1
|
Güleçyüz MF, Macha K, Pietschmann MF, Ficklscherer A, Sievers B, Roßbach BP, Jansson V, Müller PE. Allogenic Myocytes and Mesenchymal Stem Cells Partially Improve Fatty Rotator Cuff Degeneration in a Rat Model. Stem Cell Rev Rep 2019; 14:847-859. [PMID: 29855989 DOI: 10.1007/s12015-018-9829-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE Rotator cuff (RC) tears result not only in functional impairment but also in RC muscle atrophy, muscle fattening and eventually to muscle fibrosis. We hypothesized that allogenic bone marrow derived mesenchymal stem cells (MSC) and myocytes can be utilized to improve the rotator cuff muscle fattening and increase the atrophied muscle mass in a rat model. METHODS The right supraspinatus (SSP) tendons of 105 inbred rats were detached and muscle fattening was provoked over 4 weeks; the left side remained untouched (control group). The animals (n = 25) of the output group were euthanized after 4 weeks for reference purposes. The SSP-tendon of one group (n = 16) was left unoperated to heal spontaneously. The SSP-tendons of the remaining 64 rats (4 groups with n = 16) were repaired with transosseous sutures. One group received a saline solution injection in the SSP muscle belly, two other groups received 5 × 106 allogenic myocytes and 5 × 106 allogenic MSC injections from donor rats, respectively, and one group received no additional treatment. After 4 weeks of healing, the supraspinatus muscle mass was compared quantitatively and histologically to all the treated groups and to the untreated contralateral side. RESULTS In the end of the experiments at week 8, the myocyte and MCS treated groups showed a significantly higher muscle mass with 0.2322 g and 0.2257 g, respectively, in comparison to the output group (0.1911 g) at week 4 with p < 0.05. There was no statistical difference between the repaired, treated, or spontaneous healing groups at week 8. Supraspinatus muscle mass of all experimental groups of the right side was significantly lower compared to the untreated contralateral muscle mass. CONCLUSION This defect model shows that the injection of allogenic mycocytes and MSC in fatty infiltrated SSP muscles is better than no treatment and can partially improve the SSP muscle belly fattening. Nevertheless, a full restoration of the degenerated and fattened rotator cuff muscle to its original condition is not possible using myocytes and MSC in this model.
Collapse
Affiliation(s)
- Mehmet F Güleçyüz
- Department of Orthopaedics, Physical Medicine and Rehabilitation, Medical Center of the University of Munich (Ludwig-Maximilians-University), Marchioninistrasse 15, 81377, Munich, Germany.
| | - Konstanze Macha
- Department of Orthopaedics and Traumatology, Klinikum Landsberg am Lech, Bgm.-Dr.-Hartmann-Straße 50, 86899, Landsberg am Lech, Germany
| | - Matthias F Pietschmann
- Department of Orthopaedics, Physical Medicine and Rehabilitation, Medical Center of the University of Munich (Ludwig-Maximilians-University), Marchioninistrasse 15, 81377, Munich, Germany
| | | | - Birte Sievers
- Numares AG, Am Biopark 9, 93053, Regensburg, Germany
| | - Björn P Roßbach
- Department of Orthopaedics and Traumatology, Asklepios Klinik St. Georg, Lohmühlenstr. 5, 20099, Hamburg, Germany
| | - Volkmar Jansson
- Department of Orthopaedics, Physical Medicine and Rehabilitation, Medical Center of the University of Munich (Ludwig-Maximilians-University), Marchioninistrasse 15, 81377, Munich, Germany
| | - Peter E Müller
- Department of Orthopaedics, Physical Medicine and Rehabilitation, Medical Center of the University of Munich (Ludwig-Maximilians-University), Marchioninistrasse 15, 81377, Munich, Germany
| |
Collapse
|
2
|
Buffelli M, Tognana E, Cangiano A, Busetto G. Activity-dependent vs. neurotrophic modulation of acetylcholine receptor expression: Evidence from rat soleus and extensor digitorum longus muscles confirms the exclusive role of activity. Eur J Neurosci 2018; 47:1474-1481. [PMID: 29904972 DOI: 10.1111/ejn.14020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/11/2018] [Accepted: 06/04/2018] [Indexed: 11/29/2022]
Abstract
Evoked electrical muscle activity suppresses the transcription of mRNAs for acetylcholine receptors in extrajunctional myonuclei. Muscle denervation or disuse releases such inhibition and extrajunctional receptors appear. However, in soleus muscles paralysed with nerve-applied tetrodotoxin, a restricted perijunctional region has been described where myonuclei remain inhibited, a finding attributed to nerve-derived trophic factor(s). Here, we reinvestigate extrajunctional acetylcholine receptor expression in soleus and extensor digitorum longus muscles up to 90 days after denervation or up to 20 days of disuse, to clarify the role of trophic factors, if any. The perijunctional region of soleus muscles strongly expressed acetylcholine receptors during the first 2-3 weeks of denervation. After 2-3 months, this expression had disappeared. No perijunctional expression was seen after paralysis by tetrodotoxin or botulinum toxin A. In contrast, the extensor digitorum longus never displayed suppressed perijunctional acetylcholine receptor expression after any treatment, suggesting that it is an intrinsic property of soleus muscles. Soleus denervation only transiently removed the suppression, and its presence in long-term denervated soleus muscles contradicts any contribution from nerve-derived trophic factor(s). In conclusion, our results confirm that evoked electrical activity is the physiological factor controlling the expression of acetylcholine receptors in the entire extrajunctional membrane of skeletal muscles.
Collapse
Affiliation(s)
- Mario Buffelli
- Department of Neurosciences Biomedicine and Movement Sciences, Section of Physiology and Psychology, University of Verona, Verona, Italy.,National Institute of Neuroscience, Verona, Italy
| | - Enrico Tognana
- Department of Neurosciences Biomedicine and Movement Sciences, Section of Physiology and Psychology, University of Verona, Verona, Italy
| | - Alberto Cangiano
- Department of Neurosciences Biomedicine and Movement Sciences, Section of Physiology and Psychology, University of Verona, Verona, Italy.,National Institute of Neuroscience, Verona, Italy
| | - Giuseppe Busetto
- Department of Neurosciences Biomedicine and Movement Sciences, Section of Physiology and Psychology, University of Verona, Verona, Italy.,National Institute of Neuroscience, Verona, Italy
| |
Collapse
|
3
|
De Gasperi R, Hamidi S, Harlow LM, Ksiezak-Reding H, Bauman WA, Cardozo CP. Denervation-related alterations and biological activity of miRNAs contained in exosomes released by skeletal muscle fibers. Sci Rep 2017; 7:12888. [PMID: 29038428 PMCID: PMC5643439 DOI: 10.1038/s41598-017-13105-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 09/20/2017] [Indexed: 02/06/2023] Open
Abstract
Exosomes are vesicles released by many eukaryotic cells; their cargo includes proteins, mRNA and microRNA (miR) that can be transferred to recipient cells and regulate cellular processes in an autocrine or paracrine manner. While cells of the myoblast lineage secrete exosomes, it is not known whether skeletal muscle fibers (myofibers) release exosomes. In this study, we found that cultured myofibers release nanovesicles that have bilamellar membranes and an average size of 60-130 nm, contain typical exosomal proteins and miRNAs and are taken up by C2C12 cells. miR-133a was found to be the most abundant myomiR in these vesicles while miR-720 was most enriched in exosomes compared to parent myofibers. Treatment of NIH 3T3 cells with myofiber-derived exosomes downregulated the miR-133a targets proteins Smarcd1 and Runx2, confirming that these exosomes have biologically relevant effects on recipient cells. Denervation resulted in a marked increase in miR-206 and reduced expression of miRs 1, 133a, and 133b in myofiber-derived exosomes. These findings demonstrate that skeletal muscle fibers release exosomes which can exert biologically significant effects on recipient cells, and that pathological muscle conditions such as denervation induce alterations in exosomal miR profile which could influence responses to disease states through autocrine or paracrine mechanisms.
Collapse
Affiliation(s)
- Rita De Gasperi
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sayyed Hamidi
- Medical Service, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Lauren M Harlow
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Hanna Ksiezak-Reding
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - William A Bauman
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, USA
- Medical Service, James J. Peters VA Medical Center, Bronx, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christopher P Cardozo
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, USA.
- Medical Service, James J. Peters VA Medical Center, Bronx, NY, USA.
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pharmacologic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
4
|
Affiliation(s)
- Terje Lømo
- Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway;
| |
Collapse
|
5
|
Talbert EE, Guttridge DC. Impaired regeneration: A role for the muscle microenvironment in cancer cachexia. Semin Cell Dev Biol 2015; 54:82-91. [PMID: 26385617 DOI: 10.1016/j.semcdb.2015.09.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/11/2015] [Indexed: 12/17/2022]
Abstract
While changes in muscle protein synthesis and degradation have long been known to contribute to muscle wasting, a body of literature has arisen which suggests that regulation of the satellite cell and its ensuing regenerative program are impaired in atrophied muscle. Lessons learned from cancer cachexia suggest that this regulation is simply not a consequence, but a contributing factor to the wasting process. In addition to satellite cells, evidence from mouse models of cancer cachexia also suggests that non-satellite progenitor cells from the muscle microenvironment are also involved. This chapter in the series reviews the evidence of dysfunctional muscle repair in multiple wasting conditions. Potential mechanisms for this dysfunctional regeneration are discussed, particularly in the context of cancer cachexia.
Collapse
Affiliation(s)
- Erin E Talbert
- Department of Molecular Virology, Immunology, and Medical Genetics, Human Cancer Genetics Program, and the Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Denis C Guttridge
- Department of Molecular Virology, Immunology, and Medical Genetics, Human Cancer Genetics Program, and the Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
6
|
Schisandrae Fructus Supplementation Ameliorates Sciatic Neurectomy-Induced Muscle Atrophy in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:872428. [PMID: 26064425 PMCID: PMC4443785 DOI: 10.1155/2015/872428] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 04/20/2015] [Indexed: 01/20/2023]
Abstract
The objective of this study was to assess the possible beneficial skeletal muscle preserving effects of ethanol extract of Schisandrae Fructus (EESF) on sciatic neurectomy- (NTX-) induced hindlimb muscle atrophy in mice. Here, calf muscle atrophy was induced by unilateral right sciatic NTX. In order to investigate whether administration of EESF prevents or improves sciatic NTX-induced muscle atrophy, EESF was administered orally. Our results indicated that EESF dose-dependently diminished the decreases in markers of muscle mass and activity levels, and the increases in markers of muscle damage and fibrosis, inflammatory cell infiltration, cytokines, and apoptotic events in the gastrocnemius muscle bundles are induced by NTX. Additionally, destruction of gastrocnemius antioxidant defense systems after NTX was dose-dependently protected by treatment with EESF. EESF also upregulated muscle-specific mRNAs involved in muscle protein synthesis but downregulated those involved in protein degradation. The overall effects of 500 mg/kg EESF were similar to those of 50 mg/kg oxymetholone, but it showed more favorable antioxidant effects. The present results suggested that EESF exerts a favorable ameliorating effect on muscle atrophy induced by NTX, through anti-inflammatory and antioxidant effects related to muscle fiber protective effects and via an increase in protein synthesis and a decrease in protein degradation.
Collapse
|
7
|
The need to more precisely define aspects of skeletal muscle regeneration. Int J Biochem Cell Biol 2014; 56:56-65. [PMID: 25242742 DOI: 10.1016/j.biocel.2014.09.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/04/2014] [Accepted: 09/08/2014] [Indexed: 12/11/2022]
Abstract
A more precise definition of the term 'skeletal muscle regeneration' is required to reduce confusion and misconceptions. In this paper the term is used only for events that follow myofibre necrosis, to result in myogenesis and new muscle formation: other key events include early inflammation and revascularisation, and later fibrosis and re-innervation. The term 'muscle regeneration' is sometimes used casually for situations that do not involve myonecrosis; such as restoration of muscle mass by hypertrophy after atrophy, and other forms of damage to muscle tissue components. These situations are excluded from the definition in this paper which is focussed on mammalian muscles with the long-term aim of clinical translation to enhance new muscle formation after acute or chronic injury or during surgery to replace whole muscles. The paper briefly outlines the cellular events involved in myogenesis during development and post-natal muscle growth, discusses the role of satellite cells in mature normal muscles, and the likely incidence of myofibre necrosis/regeneration in healthy ageing mammals (even when subjected to exercise). The importance of the various components of regeneration is outlined to emphasise that problems in each of these aspects can influence overall new muscle formation; thus care is needed for correct interpretation of altered kinetics. Various markers used to identify regenerating myofibres are critically discussed and, since these can all occur in other conditions, caution is required for accurate interpretation of these cellular events. Finally, clinical situations are outlined where there is a need to enhance skeletal muscle regeneration: these include acute and chronic injuries or transplantation with bioengineering to form new muscles, therapeutic approaches to muscular dystrophies, and comment on proposed stem cell therapies to reduce age-related loss of muscle mass and function. This article is part of a directed issue entitled: Regenerative Medicine: the challenge of translation.
Collapse
|
8
|
Lomo T. The Response of Denervated Muscle to Long-Term Stimulation (1985, Revisited here in 2014). Eur J Transl Myol 2014; 24:3294. [PMID: 26913126 PMCID: PMC4749002 DOI: 10.4081/ejtm.2014.3294] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In 1985, at a meeting in Abano, I presented results showing that direct stimulation of skeletal muscles with appropriate stimulus patterns prevents the effects of denervation on non-junctional properties of muscle fibers. Hence, it appeared unnecessary to postulate that unknown nerve-derived trophic factors control such properties, as posited by the (anterograde) neurotrophic hypothesis. Here I discuss this conclusion in the light of what we know today, particularly with respect to the many lines of evidence that were then taken to support the trophic hypothesis, but which today have alternative interpretations consistent with control by evoked impulse activity. Despite much effort, no one has yet identified any nerve-derived factor consistent with the neurotrophic hypothesis. Reports favoring the existence of neurotrophic factors were numerous before 2000. Now they have essentially disappeared from the literature, including original research papers, textbooks and handbooks, suggesting that the hypothesis is no longer arguable. Thus, the results that I presented in our paper in 1985 seem to have held up rather well.
Collapse
Affiliation(s)
- Terje Lomo
- Institute of Basic Medical Sciences, University of Oslo , Norway
| |
Collapse
|
9
|
The skeletal muscle arachidonic acid cascade in health and inflammatory disease. Nat Rev Rheumatol 2014; 10:295-303. [PMID: 24468934 DOI: 10.1038/nrrheum.2014.2] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Muscle atrophy and weakness are often observed in patients with chronic inflammatory diseases, and are the major clinical features of the autoimmune myopathies, polymyositis and dermatomyositis. A general understanding of the pathogenesis of muscle atrophy and the impaired muscle function associated with chronic inflammatory diseases has not been clarified. In this context, arachidonic acid metabolites, such as the prostaglandin and leukotriene subfamilies, are of interest because they contribute to immune and nonimmune processes. Accumulating evidence suggests that prostaglandins and leukotrienes are involved in causing muscular pain and inflammation, and also in myogenesis and the repair of muscles. In this Review, we summarize novel findings that implicate prostaglandins and leukotrienes in the muscle atrophy and weakness that occur in inflammatory diseases of the muscles, with a focus on inflammatory myopathies. We discuss the role of the arachidonic acid cascade in skeletal muscle growth and function, and individual metabolites as potential therapeutic targets for the treatment of inflammatory muscle diseases.
Collapse
|
10
|
Higashino K, Matsuura T, Suganuma K, Yukata K, Nishisho T, Yasui N. Early changes in muscle atrophy and muscle fiber type conversion after spinal cord transection and peripheral nerve transection in rats. J Neuroeng Rehabil 2013; 10:46. [PMID: 23687941 PMCID: PMC3668998 DOI: 10.1186/1743-0003-10-46] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 03/25/2013] [Indexed: 11/10/2022] Open
Abstract
Background Spinal cord transection and peripheral nerve transection cause muscle atrophy and muscle fiber type conversion. It is still unknown how spinal cord transection and peripheral nerve transection each affect the differentiation of muscle fiber type conversion mechanism and muscle atrophy. The aim of our study was to evaluate the difference of muscle weight change, muscle fiber type conversion, and Peroxisome proliferator-activated receptor-γ coactivatior-1α (PGC-1α) expression brought about by spinal cord transection and by peripheral nerve transection. Methods Twenty-four Wistar rats underwent surgery, the control rats underwent a laminectomy; the spinal cord injury group underwent a spinal cord transection; the denervation group underwent a sciatic nerve transection. The rats were harvested of the soleus muscle and the TA muscle at 0 week, 1 week and 2 weeks after surgery. Histological examination was assessed using hematoxylin and eosin (H&E) staining and immunofluorescent staing. Western blot was performed with 3 groups. Results Both sciatic nerve transection and spinal cord transection caused muscle atrophy with the effect being more severe after sciatic nerve transection. Spinal cord transection caused a reduction in the expression of both sMHC protein and PGC-1α protein in the soleus muscle. On the other hand, sciatic nerve transection produced an increase in expression of sMHC protein and PGC-1α protein in the soleus muscle. The results of the expression of PGC-1α were expected in other words muscle atrophy after sciatic nerve transection is less than after spinal cord transection, however muscle atrophy after sciatic nerve transection was more severe than after spinal cord transection. Conclusion In the conclusion, spinal cord transection diminished the expression of sMHC protein and PGC-1α protein in the soleus muscle. On the other hand, sciatic nerve transection enhanced the expression of sMHC protein and PGC-1α protein in the soleus muscle.
Collapse
|
11
|
Teraoka M, Hato N, Takahashi H, Komobuchi H, Sawai N, Okada M, Hakuba N. Myogenin expression in facial muscle following damage to the facial nerve. Acta Otolaryngol 2012; 132:783-7. [PMID: 22668131 DOI: 10.3109/00016489.2011.653671] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSION Gene analysis of facial muscle may be a promising way to detect denervation of facial muscle, helping to determine the prognosis of a facial palsy early in its progression. OBJECTIVES In the treatment of intratemporal facial palsy, early diagnosis of neural damage is important in deciding about therapeutic modalities. In this study, we investigated the relationship between the severity of facial palsy and the level of myogenin expressed in the facial muscle. METHODS The animals were divided into two groups, depending on whether the facial nerve was resected or compressed. Expression of myogenin mRNA was examined using real-time PCR and in situ hybridization of the facial muscle following the nerve damage. RESULTS Increased expression of myogenin was observed in the nerve resection group, while no such increase was seen in the nerve compression group. In situ hybridization indicated that myogenin was expressed exclusively in satellite cells around the denervated muscle fibers.
Collapse
Affiliation(s)
- Masato Teraoka
- Department of Otolaryngology, Ehime University School of Medicine, Shitsukawa, To-on City, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Dumont N, Frenette J. Macrophages protect against muscle atrophy and promote muscle recovery in vivo and in vitro: a mechanism partly dependent on the insulin-like growth factor-1 signaling molecule. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:2228-35. [PMID: 20304951 DOI: 10.2353/ajpath.2010.090884] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hindlimb unloading and reloading are characterized by a major loss of muscle force and are associated with classic leukocyte infiltration during recovery from muscle atrophy. Macrophages act as a cellular cornerstone by playing both pro- and anti-inflammatory roles during muscle recovery from atrophy. In the present study, we investigated the role of macrophages in muscle atrophy and regrowth using in vivo and in vitro models. Mice depleted in monocytes/macrophages and submitted to a hindlimb unloading and reloading protocol experienced a significant delay in muscle force recovery compared with matched placebo mice at 7 and 14 days after reloading. Furthermore, an in vitro myotube/macrophage coculture showed that anti-inflammatory macrophages, which contain apoptotic neutrophils and express low levels of cyclooxygenase-2, completely prevented the loss of protein content and the myotube atrophy observed after 2 days in low serum medium. The presence of macrophages also protected against the decrease in myosin heavy chain content in myotubes exposed to low serum medium for 1 day. Interestingly, the addition of an anti-IGF-1 antibody to the coculture significantly decreased the ability of macrophages to protect against myotube atrophy and myosin heavy chain loss after 2 days in low serum medium. These results clearly indicate that macrophages and, more precisely, the release of IGF-1 by macrophages, play an important role in recovery from muscle atrophy.
Collapse
Affiliation(s)
- Nicolas Dumont
- Centre Hospitalier Universitaire de Québec-Centre de Recherche du Centre Hospitalier de l'Université Laval, Faculté de Médecine, Université Laval, Quebec City, Quebec, Canada
| | | |
Collapse
|
13
|
Caron AZ, Drouin G, Desrosiers J, Trensz F, Grenier G. A novel hindlimb immobilization procedure for studying skeletal muscle atrophy and recovery in mouse. J Appl Physiol (1985) 2009; 106:2049-59. [DOI: 10.1152/japplphysiol.91505.2008] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Skeletal muscle atrophy is a serious concern for patients afflicted by limb restriction due to surgery (e.g., arthrodesis), several articular pathologies (e.g., arthralgia), or simply following cast immobilization. To study the molecular events involved in this immobilization-induced debilitating condition, a convenient mouse model for atrophy is lacking. Here we provide a new immobilization procedure exploiting the normal flexion of the mouse hindlimb using a surgical staple to fix the ventral part of the foot to the distal part of the calf. Histological analysis revealed that our approach induced significant skeletal muscle atrophy by reducing the myofiber size of the tibialis anterior (TA) muscle by 36% compared with the untreated contralateral TA within a few days postimmobilization. Two molecular markers for atrophy, atrogin-1/muscle atrophy F-box (atrogin-1/MAFbx) and muscle ring finger 1 (MuRF-1) mRNAs, were significantly upregulated by 1.9- and 5.9-fold, respectively. Interestingly, our model also revealed the presence of an early inflammatory process during atrophy, characterized by the mRNA upregulation of TNF-α, IL-1, and IL-6 (1.9-, 2.4-, and 3.4-fold, respectively) simultaneously with the upregulation of the common leukocyte marker CD45 (6.1-fold). Moreover, muscle rapidly recovered on remobilization, an event associated with significantly increased levels of uncoupling protein-3 and peroxisome proliferator-activated receptor γ coactivator-1α mRNA, key components of prooxidative muscle metabolism. This model offers unexpected new insights into the molecular events involved in immobilization atrophy.
Collapse
|
14
|
Sacheck JM, Hyatt JPK, Raffaello A, Jagoe RT, Roy RR, Edgerton VR, Lecker SH, Goldberg AL. Rapid disuse and denervation atrophy involve transcriptional changes similar to those of muscle wasting during systemic diseases. FASEB J 2007; 21:140-55. [PMID: 17116744 DOI: 10.1096/fj.06-6604com] [Citation(s) in RCA: 436] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We previously identified a common set of genes, termed atrogenes, whose expression is coordinately induced or suppressed in muscle during systemic wasting states (fasting, cancer cachexia, renal failure, diabetes). To determine whether this transcriptional program also functions during atrophy resulting from loss of contractile activity and whether atrogene expression correlates with the rate of muscle weight loss, we used cDNA microarrays and RT-polymerase chain reaction to analyze changes in mRNA from rat gastrocnemius during disuse atrophy induced by denervation or spinal cord isolation. Three days after Den or SI, the rate of muscle weight loss was greatest, and 78% of the atrogenes identified during systemic catabolic states were induced or repressed. Of particular interest were the large inductions of key ubiquitin ligases, atrogin-1 (35- to 44-fold) and MuRF1 (12- to 22-fold), and the suppression of PGC-1alpha and PGC-1beta coactivators (15-fold). When atrophy slowed (day 14), the expression of 92% of these atrogenes returned toward basal levels. At 28 days, the atrophy-inducing transcription factor, FoxO1, was still induced and may be important in maintaining the "atrophied" state. Thus, 1) the atrophy associated with systemic catabolic states and following disuse involves similar transcriptional adaptations; and 2) disuse atrophy proceeds through multiple phases corresponding to rapidly atrophying and atrophied muscles that involve distinct transcriptional patterns.
Collapse
Affiliation(s)
- Jennifer M Sacheck
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Ogawa T, Nikawa T, Furochi H, Kosyoji M, Hirasaka K, Suzue N, Sairyo K, Nakano S, Yamaoka T, Itakura M, Kishi K, Yasui N. Osteoactivin upregulates expression of MMP-3 and MMP-9 in fibroblasts infiltrated into denervated skeletal muscle in mice. Am J Physiol Cell Physiol 2005; 289:C697-707. [PMID: 16100390 DOI: 10.1152/ajpcell.00565.2004] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we examined pathophysiological roles of osteoactivin, a functionally unknown type I membrane glycoprotein, in mouse skeletal muscle atrophied by denervation (sciatic neurectomy). Denervation increased the amounts of osteoactivin, vimentin, matrix metalloproteinase-3 (MMP-3), and MMP-9 in mouse gastrocnemius muscle. Interestingly, immunohistochemical analysis revealed that vimentin, MMP-3, and MMP-9 were mainly present in fibroblast-like cells infiltrated into denervated mouse gastrocnemius muscle, whereas osteoactivin was expressed in the sarcolemma of myofibers adjacent to the fibroblast-like cells. On the basis of these findings, we reasoned that osteoactivin in myocytes was involved in activation of the infiltrated fibroblasts. To address this issue, we examined effects of osteoactivin on expression of MMPs in fibroblasts in vitro and in vivo. Overexpression of osteoactivin in NIH-3T3 fibroblasts induced expression of MMP-3, but not in mouse C(2)C(12) myoblasts, indicating that osteoactivin might functionally target fibroblasts. Treatment with recombinant mouse osteoactivin increased the amounts of collagen type I, MMP-3, and MMP-9 in mouse NIH-3T3 fibroblasts. The upregulated expression of these fibroblast marker proteins was significantly inhibited by heparin, but not by an integrin inhibitor, indicating that a heparin-binding motif in the extracellular domain might be an active site of osteoactivin. In osteoactivin-transgenic mice, denervation further enhanced expression of MMP-3 and MMP-9 in fibroblasts infiltrated into gastrocnemius muscle, compared with wild-type mice. Our present results suggest that osteoactivin might function as an activator for fibroblasts infiltrated into denervated skeletal muscles and play an important role in regulating degeneration/regeneration of extracellular matrix.
Collapse
Affiliation(s)
- Takayuki Ogawa
- Dept. of Orthopaedics, The University of Tokushima School of Medicine, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Mochizuki Y, Ojima K, Uezumi A, Masuda S, Yoshimura K, Takeda S. Participation of bone marrow-derived cells in fibrotic changes in denervated skeletal muscle. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:1721-32. [PMID: 15920157 PMCID: PMC1602421 DOI: 10.1016/s0002-9440(10)62482-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In denervated skeletal muscle, mononuclear interstitial cells accumulate in the perisynaptic regions before fibrotic change occurs. These cells are currently considered to be fibroblasts that originate from muscle tissue. However, when we denervated hind limbs of GFP-bone marrow chimeric mice by excising the sciatic nerve unilaterally, many bone marrow-derived cells (BM-DCs) infiltrated the interstitial spaces and accumulated in the perisynaptic regions, peaking 14 days after denervation. They accounted for nearly one-half of the increase in mononuclear interstitial cells. Although BM-DCs did not incorporate into satellite cells, immunohistochemical and FACS analyses revealed that BM-DCs were both CD45 and CD11b positive, indicating that they were of macrophage/monocyte lineage. BrdU staining showed inactive proliferation of BM-DCs. Reverse transcriptase-polymerase chain reaction of mononuclear cells isolated by FACS revealed that BM-DCs did not express type I collagen or tenascin-C; however, they did express transforming growth factor-beta1, suggesting that they regulate the fibrotic process. In contrast, muscle tissue-derived interstitial cells expressed type I collagen and tenascin-C, suggesting that these populations were the final effectors of fibrosis. These findings identify elementary targets that may regulate the migration, homing, differentiation, and function of BM-DCs, leading to amelioration of the excessive fibrosis of denervated skeletal muscle.
Collapse
Affiliation(s)
- Yasushi Mochizuki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi-cho, Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Borisov AB, Dedkov EI, Carlson BM. Differentiation of activated satellite cells in denervated muscle following single fusions in situ and in cell culture. Histochem Cell Biol 2005; 124:13-23. [PMID: 16001203 DOI: 10.1007/s00418-005-0012-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2005] [Indexed: 11/26/2022]
Abstract
Satellite cells represent a cellular source of regeneration in adult skeletal muscle. It remains unclear why a large pool of stem myoblasts in denervated muscle does not compensate for the loss of muscle mass during post-denervation atrophy. In this study, we present evidence that satellite cells in long-term denervated rat muscle are able to activate synthesis of contractile proteins after single fusions in situ. This process of early differentiation leads to formation of abnormally diminutive myotubes. The localization of such dwarf myotubes beneath the intact basal lamina on the surface of differentiated muscle fibers shows that they form by fusion of neighboring satellites or by the progeny of a single satellite cell following one or two mitotic divisions. We demonstrated single fusions of myoblasts using electron microscopy, immunocytochemical labeling and high resolution confocal digital imaging. Sequestration of nascent myotubes by the rapidly forming basal laminae creates a barrier that limits further fusions. The recruitment of satellite cells in the formation of new muscle fibers results in a progressive decrease in their local densities, spatial separation and ultimate exhaustion of the myogenic cell pool. To determine whether the accumulation of aberrant dwarf myotubes is explained by the intrinsic decline of myogenic properties of satellite cells, or depends on their spatial separation and the environment in the tissue, we studied the fusion of myoblasts isolated from normal and denervated muscle in cell culture. The experiments with a culture system demonstrated that the capacity of myoblasts to synthesize contractile proteins without serial fusions depended on cell density and the availability of partners for fusion. Satellite cells isolated from denervated muscle and plated at fusion-permissive densities progressed through the myogenic program and actively formed myotubes, which shows that their myogenic potential is not considerably impaired. The results of this study suggest that under conditions of denervation, progressive spatial separation and confinement of many satellite cells within the endomysial tubes of atrophic muscle fibers and progressive interstitial fibrosis are the important factors that prevent their normal differentiation. Our findings also provide an explanation of why denervated muscle partially and temporarily is able to restore its functional capacity following injury and regeneration: the release of satellite cells from their sublaminal location provides the necessary space for a more active regenerative process.
Collapse
Affiliation(s)
- Andrei B Borisov
- Division of Pediatric Cardiology, Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109-0616, USA.
| | | | | |
Collapse
|
18
|
Borisov AB, Dedkov EI, Carlson BM. Abortive myogenesis in denervated skeletal muscle: differentiative properties of satellite cells, their migration, and block of terminal differentiation. ACTA ACUST UNITED AC 2005; 209:269-79. [PMID: 15761724 DOI: 10.1007/s00429-004-0429-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2004] [Indexed: 11/30/2022]
Abstract
Little is known about the biological properties of myogenic satellite cells during post-denervation muscle atrophy. The present study investigated the differentiative capacity of satellite cells and their involvement in the compensatory regenerative process in long-term denervated rat muscle. Electron microscopy and immunocytochemical labeling of muscle tissue 1-18 months following denervation demonstrated that despite activation of satellite cells, myogenesis in denervated muscle is abortive and does not lead to the formation of normal muscle fibers. Small sizes, poor development of the contractile system in newly formed denervated myotubes, and the absence of satellite cells on the surface indicate that their differentiation typically does not progress to terminal stages. Many immature myotubes degenerate, and others survive but are embedded in a collagen lattice near their parent fibers. Interestingly, newly formed myotubes located on the surface of parent muscle fibers beneath the basal lamina typically did not contain developed myofibrils. This suggests that the contacts of daughter and parent muscle fibers block myofibrillogenesis. Assembly of sarcomeres in most cases occurs following complete spatial separation of daughter and parent muscle fibers. Another manifestation of the involvement of myogenic precursors in abortive myogenesis is the formation of clusters of underdeveloped branching myotubes surrounded by a common basal lamina. We found that myoblasts can also fuse directly with differentiated muscle fibers. The presence of satellite cells near the openings in the basal lamina and in the interstitial space indicates that myogenic precursors can migrate through the basal lamina and form myotubes at a distance from parent fibers. Our data may explain why long-term denervated skeletal muscle has a poor capacity for regeneration and functional restoration.
Collapse
Affiliation(s)
- Andrei B Borisov
- Division of Pediatric Cardiology, Department of Pediatrics and Communicable Diseases, University of Michigan, Room 8200, MSRB III, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
19
|
Shavlakadze T, Winn N, Rosenthal N, Grounds MD. Reconciling data from transgenic mice that overexpress IGF-I specifically in skeletal muscle. Growth Horm IGF Res 2005; 15:4-18. [PMID: 15701567 DOI: 10.1016/j.ghir.2004.11.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Revised: 11/01/2004] [Accepted: 11/01/2004] [Indexed: 11/26/2022]
Abstract
Transgenic mice that overexpress insulin-like growth factor-1 (IGF-I) specifically in skeletal muscle have generated much information about the role of this factor for muscle growth and remodelling and provide insight for therapeutic applications of IGF-I for different pathological states and ageing. However, difficulties arise when attempting to critically compare the significance of data obtained in vivo by using different genetically engineered mouse lines and various experimental models. Complications arise due to complexity of the IGF-I system, since multiple transcripts of the IGF-I gene encode different isoforms generated by alternate promoter usage, differential splicing and post-translational modification, and how IGF-I gene expression relates to its diverse autocrine, paracrine and endocrine modes of action in vivo has still to be elucidated. In addition, there are problems related to specification of the exact IGF-I isoform used, expression patterns of the promoters, and availability of the transgene product under different experimental conditions. This review discusses the factors that must be considered when reconciling data from cumulative studies on IGF-I in striated muscle growth and differentiation using genetically modified mice. Critical evaluation of the literature focuses specifically on: (1) the importance of detailed information about the IGF-I isoforms and their mode of action (local, systemic or both); (2) expression pattern and strength of the promoters used to drive transgenic IGF-I in skeletal muscle cells (mono and multi-nucleated); (3) local compared with systemic action of the transgene product and possible indirect effects of transgenic IGF-I due to upregulation of other genes within skeletal muscle; (4) re-interpretation of these results in light of the most recent approaches to the dissection of IGF-I function. Full understanding of these complex in vivo issues is essential, not only for skeletal muscle but for many other tissues, in order to effectively extend observations derived from transgenic studies into potential clinical situations.
Collapse
Affiliation(s)
- Thea Shavlakadze
- School of Anatomy and Human Biology, the University of Western Australia, Crawley, Perth, Western Australia 6009, Australia.
| | | | | | | |
Collapse
|
20
|
Camillo AC, Rocha RDC, Chopard RP. Structural and microvascular study of soleous muscle of Wistar rats after section of the sciatic nerve. ARQUIVOS DE NEURO-PSIQUIATRIA 2004; 62:835-8. [PMID: 15476079 DOI: 10.1590/s0004-282x2004000500018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is not well established yet the relationship between the activation of satellite cells and skeletal muscle microcirculation after surgical denervation. Trough scanning and transmission electron microscopy methods, we studied comparatively the alterations of the soleus muscle in Wistar rats after surgical denervation. Our results evidenced the activation, duplication and migration of satellite cells to the interior of muscle fibers coexisting with a raise in the capillary density characterized by a higher number of anastomosis and capillary sprouts. We conclude that the microcirculation plays a key role in the regenerative process.
Collapse
Affiliation(s)
- Ana Cristina Camillo
- Department of Anatomy, Biomedical Sciences Institute, University of São Paulo, São Paulo SP, Brazil
| | | | | |
Collapse
|
21
|
Ishido M, Kami K, Masuhara M. In vivo expression patterns of MyoD, p21, and Rb proteins in myonuclei and satellite cells of denervated rat skeletal muscle. Am J Physiol Cell Physiol 2004; 287:C484-93. [PMID: 15084472 DOI: 10.1152/ajpcell.00080.2004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
MyoD, a myogenic regulatory factor, is rapidly expressed in adult skeletal muscles in response to denervation. However, the function(s) of MyoD expressed in denervated muscle has not been adequately elucidated. In vitro, it directly transactivates cyclin-dependent kinase inhibitor p21 (p21) and retinoblastoma protein (Rb), a downstream target of p21. These factors then act to regulate cell cycle withdrawal and antiapoptotic cell death. Using immunohistochemical approaches, we characterized cell types expressing MyoD, p21, and Rb and the relationship among these factors in the myonucleus of denervated muscles. In addition, we quantitatively examined the time course changes and expression patterns among distinct myofiber types of MyoD, p21, and Rb during denervation. Denervation induced MyoD expression in myonuclei and satellite cell nuclei, whereas p21 and Rb were found only in myonuclei. Furthermore, coexpression of MyoD, p21, and Rb was induced in the myonucleus, and quantitative analysis of these factors determined that there was no difference among the three myofiber types. These observations suggest that MyoD may function in myonuclei in response to denervation to protect against denervation-induced apoptosis via perhaps the activation of p21 and Rb, and function of MyoD expressed in satellite cell nuclei may be negatively regulated. The present study provides a molecular basis to further understand the function of MyoD expressed in the myonuclei and satellite cell nuclei of denervated skeletal muscle.
Collapse
Affiliation(s)
- Minenori Ishido
- Graduate School of Sport and Exercise Science, Osaka University of Health and Sport Science, Asashiro-dai 1-1, Kumatori-cho, Sennan-gun, Osaka 590-0496, Japan.
| | | | | |
Collapse
|
22
|
Maier A, Bornemann A. M-cadherin transcription in satellite cells from normal and denervated muscle. Am J Physiol Cell Physiol 2004; 286:C708-12. [PMID: 14761888 DOI: 10.1152/ajpcell.00369.2003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Satellite cells (SC) in adult muscle are quiescent in the G0 phase of the cell cycle. In the present study we determined whether SC after denervation upregulate M-cadherin, an adhesion molecule that is upregulated with differentiation and fusion. We also monitored primary cultures of SC from denervated muscle for expression of the transcription factors of the MyoD family to determine whether SC from denervated muscle can be activated in vitro. Hindlimb muscles of rats were denervated under anesthesia, and rats were killed after 2-28 days. The SC of the denervated limbs were pooled and either assessed for M-cadherin mRNA by using real-time RT-PCR or cultured in vitro. The cultures were processed for RT-PCR or immunofluorescence for expression of the transcription factors of the MyoD family. Hindlimb muscles of M-cadherin knockout mice were denervated under anesthesia, mice were killed after 2-28 days, and cells were stained for beta-galactosidase activity by X-gal histochemistry. In vitro, primary SC cultures from rat muscle denervated for 2-28 days expressed transcripts of myf5, MyoD, myogenin, and MRF4 as SC from normal innervated muscle. In vivo, M-cadherin transcription was not upregulated in SC from denervated rat muscle when compared with normal muscle. Moreover, beta-galactosidase activity was not detected in denervated mouse muscle. The finding that SC do not upregulate M-cadherin after denervation supports the notion that they remain in the G(0) phase of the cell cycle in vivo. However, the cells retain the capacity to pass through the proliferative and differentiative program when robustly stimulated to do so in vitro.
Collapse
Affiliation(s)
- Annette Maier
- Institute of Brain Research, University of Tübingen, D-72076 Tübingen, Germany
| | | |
Collapse
|
23
|
Dedkov EI, Borisov AB, Wernig A, Carlson BM. Aging of skeletal muscle does not affect the response of satellite cells to denervation. J Histochem Cytochem 2003; 51:853-63. [PMID: 12810836 DOI: 10.1177/002215540305100701] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Satellite cells (SCs) are the main source of new fibers in regenerating skeletal muscles and the key contributor to extra nuclei in growing fibers during postnatal development. Aging results in depletion of the SC population and in the reduction of its proliferative activity. Although it has been previously determined that under conditions of massive fiber death in vivo the regenerative potential of SCs is not impaired in old muscle, no studies have yet tested whether advanced age is a factor that may restrain the response of SCs to muscle denervation. The present study is designed to answer this question, comparing the changes of SC numbers in tibialis anterior (TA) muscles from young (4 months) and old (24 months) WI/HicksCar rats after 2 months of denervation. Immunostaining with antibodies against M-cadherin and NCAM was used to detect and count the SCs. The results demonstrate that the percentages of both M-cadherin- and NCAM-positive SCs (SC/Fibers x 100) in control TA muscles from young rats (5.6 +/- 0.5% and 1.4 +/- 0.2%, respectively) are larger than those in old rats (2.3 +/- 0.3% and 0.5 +/- 0.1%, respectively). At the same time, in 2-month denervated TA muscles the percentages of M-cadherin and NCAM positive SC are increased and reach a level that is comparable between young (16.2 +/- 0.9% and 7.5 +/- 0.5%, respectively) and old (15.9 +/- 0.7% and 10.1 +/- 0.5%, respectively) rats. Based on these data, we suggest that aging does not repress the capacity of SC to become activated and grow in the response to muscle denervation.
Collapse
Affiliation(s)
- Eduard I Dedkov
- Department of Cell and Developmental Biology, 4643 Medical Sciences II Building, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
24
|
Sakakima H, Kawamata S, Kai S, Ozawa J, Matsuura N. Effects of short-term denervation and subsequent reinnervation on motor endplates and the soleus muscle in the rat. ARCHIVES OF HISTOLOGY AND CYTOLOGY 2001; 63:495-506. [PMID: 11201208 DOI: 10.1679/aohc.63.495] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The rat sciatic nerve was locally frozen, and changes in the nerve, motor endplates, and the soleus muscle were examined for up to 6 weeks by light and electron microscopy. The wet weights of denervated soleus muscles compared with contralateral values progressively declined to a minimum at 2 weeks after injury (60.7 +/- 2.5%) and began to reverse following 3 weeks. The sciatic nerve thoroughly degenerated after freezing. However, numerous regenerated myelinated and thin nerve fibers were observed at 3 weeks. They were considerably enlarged but still smaller than normal counterparts at 6 weeks postoperatively. Nerve terminals containing synaptic vesicles of endplates disappeared at day 1 and mostly reappeared at 3 weeks (about 70% of the endplates). All endplates examined were reinnervated at 4, 5, and 6 weeks. On the other hand, postsynaptic folds of muscle fibers seemed to be only slightly influenced by denervation or reinnervation. Ultrastructural alterations of myofibrils, in particular the loss of register, immediately appeared after denervation, spread progressively, peaked at 2 weeks, ameliorated following reinnervation, and became significantly normalized at 6 weeks after freezing. The proportion of type II fibers in the soleus muscle similary showed an increase and a decrease with a short delay in response to denervation and reinnervation, respectively. This study clearly demonstrated that the nerve supply affects the ultrastructural integrity of skeletal muscles. In addition, changes in the endplates and the soleus muscle evaluated in this study after short-term denervation are largely reversible following reinnervation.
Collapse
Affiliation(s)
- H Sakakima
- Institute of Health Sciences, Faculty of Medicine, Hiroshima University, Japan
| | | | | | | | | |
Collapse
|
25
|
Abstract
The muscle-specific helix-loop-helix (HLH) transcription factors myoD, myogenin, MRF4, and myf-5 are called the muscle regulatory factor family (MRF). Levels of MRFs are strongly regulated by muscle electrical activity and are thought to control downstream genes that are important for muscle phenotype such as the acetylcholine receptor (AChR) and possibly genes connected to muscle metabolic properties. The MRFs interact with ubiquitously expressed HLH factors such as E-proteins and Id-proteins to form heterodimers. In the present paper, we report the effects of paralysis obtained by nerve impulse block with tetrodotoxin (TTX) and denervation on messenger ribonucleic acid (mRNA) levels for Id-1, E47, myogenin, AChR alpha-subunit and beta-actin. Both Id-1 and E47 showed twofold increases in absence of nerve evoked electrical activity. These changes in the ubiquitously expressed HLH factors might have important functional implications for downstream gene expression, but in comparison, myogenin mRNA was increased 10-fold. We conclude that myogenin and the other muscle-specific MRFs remain the transcription factors with the strongest activity dependence that has so far been described in muscle.
Collapse
Affiliation(s)
- H Carlsen
- Department of Neurophysiology, University of Oslo, Norway
| | | |
Collapse
|
26
|
Abstract
The mitotic activity in muscles of growing rats and the effect of denervation were studied by means of continuous infusion of 5-bromo-2-deoxyuridine (BRDU). Denervated muscles after 10 weeks contained 20 to 60% fewer muscle nuclei than normal; BRDU labeled about 25% of the nuclei of normal soleus and extensor digitorum longus (EDL) and of denervated EDL muscles but only 5% in the denervated soleus muscle. Labeled nuclei persisted in denervated but not in normal muscles. After the main growth period, the turnover of myonuclei was at most 1 to 2% per week. The behavior of connective tissue nuclei was similar to that in muscle fibers. Infusion of BRDU had no effect on contractile properties. It is suggested that the exceptionally rapid atrophy of the denervated rat soleus associated with loss of satellite cells was due to loss of myonuclei and differentiation and fusion of satellite cells. The cause may possibly be that the phase of postdenervation fibrillation is shorter than in other muscles.
Collapse
Affiliation(s)
- H Schmalbruch
- Department of Medical Physiology, Division of Neurophysiology, University of Copenhagen, The Panum Institute, Blegdamsvej 3 c, DK 2200 Copenhagen N, Denmark.
| | | |
Collapse
|
27
|
Nnodim JO. Quantitative study of the effects of denervation and castration on the levator ani muscle of the rat. THE ANATOMICAL RECORD 1999; 255:324-33. [PMID: 10411399 DOI: 10.1002/(sici)1097-0185(19990701)255:3<324::aid-ar8>3.0.co;2-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The levator ani muscle (LA) of the rat is highly androgen-sensitive and, like all skeletal muscles, deteriorates structurally and functionally when denervated. In order to elucidate the interplay of neural and endocrine influences, the separate and combined effects of denervation and castration on myofiber cross-sectional area and nuclear populations were quantitatively studied. In one group of 4-month-old male rats (A), the LA was denervated. Another group (B) was surgically castrated and a third group (C) was both denervated and castrated. The control rats (D) remained both gonad- and nerve-intact. After two months, the LA was obtained for myofiber and nuclear enumeration, cross-sectional area and satellite cell frequency determination. In the denervated muscle of gonad-intact rats (Group A), myofiber cross-sectional area was markedly diminished (265.84+/-11.38 microm2; compared with controls [Group D]: 1519.98+/-79.41 microm2; P < 0.05). Satellite cell nuclei, as a percentage of total sublaminar nuclei (i.e., satellite cell ratio), increased significantly (4.26%, from a control value of 1.91%). Castration alone (Group B) resulted in pronounced myofiber atrophy (mean cross-sectional area: 754.03+/-89.63 microm2) but had no significant effect on satellite cell ratio (2.36%). The combination of castration and denervation (Group C) elicited the same degree of myofiber atrophy as denervation alone (Group A) but had no significant impact on satellite cell ratio. Instead, the nuclear count per myofiber declined to about a third of the control level (300.5+/-38.49 compared with 861.7+/-24.8; P < 0.05). The results indicate that the atrophic effects of denervation and castration on the LA are non-synergistic and mechanistically similar. They also show that the inability of satellite cells to respond mitotically to the withdrawal of neural input under disandrogenized conditions is a factor in the myonuclear depletion of the denervated muscle of castrated rats.
Collapse
Affiliation(s)
- J O Nnodim
- Department of Anatomy and Cell Biology, University of Michigan Medical School, Ann Arbor 48109, USA.
| |
Collapse
|
28
|
Abstract
Satellite cells are responsible for the formation of postnatal muscle fibers. The number, mitotic activity, and differentiation potential of satellite cells and the muscle fiber diameter are tightly regulated events in normal muscle. The signal that induces satellite cells to stop proliferation once the determined muscle fiber size has been reached in normal growth is not known. The aim of the present study was to determine whether a correlation exists between satellite cell frequency and muscle fiber diameter in human muscle disease. Muscle biopsies from 7 cases of Duchenne muscular dystrophy (DMD), 8 other muscular dystrophies, 23 cases of inflammatory myopathy, and 22 cases of neurogenic atrophy were examined. The satellite cell number was elevated in DMD and neurogenic atrophy but not in other muscular dystrophies or inflammatory myopathies. Nevertheless, in all the diseased muscles, but not in normal controls, there was a significantly higher relative frequency of satellite cells with increasing fiber diameter. It has been shown before that satellite cells show ultrastructural and autoradiographic signs of activation and proliferation in myopathic and neurogenic conditions. We assume that we are dealing with activated, not quiescent, satellite cells in diseased muscle and that under these conditions the fiber diameter does not represent a stop signal for satellite cells to proliferate. The data suggest that not only the number of satellite cells matters in diseased muscle, as has been shown before, but that it is their behavior that influences, at least in part, progress and severity of muscle diseases.
Collapse
Affiliation(s)
- F Maier
- Institute of Brain Research, University of Tübingen, Germany
| | | |
Collapse
|
29
|
Dulor JP, Cambon B, Vigneron P, Reyne Y, Nouguès J, Casteilla L, Bacou F. Expression of specific white adipose tissue genes in denervation-induced skeletal muscle fatty degeneration. FEBS Lett 1998; 439:89-92. [PMID: 9849884 DOI: 10.1016/s0014-5793(98)01216-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Denervation of skeletal muscle results in rapid atrophy with loss of contractile mass and/or progressive degeneration of muscle fibers which are replaced to a greater or lesser degree by connective and fatty tissues. In this study, we show that denervated rabbit muscles are transformed into a white adipose tissue, depending on their fiber types. This tissue does express LPL, G3PDH and particularly the ob gene, a white adipose tissue-specific marker, and does not express the brown adipose tissue molecular marker UCP1 mRNA.
Collapse
Affiliation(s)
- J P Dulor
- UFR Productions animales, ENSA M, Laboratoire de Différenciation cellulaire et Croissance, INRA, Montpellier, France.
| | | | | | | | | | | | | |
Collapse
|
30
|
Ongvarrasopone C, Kennedy JM. Developmentally regulated expression of cytochrome-c oxidase isoforms in regenerating rat skeletal muscle. J Appl Physiol (1985) 1998; 85:246-53. [PMID: 9655782 DOI: 10.1152/jappl.1998.85.1.246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The developmental expression of tissue-specific isoforms of cytochrome-c oxidase (COX) subunit VIII [heart (COX VIII-H) and liver (COX VIII-L)] and the influence of innervation were examined in regenerating fast [extensor digitorum longus (EDL)] and slow (soleus) muscles. In adult muscles, COX VIII-H was the predominant isoform. The COX VIII-L mRNA was expressed 3 days after induction of regeneration, and it progressively decreased after 7, 10, 14, and 30 days of regeneration in both muscles. In contrast, the expression of COX VIII-H mRNA accumulated as myogenesis proceeded to the myotube stage between 7 and 10 days of regeneration and progressively increased to near control levels by 30 days. The influence of innervation on the expression of COX VIII and alpha-actin isoforms was examined in control, innervated, and denervated regenerating muscles at 3 and 10 days. The relative expression of COX VIII-L mRNA in denervated regenerating EDL muscles was significantly greater, while that of COX VIII-H was significantly less than in innervated regenerating EDL muscles after 10 days of regeneration. Similarly, cardiac alpha-actin mRNA levels were elevated in denervated regenerating EDL muscles after 10 days of regeneration. In conclusion, motor innervation influences the transition from the COX VIII-L to COX VIII-H isoform during myogenesis in regenerating muscles.
Collapse
Affiliation(s)
- C Ongvarrasopone
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | |
Collapse
|
31
|
Abstract
BACKGROUND This study describes the ultrastructure of long-term denervated rat extensor digitorum longus and tibialis anterior muscles, with particular emphasis on understanding the cellular basis for the reduced restorative capacity of long-term denervated muscle. METHODS In 30 male WI/HicksCar rats, the right hindleg was denervated for periods of 1, 2, 4, 5.5, 6, 7, 12, 14, and 18 months before tissues were prepared for electron microscopy. RESULTS Atrophy of muscle fibers was prominent by the second month post-denervation. At this time, type II fibers showed greater atrophy than type I fibers. At further periods of denervation, atrophy of all fibers was seen; and with increasing times of denervation the muscle fibers became surrounded by dense mats of collagen fibers. Muscle spindles persisted for the duration of this study. At two and four months, satellite cells showed signs of activation, such as elongated cytoplasmic processes and an increased concentration of cytoplasmic organelles. As denervation progressed, activated satellite cells became more widely separated from their associated muscle fibers, and basal lamina material was deposited between the satellite cells and muscle fibers. Some satellite cells broke free from their muscle fibers, and others acted as bridges between two muscle fibers. Evidence was seen of both muscle fiber degeneration and the regeneration of new muscle fibers, often more than one regenerating fiber beneath a single basal lamina. Loose folds of basal lamina were often present around atrophic muscle fibers. As denervation progressed, the morphology of individual muscle fibers varied. Some contained well-ordered lattice arrays of myofilaments, whereas in others considerable sarcomeric disorganization was evident. Mitochondria became smaller and rounded; elements of the sarcoplasmic reticulum proliferated and became more disorganized; lipid droplets, glycogen deposits, and autophagic vesicles were all present in the cytoplasm of atrophic muscle fibers. CONCLUSIONS In addition to muscle fiber atrophy, long-term denervated muscles show evidence of myofiber and capillary death, as well as the deposition of massive amounts of interstitial collagen. These changes, all of which would appear to reduce the restorative capacity of the denervated muscle, take place concurrently with the morphological activation of satellite cells. The latter indicates that even in the denervated condition, restorative processes occur concurrently with regressive processes.
Collapse
Affiliation(s)
- D X Lu
- Department of Anatomy and Cell Biology, University of Michigan, Ann Arbor 48109, USA
| | | | | |
Collapse
|
32
|
Viguie CA, Lu DX, Huang SK, Rengen H, Carlson BM. Quantitative study of the effects of long-term denervation on the extensor digitorum longus muscle of the rat. Anat Rec (Hoboken) 1997; 248:346-54. [PMID: 9214552 DOI: 10.1002/(sici)1097-0185(199707)248:3<346::aid-ar7>3.0.co;2-n] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND In order to understand the cellular basis underlying the progressively poorer restorative capacity of long-term denervated muscle, we determined the effects of long-term denervation on the muscle fibers and satellite cell population of the rat extensor digitorum longus (EDL) muscle. METHODS In 36 male rats, the right hind legs were denervated, and EDL muscles were removed 2, 4, 7, 12, and 18 months later. Muscles were either fixed for electron microscopic analysis or were dissociated into individual muscle fibers for direct fiber counting or for confocal microscopic analysis. RESULTS The percentage of satellite cells rose from the 2.8% control value to 9.1% at 2 months of denervation; thereafter the percentage decreased to 1.1% at 18 months of denervation. The number of myonuclei per muscle fiber steadily declined from 410 in 4 month control muscle to 158 in 7 month denervated muscle. Up to 7 months of denervation, the total number of muscle fibers per muscle remained relatively constant at somewhat over 5,000. The calculated total satellite cell population in 4 month denervated EDL muscle was the same as that of controls at 65,000, but by 7 months of denervation it had declined to 21,000. With increasing time of denervation, the number of cross-sectional profiles of muscle fibers not containing nuclei rose from 14% in control muscle to 49% in 12 month denervated muscle. This was correlated with a pronounced regular clumping of the nuclei, with pronounced nonnucleated segments between nuclear clumps. CONCLUSIONS Increasing times of denervation are accompanied by a pronounced decline in the number of myonuclei per muscle fiber and an initial rise and subsequent fall in satellite cell number. These changes are correlated with a decreasing restorative ability of these muscles over the same periods of denervation. Further work on the proliferative capacity of the remaining satellite cells is necessary before firm quantitative conclusions can be made.
Collapse
Affiliation(s)
- C A Viguie
- Department of Anatomy and Cell Biology and Institute of Gerontology, University of Michigan, Ann Arbor 48109, USA
| | | | | | | | | |
Collapse
|
33
|
Rodrigues ADC, Schmalbruch H. Satellite cells and myonuclei in long-term denervated rat muscles. Anat Rec (Hoboken) 1995; 243:430-7. [PMID: 8597289 DOI: 10.1002/ar.1092430405] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The percentage of satellite cells rapidly decreases in aneurally regenerating soleus muscles of rat. Also denervation of intact muscles causes fiber loss and regeneration, but the fate of satellite cells is unknown; myonuclei have been suggested to undergo changes resembling those in apoptotic cells. METHODS Rat soleus and extensor digitorum longus (EDL) muscles were denervated at birth or at age 5 weeks and investigated after periods of up to 38 weeks. At least 400 myonuclei in each muscle were assessed by electron microscopy, and satellite cell nuclei were counted. In situ nick translation and tailing were performed after 30 weeks denervation in order to demonstrate DNA breaks associated with apoptosis. RESULTS Myotubes indicating regeneration were prominent in the adult denervated soleus and deep layers of EDL muscles after 7 weeks and in the superficial parts of EDL muscle after 16 weeks. The percentage of satellite cell nuclei slowly decreased to less than one fifth of normal after 20-30 weeks. Almost all satellite cells had vanished 10 weeks after neonatal denervation. Degenerating myonuclei in adult, but not in neonatally denervated muscles, remotely resembled apoptotic nuclei of lymphocytes, but no evidence of DNA breaks was found. CONCLUSION Denervation of rat skeletal muscles causes, in addition to fiber atrophy, loss of fibers with subsequent regeneration. Proliferation of satellite cells under aneural conditions may lead to exhaustion of the satellite cell pool. This process is more rapid in growing than in adult muscles. Myonuclei in denervated muscles do not show DNA breaks which can be demonstrated by in situ nick translation.
Collapse
Affiliation(s)
- A de C Rodrigues
- Department of Medical Physiology, University of Copenhagen, Panum Institute, Denmark
| | | |
Collapse
|
34
|
Kues WA, Brenner HR, Sakmann B, Witzemann V. Local neurotrophic repression of gene transcripts encoding fetal AChRs at rat neuromuscular synapses. J Biophys Biochem Cytol 1995; 130:949-57. [PMID: 7642710 PMCID: PMC2199949 DOI: 10.1083/jcb.130.4.949] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The spatio-temporal expression patterns of mRNA transcripts coding for acetylcholine receptor (AChR) subunits and myogenic factors were measured in denervated rat soleus muscle and in soleus muscle chronically paralyzed for up to 12 d by conduction block of the sciatic nerve by tetrodotoxin (TTX). In denervated muscle the AChR alpha-, beta-, gamma-, and delta-subunit mRNAs were elevated with highest expression levels in the former synaptic and the perisynaptic region and with lower levels in the extrasynaptic fiber segments. In muscle paralyzed by nerve conduction block the alpha-, beta-, gamma-, and delta-subunit mRNA levels increased only in extrasynaptic fiber segments. Surprisingly, in the synaptic region the gamma-subunit mRNA that specifies the fetal-type AChR, and alpha-, beta-, delta-subunit mRNAs were not elevated. The expression of the gene encoding the epsilon-subunit, which specifies the adult-type AChR, was always restricted to synaptic nuclei. The mRNA for the regulatory factor myogenin showed after denervation similar changes as the subunit transcripts of the fetal AChR. When the muscle was paralyzed by nerve conduction block the increase of myogenin transcripts was also less pronounced in synaptic regions compared to extrasynaptic fiber segments. The results suggest that in normal soleus muscle a neurotrophic signal from the nerve locally down-regulates the expression of fetal-type AChR channel in the synaptic and perisynaptic muscle membrane by inhibiting the expression of the gamma-subunit gene and that inhibition of the myogenin gene expression may contribute to this down-regulation.
Collapse
Affiliation(s)
- W A Kues
- Abteilung Zellphysiologie, Max-Planck-Institut für medizinische Forschung, Heidelberg, Germany
| | | | | | | |
Collapse
|
35
|
Bibikova A, Oron U. Regeneration in denervated toad (Bufo viridis) gastrocnemius muscle and the promotion of the process by low energy laser irradiation. Anat Rec (Hoboken) 1995; 241:123-8. [PMID: 7879917 DOI: 10.1002/ar.1092410116] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND It is known that while denervated skeletal muscles have the ability to regenerate, maturation of regenerated myofibres does not take place under these conditions. Denervation also causes elevation of "invasive" and satellite cells, but the role of these cells in the regeneration process after injury to the denervated muscle is still unknown. Low energy lasers have recently been found to modulate and accelerate physiological processes in cells. The aim of the present study was to compare regeneration in denervated and innervated amphibian muscles and to investigate whether this process in denervated muscles can be stimulated by low energy laser irradiation prior to injury in these muscles. METHODS Denervated gastrocnemius muscles of toads were irradiated with He-Ne laser (6.0 mW, 31.2 J/cm2) 7 days postdenervation (control muscle received red light irradiation at the same wavelength). Nine days after denervation cold injury was performed on the site of irradiation of both groups of muscles. At 14 days postinjury all muscles were removed and processed for histology and histomorphometric analysis of mononucleated cells, myotubes, and young myofibres in the regenerated zone. RESULTS The volume fraction (percent of total injured zone) of the various histological structures in the injured zones 14 days after cold injury in the denervated (9 days prior to injury) muscles did not differ from innervated injured muscles at the same time interval postinjury. The mononucleated cells and myotubes in the laser irradiated muscles comprised 49 +/- 4% and 6 +/- 1% of the injured area, respectively, which was significantly lower than their volume fraction (67 +/- 2% and 11 +/- 2%, respectively) in the control muscles. The young myofibres populated 34 +/- 4% of the total injured area in the denervated and laser irradiated muscles which was significantly higher than their volume fraction (12 +/- 2%) in control denervated muscles. CONCLUSIONS It is concluded that initial stages of regeneration can also take place in skeletal denervated and injured muscles of amphibians. The kinetics of the regeneration process are identical in denervated and innervated muscles. The process of regeneration in denervated muscles can be markedly enhanced if the muscle is irradiated by low energy laser prior to injury, probably by activation (stimulation of proliferation and/or differentiation) cells in the muscles that are "recruited" and participate in the process of regeneration.
Collapse
Affiliation(s)
- A Bibikova
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | | |
Collapse
|
36
|
Peña J, Jimena I, Luque E, Vaamonde R. New fiber formation in rat soleus muscle following administration of denervated muscle extract. J Neurol Sci 1995; 128:14-21. [PMID: 7722530 DOI: 10.1016/0022-510x(94)00212-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A study was made of Wistar rat soleus muscle following intraperitoneal administration of denervated muscle extract over 1 and 2 days. Light microscopy revealed the appearance on fiber surfaces of basophilic satellite structures whose histochemical behaviour differed from that of the parent fiber. Small fibers showing regenerative characteristics were also detected, mainly in the extrafascicular spaces. At ultrastructural examination, activated satellite cells were visible, and there was evidence of splitting in subsarcolemmal regions of apparently hypertrophic muscle fibers. Interstitial cells were occasionally observed, containing structures like myofilaments. The hypothesis is advanced that denervated muscle extract contains substances able to stimulate new fiber formation in adult skeletal muscle.
Collapse
Affiliation(s)
- J Peña
- Department of Morphological Sciences, Faculty of Medicine, University of Cordoba, Spain
| | | | | | | |
Collapse
|
37
|
Dubový P, Svízenská I. Denervated skeletal muscle stimulates migration of Schwann cells from the distal stump of transected peripheral nerve: an in vivo study. Glia 1994; 12:99-107. [PMID: 7868190 DOI: 10.1002/glia.440120203] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have tested the stimulation of Schwann cell migration from the distal stump of a 1 week transected sciatic nerve of adult rats by denervated skeletal muscle. Migrating Schwann cells were distinguished by the presence of non-specific cholinesterase (nChE) activity and glial fibrillary acidic protein (GFAP) at a distance of about 6 mm among denervated muscle fibres 4 weeks after insertion of the distal stump. In addition, the distal stump was introduced into the open end of a silicone chamber packed with artificial fibrin sponge (Gelaspon) soaked in homogenate from intact or denervated muscles. A larger amount of migrated Schwann cells was observed in the chambers filled with homogenate from denervated muscles. An alteration in the amounts of Schwann cells migrating into the silicone chambers observed after histochemical staining (nChE or GFAP) was supported by biochemical measurements of the nChE activity. The biochemical assessment of the nChE activity revealed the increased amounts of migrated Schwann cells in proportion to the protein contents of homogenates from the denervated muscles. In addition, heating of homogenate from the denervated muscles resulted in a diminution of Schwann cell migration. Bromodeoxyuridine incorporation did not show an increased proliferation of Schwann cells inside the chambers following application of homogenate from the denervated muscles in comparison with the homogenate from the innervated muscles. Our results suggest a stimulation of Schwann cell migration from the distal stump of the transected sciatic nerve by soluble factor(s) produced by denervated skeletal muscles.
Collapse
Affiliation(s)
- P Dubový
- Department of Anatomy, Medical Faculty, Masaryk University, Brno, Czech Republic
| | | |
Collapse
|
38
|
Hassan SM, Jennekens FG, Veldman H, Oestreicher BA. GAP-43 and p75NGFR immunoreactivity in presynaptic cells following neuromuscular blockade by botulinum toxin in rat. JOURNAL OF NEUROCYTOLOGY 1994; 23:354-63. [PMID: 8089707 DOI: 10.1007/bf01666525] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Peripheral nerve lesion results in changes in protein expression by neurons and denervated Schwann cells. In the present study we have addressed the question whether similar changes take place following functional denervation. Using immunohistochemistry and immunoelectron microscopy we examined changes in growth-associated protein (GAP-43) and low-affinity nerve growth factor receptor (p75NGFR) in rat gastrocnemius muscle following botulinum toxin-induced paralysis. GAP-43 and p75NGFR were selected because they are not expressed by mature intact motor neurons or Schwann cells, but are expressed following nerve lesion in both motor neurons and denervated Schwann cells. In control muscle, GAP-43 and p75NGFR immunoreactivity was seen only in nerve fibres near blood vessels. Two weeks after toxin injection, GAP-43 immunoreactivity could be seen at the motor endplates and in axons. Intensity of staining increased with longer survival and reached a peak between 4 and 8 weeks post-injection. Ultrastructurally, GAP-43 immunoreactivity was confined to nerve terminals and axons, whereas Schwann cells remained negative. Immunostaining for p75NGFR also increased following toxin injection and was detected in some terminal Schwann cells and in perineurial cells of small nerve fascicles near the paralyzed target cells, but not in axons. These results show that changes in expression of GAP-43 in motor neurons following functional denervation closely resemble the changes following anatomical interruption of nerve-muscle contact. GAP-43 was not expressed in Schwann cells, indicating that its upregulation in these cells is induced by loss of axonal contact or nerve degeneration products. There is no support for a role of p75NGFR in incorporation of neurotrophins in axons. The restriction of p75NGFR expression to terminal Schwann cells and perineurial cells in close proximity to the paralyzed target suggests a role for a target-derived signal or, alternatively, macrophages in eliciting this expression.
Collapse
Affiliation(s)
- S M Hassan
- Department of Neurology, University Hospital of Utrecht, The Netherlands
| | | | | | | |
Collapse
|
39
|
Irintchev A, Zeschnigk M, Starzinski-Powitz A, Wernig A. Expression pattern of M-cadherin in normal, denervated, and regenerating mouse muscles. Dev Dyn 1994; 199:326-37. [PMID: 8075434 DOI: 10.1002/aja.1001990407] [Citation(s) in RCA: 254] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Following muscle damage in adult vertebrates, myofibers can be regenerated from muscle precursor cells (satellite cells). During this process, prenatal myogenesis is recapitulated to a large extent, both morphologically and molecularly. A putative morphoregulatory molecule involved in myogenesis is M-cadherin (Mcad), a calcium-dependent cell adhesion protein. The expression of Mcad was studied by immunofluorescence in regenerating, denervated, and normal mouse muscles. Our results demonstrate that Mcad is present in satellite cells in normal muscle. Enhanced staining at sites of contact between satellite cells and the parent muscle fiber suggests an additional, spatially restricted expression of Mcad in muscle fibers. Mcad positive cells in normal and denervated muscles did not incorporate bromodeoxyuridine within 24 hr after injection in vivo, indicating that Mcad is expressed on mitotically quiescent satellite cells. Neural cell adhesion molecule (NCAM) co-localized with Mcad in nearly all satellite cells in denervated muscles but rarely in intact muscles. At early stages of regeneration, Mcad was exclusively and strongly expressed in myoblasts. After fusion of myoblasts into myotubes, Mcad was down-regulated and was barely detectable on more mature myotubes surrounded by distinct basal lamina sheaths. These observations are in line with the idea that Mcad plays a crucial role in myogenesis. In intact muscle, Mcad might function as a molecular link between satellite cell and muscle fiber.
Collapse
Affiliation(s)
- A Irintchev
- Department of Physiology, Neurophysiology, University of Bonn, Germany
| | | | | | | |
Collapse
|
40
|
Georgiou J, Robitaille R, Trimble WS, Charlton MP. Synaptic regulation of glial protein expression in vivo. Neuron 1994; 12:443-55. [PMID: 7906531 DOI: 10.1016/0896-6273(94)90284-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We investigated signaling between individual nerve terminals and perisynaptic Schwann cells, the teloglial cells that cover neuromuscular junctions. When deprived of neuronal activity in vivo, either by motor nerve transection or tetrodotoxin injection, perisynaptic Schwann cells rapidly up-regulated glial fibrillary acidic protein. Addition of transcription or translation inhibitors to excised muscles prevented this increase. Stimulation of cut nerves prevented glial fibrillary acidic protein increases even when postsynaptic nicotinic receptors were blocked, but not when neurotransmitter release was blocked with omega-conotoxin GVIA. We conclude that there is a nerve terminal to glial signal, requiring presynaptic neurotransmitter release, which regulates perisynaptic Schwann cell genes. This may be a general principle since many types of glial are sensitive to transmitters applied in vitro or released in situ.
Collapse
Affiliation(s)
- J Georgiou
- Department of Physiology, University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
41
|
Abstract
Evidence now suggests that satellite cells constitute a class of myogenic cells that differ distinctly from other embryonic myoblasts. Satellite cells arise from somites and first appear as a distinct myoblast type well before birth. Satellite cells from different muscles cannot be functionally distinguished from one another and are able to provide nuclei to all fibers without regard to phenotype. Thus, it is difficult to ascribe any significant function to establishing or stabilizing fiber type, even during regeneration. Within a muscle, satellite cells exhibit marked heterogeneity with respect to their proliferative behavior. The satellite cell population on a fiber can be partitioned into those that function as stem cells and those which are readily available for fusion. Recent studies have shown that the cells are not simply spindle shaped, but are very diverse in their morphology and have multiple branches emanating from the poles of the cells. This finding is consistent with other studies indicating that the cells have the capacity for extensive migration within, and perhaps between, muscles. Complexity of cell shape usually reflects increased cytoplasmic volume and organelles including a well developed Golgi, and is usually associated with growing postnatal muscle or muscles undergoing some form of induced adaptive change or repair. The appearance of activated satellite cells suggests some function of the cells in the adaptive process through elaboration and secretion of a product. Significant advances have been made in determining the potential secretion products that satellite cells make. The manner in which satellite cell proliferative and fusion behavior is controlled has also been studied. There seems to be little doubt that cellcell coupling is not how satellite cells and myofibers communicate. Rather satellite cell regulation is through a number of potential growth factors that arise from a number of sources. Critical to the understanding of this form of control is to determine which of the many growth factors that can alter satellite cell behavior in vitro are at work in vivo. Little work has been done to determine what controls are at work after a regeneration response has been initiated. It seems likely that, after injury, growth factors are liberated through proteolytic activity and initiate an activation process whereby cells enter into a proliferative phase. After myofibers are formed, it also seems likely that satellite cell behavior is regulated through diffusible factors arising from the fibers rather than continuous control by circulating factors.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- E Schultz
- Department of Anatomy, University of Wisconsin, Madison 53706
| | | |
Collapse
|
42
|
Abstract
Expression of the neural cell adhesion molecule was compared in endplate and non-endplate regions of skeletal muscles of mature and old CBF-1 mice, in order to determine whether age-related changes in neuromuscular morphology were correlated with age changes in neural cell adhesion molecule expression. Three muscles were examined: two (soleus and sternomastoid) showed age-related regionalization of nerve terminals as one manifestation of increased synaptic remodelling while the third (diaphragm) did not. Relative neural cell adhesion molecule content in these muscles was measured by densitometry of immunoblots after concentration by affinity chromatography. Expression of the major 140,000 mol. wt form of neural cell adhesion molecule, which was most abundant in the endplate region, was increased in sternomastoid and soleus of old compared to adult mouse, but was unchanged with age in diaphragm. A 70,000-80,000 mol. wt presumably proteolytic polypeptide fragment of neural cell adhesion molecule was increased in immunoblots of all old muscles. Immunocytochemical studies of skeletal muscles showed no difference in neural cell adhesion molecule cellular distribution in mature vs old mice, but in motor nerve of sternomastoid, the number of neural cell adhesion molecule-positive nerve fibers was increased in old mice. Several lines of evidence indicated that partial denervation was rare in old CBF-1 mice, and therefore could not account for the findings above. Selective increase of 140,000 mol. wt neural cell adhesion molecule expression in the junctional regions of those muscles of old mice which show neuromuscular remodelling indicates that this adhesion molecule may play a role in the age-related instability of motor nerve terminals.
Collapse
Affiliation(s)
- H Kobayashi
- Department of Genetics, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4901
| | | | | |
Collapse
|
43
|
Reynolds ML, Woolf CJ. Terminal Schwann cells elaborate extensive processes following denervation of the motor endplate. ACTA ACUST UNITED AC 1992; 21:50-66. [PMID: 1346630 DOI: 10.1007/bf01206897] [Citation(s) in RCA: 160] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Terminal Schwann cells, when stained for S100 (a calcium binding protein), can be seen to cap motor axons at the neuromuscular junction. Within days of denervation the Schwann cells begin to stain for the low affinity nerve growth factor receptor, but remain Thy-1 negative, and elaborate fine processes. These processes become longer and more disorganized over weeks, and cells positive for S100 and nerve growth factor receptor migrate into the perisynaptic area. Reinnervation results in a withdrawal of the processes. The morphology and location of terminal Schwann cells seems to depend on axonal contact. The spread of Schwann cells and their processes away from the synaptic zone following denervation, implies that these cells do not target axons directly to the endplate.
Collapse
Affiliation(s)
- M L Reynolds
- Department of Anatomy and Developmental Biology, University College London, UK
| | | |
Collapse
|
44
|
Buonanno A, Apone L, Morasso MI, Beers R, Brenner HR, Eftimie R. The MyoD family of myogenic factors is regulated by electrical activity: isolation and characterization of a mouse Myf-5 cDNA. Nucleic Acids Res 1992; 20:539-44. [PMID: 1741288 PMCID: PMC310420 DOI: 10.1093/nar/20.3.539] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A full-length cDNA coding for a homolog of the human Myf-5 was isolated from a BC3H-1 mouse library and characterized. The clone codes for a protein of 255 amino acids that is 89%, 88% and 68% identical to the human, bovine and Xenopus myf-5, respectively. The mouse Myf-5 cDNA (mmyf-5), as well as sequences coding for MyoD, myogenin and Mrf-4, were used to probe Northern blots to analyze the effects of innervation on the expression of the MyoD family of myogenic factors. Mouse myf-5, MyoD and myogenin mRNAs levels were found to decline in hind limb muscles of mice between embryonic day 15 (E15) and the first postnatal week, a period that coincides with innervation. In contrast, Mrf-4 transcripts increase during this period and reach steady-state levels by 1-week after birth. To distinguish if the changes in myogenic factor expression are due to a developmental program or to innervation, mRNA levels were analyzed at different times after muscle denervation. Mmyf-5 transcripts begin to accumulate 2 days postdenervation; after 1 week levels are 7-fold higher than in innervated muscle. Mrf-4, MyoD and myogenin transcripts begin to accumulate as soon as 8h after denervation, and attain levels that are 8-, 15- and 40-fold higher than found in innervated skeletal muscle, respectively. The accumulation of these three mRNAs precedes the increase of nicotinic acetylcholine receptor alpha subunit transcripts, a gene that is transcriptionally regulated by MyoD-related factors in vitro. Using extracellular electrodes to directly stimulate in situ the soleus muscle of rats, we found that 'electrical activity' per se, in absence of the nerve, represses the increases of myogenic factor mRNAs associated with denervation.
Collapse
Affiliation(s)
- A Buonanno
- Unit on Molecular Neurobiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | | | |
Collapse
|
45
|
Block NE, Menick DR, Robinson KA, Buse MG. Effect of denervation on the expression of two glucose transporter isoforms in rat hindlimb muscle. J Clin Invest 1991; 88:1546-52. [PMID: 1939643 PMCID: PMC295667 DOI: 10.1172/jci115465] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Denervation rapidly (within 24 h) induces insulin resistance of several insulin-responsive pathways in skeletal muscle, including glucose transport; resistance is usually maximal by 3 d. We examined the effect of denervation on the expression of two glucose transporter isoforms (GLUT-1 and GLUT-4) in rat hindlimb muscle; GLUT-4 is the predominant species in muscle. 1 d postdenervation, GLUT-1 and GLUT-4 mRNA and protein concentrations were unchanged. 3 and 7 d postdenervation, GLUT-4 mRNA and protein (per microgram DNA) were decreased by 50%. The minor isoform, GLUT-1 mRNA increased by approximately 500 and approximately 100%, respectively, on days 3 and 7 while GLUT-1 protein increased by approximately 60 and approximately 100%. The data suggest that the insulin resistance of glucose transport early after denervation does not reflect a decrease in total glucose transporter number; however, decreased GLUT-4 expression may contribute to its increased severity after 3 d. Parallel decreases in GLUT-4 mRNA and GLUT-4 protein postdenervation are consistent with pretranslational regulation; GLUT-1 expression may be regulated pre- and posttranslationally. The cell type(s) which overexpress GLUT-1 postdenervation need to be identified. Nervous stimuli and/or contractile activity may modulate the expression of GLUT-1 and GLUT-4 in skeletal muscle tissue.
Collapse
Affiliation(s)
- N E Block
- Division of Endocrinology, Metabolism and Nutrition, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston 29425
| | | | | | | |
Collapse
|
46
|
Eftimie R, Brenner HR, Buonanno A. Myogenin and MyoD join a family of skeletal muscle genes regulated by electrical activity. Proc Natl Acad Sci U S A 1991; 88:1349-53. [PMID: 1705035 PMCID: PMC51015 DOI: 10.1073/pnas.88.4.1349] [Citation(s) in RCA: 249] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Myogenin and MyoD are proteins that bind to the regulatory regions of a battery of skeletal muscle genes and can activate their transcription during muscle differentiation. We have recently found that both proteins interact with the enhancer of the nicotinic acetylcholine receptor (nAChR) alpha subunit, a gene that is regulated by innervation. This observation prompted us to study if myogenin and MyoD transcript levels are also regulated by skeletal muscle innervation. Using Northern blot analysis, we found that MyoD and myogenin mRNA levels begin to decline at embryonic day 17 and attain adult levels in muscle of newborn and 3-week-old mice, respectively. In contrast, nAChR mRNAs are highest in newborn and 1-week-old mouse muscle and decline thereafter to reach adult levels in 3-week-old mice. To determine if the down-regulation of myogenin and MyoD mRNA levels during development is due to innervation, we quantitated message levels in adult calf muscles after denervation. We found that in denervated muscle myogenin and MyoD mRNAs reach levels that are approximately 40- and 15-fold higher than those found in innervated muscle. Myogenin mRNAs begin to accumulate rapidly between 8 and 16 hr after denervation, and MyoD transcripts levels begin to increase sharply between 16 hr and 1 day after denervation. The increases in myogenin and MyoD mRNA levels precede the rapid accumulation of nAChR alpha-subunit transcripts; receptor mRNAs begin to accumulate significantly after 1 day of denervation. The effects of denervation are specific because skeletal alpha-actin mRNA levels are not affected by denervation. In addition, we found that the repression of myogenin and MyoD expression by innervation is due, at least in part, to "electrical activity." Direct stimulation of soleus muscle with extracellular electrodes repressed the increase of myogenin and MyoD transcripts after denervation by 4- to 3-fold, respectively. In view of these results, it is interesting to speculate that myogenin and/or MyoD may regulate a repertoire of skeletal muscle genes that are down-regulated by electrical activity.
Collapse
Affiliation(s)
- R Eftimie
- Unit on Molecular Neurobiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | | | | |
Collapse
|
47
|
Sketelj J, Crne-Finderle N, Ribaric S, Brzin M. Interactions between intrinsic regulation and neural modulation of acetylcholinesterase in fast and slow skeletal muscles. Cell Mol Neurobiol 1991; 11:35-54. [PMID: 2013058 PMCID: PMC11567393 DOI: 10.1007/bf00712799] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/1989] [Accepted: 04/06/1990] [Indexed: 12/29/2022]
Abstract
1. Initiation of subsynaptic sarcolemmal specialization and expression of different molecular forms of AChE were studied in fast extensor digitorum longus (EDL) and slow soleus (SOL) muscle of the rat under different experimental conditions in order to understand better the interplay of neural influences with intrinsic regulatory mechanisms of muscle cells. 2. Former junctional sarcolemma still accumulated AChE and continued to differentiate morphologically for at least 3 weeks after early postnatal denervation of EDL and SOL muscles. In noninnervated regenerating muscles, postsynaptic-like sarcolemmal specializations with AChE appeared (a) in the former junctional region, possibly induced by a substance in the former junctional basal lamina, and (b) in circumscribed areas along the whole length of myotubes. Therefore, the muscle cells seem to be able to produce a postsynaptic organization guiding substance, located in the basal lamina. The nerve may enhance the production or accumulation of this substance at the site of the future motor end plate. 3. Significant differences in the patterns of AChE molecular forms in EDL and SOL muscles arise between day 4 and day 10 after birth. The developmental process of downregulation of the asymmetric AChE forms, eliminating them extrajunctionally in the EDL, is less efficient in the SOL. The presence of these AChE forms in the extrajunctional regions of the SOL correlates with the ability to accumulate AChE in myotendinous junctions. The typical distribution of the asymmetric AChE forms in the EDL and SOL is maintained for at least 3 weeks after muscle denervation. 4. Different patterns of AChE molecular forms were observed in noninnervated EDL and SOL muscles regenerating in situ. In innervated regenerates, patterns of AChE molecular forms typical for mature muscles were instituted during the first week after reinnervation. 5. These results are consistent with the hypothesis that intrinsic differences between slow and fast muscle fibers, concerning the response of their AChE regulating mechanism to neural influences, may contribute to different AChE expression in fast and slow muscles, in addition to the influence of different stimulation patterns.
Collapse
Affiliation(s)
- J Sketelj
- Institute of Pathophysiology, School of Medicine, Ljubljana, Yugoslavia
| | | | | | | |
Collapse
|
48
|
Abstract
Muscle fibre areas and numbers, tetanic force, resident macrophage numbers and acetylcholine sensitivity were measured in normal and denervated soleus muscles of C57BL/Ola mice for comparison with data from outbred and other inbred strains. Serum creatine kinase levels were also measured. The muscles of normal C57BL/Ola mice had more fibres, generated more tension, had fewer resident macrophages and had a lower acetylcholine sensitivity than muscles of other strains. The normal level of serum creatine kinase was lower in C57BL/Ola mice than in Balb/c mice. Following denervation, the mean cross-sectional area of muscle fibres in Balb/c mice started to fall from day 1 but a fall was not seen in muscles from C57BL/Ola mice until day 5. The development of increased acetylcholine sensitivity was slower in the C57BL/Ola mice although the values in all mouse strains had converged by five days. The levels of serum creatine kinase also rose more slowly following denervation in C57BL/Ola mice. The differences between the data from C57BL/Ola mice and others are ascribed to the slow rate of Wallerian degeneration in that strain. The results support the view that the effects of denervation on muscle are due to both inactivity and an inflammatory effect contributed by nerve degeneration. The mutation that causes slow nerve degeneration may, however, also affect muscle directly, making it more resistant to catabolism.
Collapse
Affiliation(s)
- M C Brown
- University Laboratory of Physiology, Oxford, U.K
| | | | | | | |
Collapse
|
49
|
Figarella-Branger D, Nedelec J, Pellissier JF, Boucraut J, Bianco N, Rougon G. Expression of various isoforms of neural cell adhesive molecules and their highly polysialylated counterparts in diseased human muscles. J Neurol Sci 1990; 98:21-36. [PMID: 2230829 DOI: 10.1016/0022-510x(90)90179-q] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Antibodies directed against neural cell adhesive molecules (NCAM) and in particular a monoclonal antibody recognizing polysialylated isoforms, were used to characterize the expression of these molecules in normal and diseased human muscles. Normal subjects as well as patients with inflammatory, dystrophic and denervating diseases were examined. By immunohistochemistry the main observations were (1) satellite cells expressed the non-sialylated form of NCAMs; (2) regenerative fibers strikingly expressed NCAMs and their sialylated isoforms both on membranes and in the cytoplasm; (3) in denervated muscles, fibers in atrophic groups and some fibers in acute denervation expressed NCAMs on their membrane but not the highly sialylated form; (4) finally, some fibers in myotonic dystrophy and fibers with rimmed vacuoles also expressed NCAMs. Biochemical approaches, using enzymes such as endoglycosidase N and phosphatidylinositol phospholipase C combined with immunoblot analysis allowed visualization of the nature of the expressed isoforms. We have shown that non activated cells, i.e. satellite cells and denervated fibers do not express polysialylated NCAMs. This post-translational modification may be only observed in activated or regenerating fibers. This would parallel the sequence of NCAM expression occurring in normal myogenic pathways.
Collapse
Affiliation(s)
- D Figarella-Branger
- Laboratoire d'Anatomie Pathologique et de Neuropathologie, Faculté de Médecine, Marseille, France
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Satellite cells of adult muscle are quiescent myogenic stem cells that can be induced to enter the cell cycle by an extract of crushed muscle (Bischoff, R. 1986. Dev. Biol. 115:140-147). Here, evidence is presented that the extract acts transiently to commit cells to enter the cell cycle. Satellite cells associated with both live and killed rat myofibers in culture were briefly exposed to muscle extract and the increase in cell number was determined at 48 h in vitro, before the onset of fusion. An 8-12-h exposure to extract with killed, but not live, myofibers was sufficient to produce maximum proliferation of satellite cells. Continuous exposure for over 40 h was needed to sustain proliferation of satellite cells on live myofibers. The role of serum factors was also studied. Neither serum nor muscle extract alone was able to induce proliferation of satellite cells. In the presence of muscle extract, however, satellite cell proliferation was directly proportional to the concentration of serum in the medium. These results suggest that mitogens released from crushed muscle produce long-lasting effects that commit quiescent satellite cells to divide, whereas serum factors are needed to maintain progression through the cell cycle. Contact with a viable myofiber modulates the response of satellite cells to growth factors.
Collapse
Affiliation(s)
- R Bischoff
- Department of Anatomy and Neurobiology, Washington Univeristy School of Medicine, Saint Louis, Missouri 63110
| |
Collapse
|