, USA.
| |
Collapse
|
27
|
Jung SJ, Jo SH, Lee S, Oh E, Kim MS, Nam WD, Oh SB. Effects of somatostatin on the responses of rostrally projecting spinal dorsal horn neurons to noxious stimuli in cats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2008; 12:253-8. [PMID: 19967064 DOI: 10.4196/kjpp.2008.12.5.253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Somatostatin (SOM) is a widely distributed peptide in the central nervous system and exerts a variety of hormonal and neural actions. Although SOM is assumed to play an important role in spinal nociceptive processing, its exact function remains unclear. In fact, earlier pharmacological studies have provided results that support either a facilitatory or inhibitory role for SOM in nociception. In the current study, the effects of SOM were investigated using anesthetized cats. Specifically, the responses of rostrally projecting spinal dorsal horn neurons (RPSDH neurons) to different kinds of noxious stimuli (i.e., heat, mechanical and cold stimuli) and to the Adelta-and C-fiber activation of the sciatic nerve were studied. Iontophoretically applied SOM suppressed the responses of RPSDH neurons to noxious heat and mechanical stimuli as well as to C-fiber activation. Conversely, it enhanced these responses to noxious cold stimulus and Adelta-fiber activation. In addition, SOM suppressed glutamate-evoked activities of RPSDH neurons. The effects of SOM were blocked by the SOM receptor antagonist cyclo-SOM. These findings suggest that SOM has a dual effect on the activities of RPSDH neurons; that is, facilitation and inhibition, depending on the modality of pain signaled through them and its action site.
Collapse
Affiliation(s)
- Sung Jun Jung
- Department of Physiology, Kangwon National University College of Medicine, Chunchon 200-701, Korea
| | | | | | | | | | | | | |
Collapse
|
28
|
Ramer MS. Anatomical and functional characterization of neuropil in the gracile fasciculus. J Comp Neurol 2008; 510:283-96. [PMID: 18634004 DOI: 10.1002/cne.21785] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A fundamental organizational principle of the central nervous system is that gray matter is the province of neuronal somata, white matter their processes. However, the rat and primate dorsal columns (archetypal spinal "white matter" tracts) are actually of intermediate character, insofar as they contain a surprisingly prominent neuropil of unknown function. Here I report on the morphology, inputs, projections, and functional properties of these neurons. Small fusiform and larger lentiform neurons are most abundant in the gracile fasciculus of the cervical and lumbar enlargements and are absent from the cuneate fasciculus and corticospinal tract. Many have dendrites that run along the dorsal pia, and, although in transverse sections these neurons appear isolated from the gray matter, they are also connected to area X by varicose and sometimes loosely fasciculated dendrites. These neurons receive neurochemically diverse, compartmentalized synaptic inputs (primary afferent, intrinsic and descending), half express the substance P receptor, and some project supraspinally. Unlike substantia gelatinosa neurons, they do not express protein kinase C gamma. Functionally, they have small receptive fields, which are somatotopically appropriate with respect to their anterior-posterior position along the neuraxis. They respond to innocuous and/or noxious mechanical stimulation of the distal extremities, and some are prone to central sensitization or "windup." Morphologically, neurochemically, and functionally, therefore, these cells most closely resemble neurons in laminae III-VI in the dorsal horn. The proximity of their dorsal dendrites to the pia mater may also reflect an ability to integrate internal (e.g., changes in cerebrospinal fluid compostition) and external (e.g., somatic) stimuli.
Collapse
Affiliation(s)
- Matt S Ramer
- ICORD (International Collaboration on Repair Discoveries), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4.
| |
Collapse
|
29
|
Cuello AC, Priestley JV, Matthews MR. Localization of substance P in neuronal pathways. CIBA FOUNDATION SYMPOSIUM 2008:55-83. [PMID: 6183080 DOI: 10.1002/9780470720738.ch5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The main neuronal systems containing substance P are summarized on the basis of immunohistochemical evidence. The substance P striatonigral projection is one of the most conspicuous of these. Electron microscopic studies using the peroxidase-antiperoxidase technique reveal some heterogeneity in the substance P-immunostained material in the substantia nigra. Immunoreactivity for the peptide is found in terminals establishing both symmetrical and asymmetrical synapses with substantia nigra dendrites. Substance P immunoreactivity in the substantia gelatinosa of the trigeminal nerve and in the skin of the trigeminal territory was found to be depleted after sensory denervation. Electron microscopy showed that in this area of the rat brain substance P-immunoreactive elements are largely associated with dendrites and establish asymmetrical axo-dendritic synapses. Substance P-immunoreactive terminals synapsing with presynaptic dendrites were also observed (i.e. dendrites that themselves are presynaptic to other dendrites). The origin of substance P-containing fibres in the prevertebral ganglia has been investigated in the guinea-pig by combining surgical procedures and immunohistochemistry. Only procedures which disconnected dorsal root ganglia from prevertebral ganglia depleted substance P immunofluorescence in the latter. This substance P-immunoreactive material disappeared after administration of capsaicin. Electron microscopic studies in prevertebral ganglia show that substance P-immunoreactive varicosities establish axodendritic contacts with the sympathetic neurons. These observations provide strong evidence for direct synaptic sensory-autonomic interactions in the prevertebral ganglia involving substance P-containing collaterals of peripheral sensory nerve fibres.
Collapse
|
30
|
Abstract
Substance P is contained within a subpopulation of nociceptive primary sensory neurons that project to the superficial dorsal horn of the spinal cord. Stimulation of the peripheral processes of primary afferent fibres at intensities that activate A delta and C fibres elicits a pronounced release of substance P from the cat spinal cord in vivo. Experiments with the neurotoxins capsaicin and 5,6-dihydroxytryptamine have shown that substance P release from the spinal cord in vivo derives largely from afferent fibres. Intrathecal perfusion of the cat spinal cord with morphine abolishes the nerve-evoked release of substance P while capsaicin produces a dramatic increase in peptide release. Prolonged treatment of rats with capsaicin depletes substance P from the dorsal horn and results in reduced sensitivity to noxious peripheral stimuli. The duration of the somatic action potential recorded from cultured sensory neurons is known to be decreased by enkephalin and is prolonged by capsaicin. The acute effects of both morphine and capsaicin on substance P may be mediated by an interaction with voltage-sensitive ion channels on the sensory neuron. These observations suggest that nociceptive input to the dorsal horn can be regulated by drugs that interact directly with substance P-containing sensory terminals.
Collapse
|
31
|
Hökfelt T, Vincent S, Dalsgaard CJ, Skirboll L, Johansson O, Schultzberg M, Lundberg JM, Rosell S, Pernow B, Jancsó G. Distribution of substance P in brain and periphery and its possible role as a co-transmitter. CIBA FOUNDATION SYMPOSIUM 2008:84-106. [PMID: 6183081 DOI: 10.1002/9780470720738.ch6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Substance P is widely distributed in the nervous system. In brain and spinal cord it may act as a transmitter, for example at the central branches of primary sensory neurons. It may also be released from the sensory nerve endings and is thought to be involved in antidromic vasodilatation and in synaptic transmission in autonomic ganglia. In some central neurons substance P is stored together with 5-hydroxytryptamine and thyrotropin-releasing hormone. These neurons project to the ventral horn of the spinal cord, amongst other places. In another system substance P coexists with a cholecystokinin-like peptide. These neurons are localized in the periaqueductal central grey matter and also project to the spinal cord. Finally, injection of a substance P antagonist into the ventral mesencephalon causes marked morphological changes in neurons that contain dopamine, substance P and gamma-aminobutyric acid (GABA).
Collapse
|
32
|
Roussy G, Dansereau MA, Doré-Savard L, Belleville K, Beaudet N, Richelson E, Sarret P. Spinal NTS1 receptors regulate nociceptive signaling in a rat formalin tonic pain model. J Neurochem 2008; 105:1100-14. [DOI: 10.1111/j.1471-4159.2007.05205.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Mukhida K, Mendez I, McLeod M, Kobayashi N, Haughn C, Milne B, Baghbaderani B, Sen A, Behie LA, Hong M. Spinal GABAergic Transplants Attenuate Mechanical Allodynia in a Rat Model of Neuropathic Pain. Stem Cells 2007; 25:2874-85. [PMID: 17702982 DOI: 10.1634/stemcells.2007-0326] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Injury to the spinal cord or peripheral nerves can lead to the development of allodynia due to the loss of inhibitory tone involved in spinal sensory function. The potential of intraspinal transplants of GABAergic cells to restore inhibitory tone and thus decrease pain behaviors in a rat model of neuropathic pain was investigated. Allodynia of the left hind paw was induced in rats by unilateral L5- 6 spinal nerve root ligation. Mechanical sensitivity was assessed using von Frey filaments. Postinjury, transgenic fetal green fluorescent protein mouse GABAergic cells or human neural precursor cells (HNPCs) expanded in suspension bioreactors and differentiated into a GABAergic phenotype were transplanted into the spinal cord. Control rats received undifferentiated HNPCs or cell suspension medium only. Animals that received either fetal mouse GABAergic cell or differentiated GABAergic HNPC intraspinal transplants demonstrated a significant increase in paw withdrawal thresholds at 1 week post-transplantation that was sustained for 6 weeks. Transplanted fetal mouse GABAergic cells demonstrated immunoreactivity for glutamic acid decarboxylase and GABA that colocalized with green fluorescent protein. Intraspinally transplanted differentiated GABAergic HNPCs demonstrated immunoreactivity for GABA and beta-III tubulin. In contrast, intraspinal transplantation of undifferentiated HNPCs, which predominantly differentiated into astrocytes, or cell suspension medium did not affect any behavioral recovery. Intraspinally transplanted GABAergic cells can reduce allodynia in a rat model of neuropathic pain. In addition, HNPCs expanded in a standardized fashion in suspension bioreactors and differentiated into a GABAergic phenotype may be an alternative to fetal cells for cell-based therapies to treat chronic pain syndromes.
Collapse
Affiliation(s)
- Karim Mukhida
- Cell Restoration Laboratory, Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Dorsal horn NK1-expressing neurons control windup of downstream trigeminal nociceptive neurons. Pain 2007; 137:340-351. [PMID: 17977663 DOI: 10.1016/j.pain.2007.09.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 08/30/2007] [Accepted: 09/19/2007] [Indexed: 11/20/2022]
Abstract
Windup is a progressive, frequency-dependent increase in the excitability of trigeminal and spinal dorsal horn wide dynamic range (WDR) nociceptive neurons to repetitive stimulation of primary afferent nociceptive C-fibers. Superficial dorsal horn neurokinin 1 receptor (NK1R)-expressing neurons were recently shown to regulate sensitization of WDR nociceptive neurons through activation of a defined spino-bulbo-spinal loop. However, the windup of WDR nociceptive neurons was not regulated through this loop. In the present study, we sought to identify the alternative circuit activated by dorsal horn NK1Rs that mediates WDR neuron windup. As a model we used the rat spinal trigeminal nucleus, in which the subnucleus oralis (Sp5O) contains a pool of WDR neurons that receive their nociceptive C-input indirectly via interneurons located in the medullary dorsal horn (MDH). First, we found that intravenous injection of NK1R antagonists (SR140333 and RP67580) produced a reversible inhibition of Sp5O WDR neuron windup. Second, we anatomically identified in the MDH lamina III a subpopulation of NK1R-expressing local interneurons that relay nociceptive information from the MDH to downstream Sp5O neurons. Third, using microinjections of NK1R antagonists during in vivo electrophysiological recordings from Sp5O WDR neurons, we showed that WDR neuron windup depends on activation of NK1Rs located in the MDH laminae I-III. We conclude that, in contrast to central sensitization that is controlled by a spino-bulbo-spinal loop, Sp5O WDR neuron windup is regulated through a local circuit activated by MDH lamina III NK1Rs.
Collapse
|
35
|
Schneider SP, Walker TM. Morphology and electrophysiological properties of hamster spinal dorsal horn neurons that express VGLUT2 and enkephalin. J Comp Neurol 2007; 501:790-809. [PMID: 17299755 DOI: 10.1002/cne.21292] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The excitatory amino acid glutamate mediates transmission at spinal synapses, including those formed by sensory afferent fibers and by intrinsic interneurons. The identity and physiological properties of glutamatergic dorsal horn neurons are poorly characterized despite their importance in spinal sensory circuits. Moreover, many intrinsic spinal glutamatergic synapses colocalize the opioid peptide enkephalin (ENK), but the neurons to which they belong are yet to be identified. Therefore, we used immunohistochemistry and confocal microscopy to investigate expression of the VGLUT2 vesicular glutamate transporter, an isoform reported in nonprimary afferent spinal synapses, and ENK in electrophysiologically identified neurons of hamster spinal dorsal horn. VGLUT2 immunoreactivity was localized in restricted fashion to axon varicosities of neurons recorded from laminae II-V, although the occurrence of immunolabeling in individual varicosities varied widely between cells (39 +/- 36%, n = 31 neurons). ENK colocalized with VGLUT2 in up to 77% of varicosities (17 +/- 21%, n = 21 neurons). The majority of neurons expressing VGLUT2 and/or ENK had axons with dense local terminations or projections consistent with propriospinal functions. VGLUT2 and ENK labeling were not correlated with cellular morphology, intrinsic membrane properties, firing patterns, or synaptic responses to sensory afferent stimulation. However, VGLUT2 expression was significantly higher in neurons with depolarized resting membrane potential. The results are new evidence for a population of dual-function dorsal horn interneurons that might provide another mechanism for limiting excitation within dorsal horn circuits during periods of strong sensory activation.
Collapse
Affiliation(s)
- Stephen P Schneider
- Department of Physiology and Neuroscience Program, Michigan State University, E. Lansing, Michigan 48824-3320, USA.
| | | |
Collapse
|
36
|
Rahman W, Sikandar S, Sikander S, Suzuki R, Hunt SP, Dickenson AH. Superficial NK1 expressing spinal dorsal horn neurones modulate inhibitory neurotransmission mediated by spinal GABA(A) receptors. Neurosci Lett 2007; 419:278-83. [PMID: 17493751 DOI: 10.1016/j.neulet.2007.04.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 04/18/2007] [Accepted: 04/19/2007] [Indexed: 11/24/2022]
Abstract
Lamina 1 projection neurones which express the NK1 receptor (NK1R+) drive a descending serotonergic pathway from the brainstem that enhances spinal dorsal horn neuronal activity via the facilitatory spinal 5-HT3 receptor. Selective destruction of these cells via lumbar injection of substance P-saporin (SP-SAP) attenuates pain behaviours, including mechanical and thermal hypersensitivity, which are mirrored by deficits in the evoked responses of lamina V-VI wide dynamic range (WDR) neurones to noxious stimuli. To assess whether removing the origin of this facilitatory spino-bulbo-spinal loop results in alterations in GABAergic spinal inhibitory systems, the effects of spinal bicuculline, a selective GABA(A) receptor antagonist, on the evoked neuronal responses to electrical (Abeta-, Adelta-, C-fibre, post-discharge and Input) and mechanical (brush, prod and von Frey (vF) 8 and 26 g) stimuli were measured in SAP and SP-SAP groups. In the SAP control group, bicuculline produced a significant dose related facilitation of the electrically evoked Adelta-, C-fibre, post-discharge and input neuronal responses. The evoked mechanical (prod, vF8 g and 26 g) responses were also significantly increased. Brush evoked neuronal responses in these animals were enhanced but did not reach significance. This facilitatory effect of bicuculline, however, was lost in the SP-SAP treated group. The generation of intrinsic GABAergic transmission in the spinal cord appears dependent on NK1 bearing neurons, yet despite the loss of GABAergic inhibitory controls after SP-SAP treatment, the net effect is a decrease in spinal cord excitability. Thus activation of these cells predominantly drives facilitation.
Collapse
Affiliation(s)
- Wahida Rahman
- Department of Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Neurotensin (NT) can produce a profound analgesia or enhance pain responses, depending on the circumstances. Recent evidence suggests that this may be due to a dose-dependent recruitment of distinct populations of pain modulatory neurons. NT knockout mice display defects in both basal nociceptive responses and stress-induced analgesia. Stress-induced antinociception is absent in these mice and instead stress induces a hyperalgesic response, suggesting that NT plays a key role in the stress-induced suppression of pain. Cold water swim stress results in increased NT mRNA expression in hypothalamic regions known to project to periaqueductal gray, a key region involved in pain modulation. Thus, stress-induced increases in NT signaling in pain modulatory regions may be responsible for the transition from pain facilitation to analgesia. This review focuses on recent advances that have provided insights into the role of NT in pain modulation.
Collapse
Affiliation(s)
- Paul R Dobner
- Department of Molecular Genetics and Microbiology, Program in Neuroscience, University of Massachusetts Medical School, 55 Lake Ave. North, Worcester, MA 01655, USA.
| |
Collapse
|
38
|
Hilton KJ, Bateson AN, King AE. Neurotrophin-induced preprotachykinin-A gene promoter modulation in organotypic rat spinal cord culture. J Neurochem 2006; 98:690-9. [PMID: 16893415 DOI: 10.1111/j.1471-4159.2006.03910.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
To study regulation of the preprotachykinin-A gene promoter, we utilised a biolistic gene transfer protocol to deliver a DNA construct that incorporates a portion of the preprotachykinin-A gene promoter and an enhanced green fluorescent protein reporter gene into neonatal rat spinal cord organotypic slices. The ability of the neurokinin-1 receptor agonist [Sar9,Met(O2)11]-substance P, nerve growth factor and brain derived neurotrophic factor to modulate positively preprotachykinin-A gene promoter construct activity, as indicated by de novo enhanced green fluorescent protein expression, was determined. Treatment of organotypic slices with [Sar9, Met(O2)11]-substance P (10 microm, P < 0.05), nerve growth factor (200 ng/mL, P < 0.001) or brain derived neurotrophic factor (200 ng/mL, P < 0.02) significantly increased the proportion of cytomegaloviral promoter-DsRed transfected cells (used to visualise total transfected cells) that co-expressed enhanced green fluorescent protein. The distribution of enhanced green fluorescent protein/DsRed-positive neurones across spinal laminae was broadly in line with the known distribution of spinal Trk and neurokinin-1 receptors. These data suggest a modulated activity of the preprotachykinin-A gene promoter in spinal neurones in vitro by substance P and/or neurotrophins. The functional consequences of such transcriptional changes within central peptidergic circuitry and their relevance to chronic pain are considered.
Collapse
Affiliation(s)
- Kathryn J Hilton
- Institute of Membrane and Systems Biology, University of Leeds, Leeds, UK
| | | | | |
Collapse
|
39
|
Chiba Y, Shimada A, Satoh M, Saitoh Y, Kawamura N, Hanai A, Keino H, Ide Y, Shimizu T, Hosokawa M. Sensory system-predominant distribution of leukotriene A4 hydrolase and its colocalization with calretinin in the mouse nervous system. Neuroscience 2006; 141:917-927. [PMID: 16716527 DOI: 10.1016/j.neuroscience.2006.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2005] [Revised: 04/05/2006] [Accepted: 04/06/2006] [Indexed: 10/24/2022]
Abstract
Leukotriene B4 is a potent lipid mediator, which has been identified as a potent proinflammatory and immunomodulatory compound. Although there has been robust evidence indicating that leukotriene B4 is synthesized in the normal brain, detailed distribution and its functions in the nervous system have been unclear. To obtain insight into the possible neural function of leukotriene B4, we examined the immunohistochemical distribution of leukotriene A4 hydrolase, an enzyme catalyzing the final and committed step in leukotriene B4 biosynthesis, in the mouse nervous system. Immunoreactivity for leukotriene A4 hydrolase showed widespread distribution with preference to the sensory-associated structures; i.e. neurons in the olfactory epithelium and vomeronasal organ, olfactory glomeruli, possibly amacrine cells, neurons in the ganglion cell layer and three bands in the inner plexiform layer of the retina, axons in the optic nerve and tract up to the superior colliculus, inner and outer hair cells and the spiral ganglion cells in the cochlea, vestibulocochlear nerve bundle, spinal trigeminal tract, and lamina II of the spinal cord. Double immunofluorescence staining demonstrated that most of the leukotriene A4-hydrolase-immunopositive neurons coexpressed calretinin, a calcium-binding protein in neurons. The ubiquitous distribution of leukotriene A4 hydrolase was in sharp contrast with the distribution of leukotriene C4 synthase [Shimada A, Satoh M, Chiba Y, Saitoh Y, Kawamura N, Keino H, Hosokawa M, Shimizu T (2005) Highly selective localization of leukotriene C4 synthase in hypothalamic and extrahypothalamic vasopressin systems of mouse brain. Neuroscience 131:683-689] which was confined to the hypothalamic and extrahypothalamic vasopressinergic neurons. These results suggest that leukotriene B4 may exert some neuromodulatory function mainly in the sensory nervous system, in concert with calretinin.
Collapse
Affiliation(s)
- Y Chiba
- Department of Pathology, Institute for Developmental Research, Aichi Human Service Center, 713-8 Kamiya-cho, Kasugai, Aichi 480-0392, Japan
| | - A Shimada
- Department of Pathology, Institute for Developmental Research, Aichi Human Service Center, 713-8 Kamiya-cho, Kasugai, Aichi 480-0392, Japan; Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Corporation, Japan.
| | - M Satoh
- Department of Pathology, Institute for Developmental Research, Aichi Human Service Center, 713-8 Kamiya-cho, Kasugai, Aichi 480-0392, Japan; Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Corporation, Japan
| | - Y Saitoh
- Department of Pathology, Institute for Developmental Research, Aichi Human Service Center, 713-8 Kamiya-cho, Kasugai, Aichi 480-0392, Japan
| | - N Kawamura
- Department of Pathology, Institute for Developmental Research, Aichi Human Service Center, 713-8 Kamiya-cho, Kasugai, Aichi 480-0392, Japan
| | - A Hanai
- Department of Pathology, Institute for Developmental Research, Aichi Human Service Center, 713-8 Kamiya-cho, Kasugai, Aichi 480-0392, Japan
| | - H Keino
- Department of Pathology, Institute for Developmental Research, Aichi Human Service Center, 713-8 Kamiya-cho, Kasugai, Aichi 480-0392, Japan
| | - Y Ide
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - T Shimizu
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Corporation, Japan
| | - M Hosokawa
- Department of Pathology, Institute for Developmental Research, Aichi Human Service Center, 713-8 Kamiya-cho, Kasugai, Aichi 480-0392, Japan
| |
Collapse
|
40
|
Sarret P, Esdaile MJ, Perron A, Martinez J, Stroh T, Beaudet A. Potent spinal analgesia elicited through stimulation of NTS2 neurotensin receptors. J Neurosci 2006; 25:8188-96. [PMID: 16148226 PMCID: PMC6725526 DOI: 10.1523/jneurosci.0810-05.2005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Intrathecal administration of the neuropeptide neurotensin (NT) was shown previously to exert antinociceptive effects in a variety of acute spinal pain paradigms including hotplate, tail-flick, and writhing tests. In the present study, we sought to determine whether some of these antinociceptive effects might be elicited via stimulation of low-affinity NTS2 receptors. We first established, using immunoblotting and immunohistochemical techniques, that NTS2 receptors were extensively associated with putative spinal nociceptive pathways, both at the level of the dorsal root ganglia and of the superficial layers of the dorsal horn of the spinal cord. We then examined the effects of intrathecal administration of NT or selective NTS2 agonists on acute thermal pain. Both NT and NTS2 agonists, levocabastine and Boc-Arg-Arg-Pro-Tyrpsi(CH2NH)Ile-Leu-OH (JMV-431), induced dose-dependent antinociceptive responses in the tail-flick test. The effects of levocabastine and of JMV-431 were unaffected by coadministration of the NTS1-specific antagonist 2-[(1-(7-chloro-4-quinolinyl)-5-(2,6-dimethoxy-phenyl)pyrazol-3-yl)carboxylamino]tricyclo)3.3.1.1.(3.7))-decan-2-carboxylic acid (SR48692), confirming that they were NTS2 mediated. In contrast, the antinociceptive effects of NT were partly abolished by coadministration of SR48692, indicating that NTS1 and NTS2 receptors were both involved. These results suggest that NTS2 receptors play a role in the regulation of spinal nociceptive inputs and that selective NTS2 agonists may offer new avenues for the treatment of acute pain.
Collapse
Affiliation(s)
- Philippe Sarret
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | | | | | | | | | | |
Collapse
|
41
|
Fukuda T, Watanabe K, Hisano S, Toyooka H. Licking and C-Fos Expression in the Dorsal Horn of the Spinal Cord After the Formalin Test. Anesth Analg 2006; 102:811-4. [PMID: 16492833 DOI: 10.1213/01.ane.0000197690.19075.bd] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We investigated whether c-fos expression in the dorsal horn is affected by licking in the formalin test. Thirty adult Sprague-Dawley rats were divided into 5 groups of 6 rats each: a free condition control (Free Cont) group, formalin test under free condition (Free F-test) group, scrub stimulation under free condition (Free Scrub) group, restrained condition control (Restricted Cont) group, and formalin test under restrained condition (Restricted F-test) group. Animals in the three free condition groups and two restricted groups were put in a clear plastic chamber and a restraining chamber, respectively. Ten percent formalin was injected into the left rear paw in the Free and Restricted F-test groups. Animals in the Free Scrub group were scrubbed on the left rear paw with a wet cotton swab. The Free Cont, Restricted Cont, and Free Scrub groups showed little c-fos expression. The number of c-fos positive cells in the ipsilateral surface dorsal horn of the Restricted F-test group was significantly less than that of the Free F-test group (P < 0.05). The results indicated that the licking action increased c-fos expression of the lumbar dorsal horn in the formalin test.
Collapse
Affiliation(s)
- Taeko Fukuda
- Department of Anesthesiology, Institute of Clinical Medicine; Tsukuba University, Tsukuba-city, Ibaraki, Japan.
| | | | | | | |
Collapse
|
42
|
Todd AJ. Chapter 6 Anatomy and neurochemistry of the dorsal horn. HANDBOOK OF CLINICAL NEUROLOGY 2006; 81:61-76. [PMID: 18808828 DOI: 10.1016/s0072-9752(06)80010-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
43
|
Fukuoka T, Noguchi K. Chapter 15 Expression Patterns and Histological Aspects of TRP Channels in Sensory Neurons. CURRENT TOPICS IN MEMBRANES 2006. [DOI: 10.1016/s1063-5823(06)57014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
44
|
Hughes DI, Mackie M, Nagy GG, Riddell JS, Maxwell DJ, Szabó G, Erdélyi F, Veress G, Szucs P, Antal M, Todd AJ. P boutons in lamina IX of the rodent spinal cord express high levels of glutamic acid decarboxylase-65 and originate from cells in deep medial dorsal horn. Proc Natl Acad Sci U S A 2005; 102:9038-43. [PMID: 15947074 PMCID: PMC1157050 DOI: 10.1073/pnas.0503646102] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2005] [Indexed: 12/28/2022] Open
Abstract
Presynaptic inhibition of primary muscle spindle (group Ia) afferent terminals in motor nuclei of the spinal cord plays an important role in regulating motor output and is produced by a population of GABAergic axon terminals known as P boutons. Despite extensive investigation, the cells that mediate this control have not yet been identified. In this work, we use immunocytochemistry with confocal microscopy and EM to demonstrate that P boutons can be distinguished from other GABAergic terminals in the ventral horn of rat and mouse spinal cord by their high level of the glutamic acid decarboxylase (GAD) 65 isoform of GAD. By carrying out retrograde labeling from lamina IX in mice that express green fluorescent protein under the control of the GAD65 promoter, we provide evidence that the cells of origin of the P boutons are located in the medial part of laminae V and VI. Our results suggest that P boutons represent the major output of these cells within the ventral horn and are consistent with the view that presynaptic inhibition of proprioceptive afferents is mediated by specific populations of interneurons. They also provide a means of identifying P boutons that will be important in studies of the organization of presynaptic control of Ia afferents.
Collapse
Affiliation(s)
- D I Hughes
- Spinal Cord Group, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Immunohistochemical distribution of neuropeptide Y and neuropeptide Y Y1 receptor in the rat lumbar spinal cord. ACTA VET-BEOGRAD 2005. [DOI: 10.2298/avb0506395n] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
46
|
Doly S, Fischer J, Brisorgueil MJ, Vergé D, Conrath M. Pre- and postsynaptic localization of the 5-HT7 receptor in rat dorsal spinal cord: Immunocytochemical evidence. J Comp Neurol 2005; 490:256-69. [PMID: 16082681 DOI: 10.1002/cne.20667] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Several lines of evidence indicate that 5-HT7 receptors are involved in pain control at the level of the spinal cord, although their mechanism of action is poorly understood. To provide a morphological basis for understanding the action of 5-HT on this receptor, we performed an immunocytochemical study of 5-HT7 receptor distribution at the lumbar level. 5-HT7 immunolabelling is localized mainly in the two superficial laminae of the dorsal horn and in small and medium-sized dorsal root ganglion cells, which is consistent with a predominant role in nociception. In addition, moderate labelling is found in the lumbar dorsolateral nucleus (Onuf's nucleus), suggesting involvement in the control of pelvic floor muscles. Electron microscopic examination of the dorsal horn revealed three main localizations: 1) a postsynaptic localization on peptidergic cell bodies in laminae I-III and in numerous dendrites; 2) a presynaptic localization on unmyelinated and thin myelinated peptidergic fibers (two types of axon terminals are observed, large ones, presumably of primary afferent origin, and smaller ones partially from intrinsic cells; this presynaptic labelling represents 60% and 22% of total labelling in laminae I and II, respectively); and 3) 16.9% of labelling in lamina I and 19.8% in lamina II are observed in astrocytes. Labeled astrocytes are either intermingled with neuronal elements or make astrocytic "feet" on blood vessels. In dendrites, the labelling is localized on synaptic differentiations, suggesting that 5-HT may act synaptically on the 5-HT7 receptor. This localization is compared with other 5-HT receptor localizations, and their physiological consequences are discussed.
Collapse
Affiliation(s)
- Stéphane Doly
- Neurobiologie des Signaux Intercellulaires, Centre National de la Recherche Scientifique (Unité Mixte de Recherche 7101), Université Pierre et Marie Curie, 7 Quai Saint Bernard, 75252 Paris cedex 05, France
| | | | | | | | | |
Collapse
|
47
|
Hilton KJ, Bateson AN, King AE. A model of organotypic rat spinal slice culture and biolistic transfection to elucidate factors that drive the preprotachykinin-A promoter. ACTA ACUST UNITED AC 2004; 46:191-203. [PMID: 15464207 DOI: 10.1016/j.brainresrev.2004.07.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2004] [Indexed: 11/25/2022]
Abstract
The tachykinin substance P (SP) is a neuropeptide that is expressed in some nociceptive primary sensory afferents and in discrete populations of spinal cord neurons. Expression of spinal SP and the preprotachykinin-A (PPT-A) gene that encodes SP exhibits plasticity in response to conditions such as peripheral inflammation but the mechanisms that regulate expression are poorly understood. We have developed a spinal cord organotypic culture system that is suitable for the analysis of PPT-A gene promoter activity following biolistic transfection of recombinant DNA constructs. Spinal cord organotypic slices showed good viability over a 7-day culture period. Immunostaining for phenotypic markers such as NeuN and beta-III tubulin demonstrated preservation of neurons and their structure, although there was evidence of axotomy-induced down-regulation of NeuN in certain neuronal populations. Neurokinin-1 receptor (NK-1R) immunostaining in laminae I and III was similar to that seen in acute slices. Biolistic transfection was used to introduce DNA constructs into neurons of these organotypic cultures. Following transfection with a construct in which expression of enhanced green fluorescent protein (EGFP) is controlled by the PPT-A promoter, we showed that induction of neuronal activity by administration of a forskolin analogue/high K(+) (10 microM/10 mM) for 24 h resulted in a fourfold increase in the number of EGFP-positive cells. Similarly, a twofold increase was obtained after treatment with the NK-1R-specific agonist [Sar(9),Met (O(2))(11)]-substance P (10 microM). These data demonstrate the usefulness of this model to study physiological and pharmacological factors relevant to nociceptive processing that can modulate PPT-A promoter activity.
Collapse
Affiliation(s)
- Kathryn J Hilton
- School of Biomedical Sciences, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK
| | | | | |
Collapse
|
48
|
Heinke B, Ruscheweyh R, Forsthuber L, Wunderbaldinger G, Sandkühler J. Physiological, neurochemical and morphological properties of a subgroup of GABAergic spinal lamina II neurones identified by expression of green fluorescent protein in mice. J Physiol 2004; 560:249-66. [PMID: 15284347 PMCID: PMC1665197 DOI: 10.1113/jphysiol.2004.070540] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The processing of sensory, including nociceptive, information in spinal dorsal horn is critically modulated by spinal GABAergic neurones. For example, blockade of spinal GABA(A) receptors leads to pain evoked by normally innocuous tactile stimulation (tactile allodynia) in rats. GABAergic dorsal horn neurones have been classified neurochemically and morphologically, but little is known about their physiological properties. We used a transgenic mouse strain coexpressing enhanced green fluorescent protein (EGFP) and the GABA-synthesizing enzyme GAD67 to investigate the properties of a subgroup of GABAergic neurones. Immunohistochemistry showed that EGFP-expressing neurones accounted for about one-third of the GABAergic neurones in lamina II of the spinal dorsal horn. They constituted a neurochemically rather heterogeneous group where 27% of the neurones coexpressed glycine, 23% coexpressed parvalbumin and 14% coexpressed neuronal nitric oxide synthase (nNOS). We found almost no expression of protein kinase Cgamma (PKCgamma) in EGFP-labelled neurones but a high costaining with PKCbetaII (78%). The whole-cell patch-clamp technique was used to intracellularly label and physiologically characterize EGFP- and non-EGFP-expressing lamina II neurones in spinal cord slices. Sixty-two per cent of the EGFP-labelled neurones were islet cells while the morphology of non-EGFP-labelled neurones was more variable. When stimulated by rectangular current injections, EGFP-expressing neurones typically exhibited an initial bursting firing pattern while non-EGFP-expressing neurones were either of the gap or the delayed firing type. EGFP-expressing neurones received a greater proportion of monosynaptic input from the dorsal root, especially from primary afferent C-fibres. In conclusion, EGFP expression defined a substantial but, with respect to the measured parameters, rather inhomogeneous subgroup of GABAergic neurones in spinal lamina II. These results provide a base to elucidate the functional roles of this subgroup of GABAergic lamina II neurones, e.g. for nociception.
Collapse
Affiliation(s)
- Bernhard Heinke
- Centre for Brain Research, Department of Neurophysiology, Medical University Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | | | | | | | | |
Collapse
|
49
|
Woda A, Blanc O, Voisin DL, Coste J, Molat JL, Luccarini P. Bidirectional modulation of windup by NMDA receptors in the rat spinal trigeminal nucleus. Eur J Neurosci 2004; 19:2009-16. [PMID: 15090028 DOI: 10.1111/j.0953-816x.2004.03328.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Activation of afferent nociceptive pathways is subject to activity-dependent plasticity, which may manifest as windup, a progressive increase in the response of dorsal horn nociceptive neurons to repeated stimuli. At the cellular level, N-methyl-d-aspartate (NMDA) receptor activation by glutamate released from nociceptive C-afferent terminals is currently thought to generate windup. Most of the wide dynamic range nociceptive neurons that display windup, however, do not receive direct C-fibre input. It is thus unknown where the NMDA mechanisms for windup operate. Here, using the Sprague-Dawley rat trigeminal system as a model, we anatomically identify a subpopulation of interneurons that relay nociceptive information from the superficial dorsal horn where C-fibres terminate, to downstream wide dynamic range nociceptive neurons. Using in vivo electrophysiological recordings, we show that at the end of this pathway, windup was reduced (24 +/- 6%, n = 7) by the NMDA receptor antagonist AP-5 (2.0 fmol) and enhanced (62 +/- 19%, n = 12) by NMDA (1 nmol). In contrast, microinjections of AP-5 (1.0 fmol) within the superficial laminae increased windup (83 +/- 44%, n = 9), whereas NMDA dose dependently decreased windup (n = 19). These results indicate that NMDA receptor function at the segmental level depends on their precise location in nociceptive neural networks. While some NMDA receptors actually amplify pain information, the new evidence for NMDA dependent inhibition of windup we show here indicates that, simultaneously, others act in the opposite direction. Working together, the two mechanisms may provide a fine tuning of gain in pain.
Collapse
Affiliation(s)
- Alain Woda
- INSERM E216 Neurobiologie de la douleur trigéminale, Faculté de Chirurgie Dentaire, 11 boulevard Charles de Gaulle, 63000 Clermont-Ferrand, France
| | | | | | | | | | | |
Collapse
|
50
|
Immunohistochemical localizations of Orexin-A and the neurokinin 1 receptor in the rat spinal cord. ACTA VET-BEOGRAD 2004. [DOI: 10.2298/avb0404311n] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|