1
|
Zheng F, Khanna S. Intra-hippocampal tonic inhibition influences formalin pain-induced pyramidal cell suppression, but not excitation in dorsal field CA1 of rat. Brain Res Bull 2008; 77:374-81. [PMID: 18852032 DOI: 10.1016/j.brainresbull.2008.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 08/12/2008] [Accepted: 09/12/2008] [Indexed: 10/21/2022]
Abstract
It has been hypothesized that intra-hippocampal GABAergic inhibitory interneurons mediate formalin pain-induced suppression of dorsal hippocampal CA1 pyramidal cell discharge. The present study performed on anaesthetized rats tested the hypothesis by disrupting GABAergic mechanisms with intra-hippocampal administration of the GABA(A) receptor antagonist bicuculline methiodide, applied either dorsally into the pyramidal cell layer and stratum oriens (dorsal-bicuculline) or ventrally into the region of apical dendrites (ventral-bicuculline). It was found that ventral-, but not dorsal-bicuculline attenuated formalin-induced suppression of pyramidal cell extracellular discharge. The antagonism was selective in such a way that the excitation of pyramidal cell was unaffected. Interestingly, ventral-bicuculline strongly disinhibited CA1 pyramidal cells and shifted the distribution of their spontaneous discharge to values higher than the control group. However, dorsal-bicuculline disinhibited the local CA1 interneurons that were strongly excited on injection of formalin. Overall, the findings favour the notion that tonic GABA(A) receptor mechanisms located in the region of apical dendrites facilitate formalin-induced pyramidal cell suppression by masking the background excitatory drive impinging on the pyramidal cells. Interestingly, both the attenuation of formalin-induced inhibition and facilitation of basal discharge of CA1 pyramidal cells by ventral-bicuculline are similar to the effects seen previously with the destruction of medial septal cholinergic neurons. This convergence of effects strengthens the proposal that the network of medial septal cholinergic neurons and hippocampal GABAergic interneurons influence formalin pain-induced CA1 pyramidal cell suppression. In addition, the data point to a non-overlapping excitatory drive whose strength is unaffected by the inhibitory drive that underpins formalin suppression.
Collapse
Affiliation(s)
- F Zheng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Blk MD9, 2 Medical Drive, Singapore 117597, Singapore.
| | | |
Collapse
|
2
|
Bukalo O, Schachner M, Dityatev A. Hippocampal metaplasticity induced by deficiency in the extracellular matrix glycoprotein tenascin-R. J Neurosci 2007; 27:6019-28. [PMID: 17537973 PMCID: PMC6672247 DOI: 10.1523/jneurosci.1022-07.2007] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Predisposition of synapses to undergo plastic changes can be dynamically adjusted according to the history of synaptic activity (i.e., synapses are metaplastic). In search of a molecular mechanism underlying metaplasticity, we investigated mice deficient in the glycoprotein tenascin-R (TNR), based on the observations that this mutant exhibits elevated basal excitatory synaptic transmission and reduced perisomatic GABAergic inhibition. TNR is a major extracellular matrix glycoprotein of the CNS and carries the HNK-1 carbohydrate (human natural killer cell glycan), which has been identified as the functional epitope mediating regulation of GABAergic transmission via GABA(B) receptors. Here, we used patch-clamp recordings in hippocampal slices to determine the critical levels of postsynaptic neuron depolarization necessary for induction of long-term potentiation (LTP) at CA3-CA1 synapses and found that deficiency in TNR leads to a metaplastic increase in the threshold for induction of LTP. Reconstitution of slices from TNR-deficient mice with an HNK-1 glycomimetic or pharmacological treatment with either a GABA(A) receptor agonist, a GABA(B) receptor antagonist, an L-type voltage-dependent Ca2+ channel blocker, or an inhibitor of protein serine/threonine phosphatases restored LTP to the levels seen in wild-type mice. We propose that a chain of events initiated by reduced GABAergic transmission and proceeding via Ca2+ entry into cells and elevated activity of phosphatases mediates homeostatic adjustment of hippocampal plasticity in the absence of TNR. These data uncover a novel mechanism by which an extracellular matrix molecule and its associated carbohydrate provide conditions beneficial for induction of LTP in the CA1 region of the hippocampus.
Collapse
Affiliation(s)
- Olena Bukalo
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, D-20251 Hamburg, Germany
| | - Melitta Schachner
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, D-20251 Hamburg, Germany
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854, and
| | - Alexander Dityatev
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, D-20251 Hamburg, Germany
- Institut für Neurophysiologie und Pathophysiologie, Universitätsklinikum Hamburg-Eppendorf, D-20246 Hamburg, Germany
| |
Collapse
|
3
|
Shen KZ, Johnson SW. Potentiation of GABA(A) receptor agonists by GABA uptake inhibitors in the rat ventral midbrain. Eur J Pharmacol 2001; 428:1-7. [PMID: 11779025 DOI: 10.1016/s0014-2999(01)01218-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Whole-cell patch recordings were made from dopamine-containing neurons in the ventral tegmental area (VTA) and substantia nigra zona compacta (SNC). Isoguvacine evoked an outward current (at -60 mV) in a concentration-dependent manner with an EC50 of 62+/-8 microM. The gamma-aminobutyric acid (GABA) uptake inhibitor 1-(2(((diphenylmethylene)imino)oxy)ethyl)-1,2,5,6-tetrahydro-3-pyridinecarboxylic acid hydrochloride (NO 711) (3 microM) shifted the isoguvacine concentration-response curve to the left, with a new EC50 of 22+/-4 microM. L-Arginine (3 mM) also shifted the isoguvacine concentration-response curve to the left, with a new EC50 of 29+/-5 microM. L-Arginine (3 mM) increased the currents evoked by GABA (100 microM) and muscimol (1 microM) by 208% and 261%, respectively. The GABA uptake inhibitor 4,5,6,7,-tetrahydroisoxazolo[4,5-c]-pyridin-3-ol hydrobromide (THPO) (300 microM) not only mimicked but also occluded the ability of L-arginine (3 mM) to potentiate currents evoked by isoguvacine. Equimolar replacement of Na+ with choline increased GABA-evoked currents, suggesting that a low Na+ concentration has an inhibitory effect on GABA transport. Low Na+ concentration (25 mM) inhibited isoguvacine currents but still occluded the potentiating effects of L-arginine. We conclude that GABA uptake inhibitors potentiate the actions of the GABA(A) receptor agonists, isoguvacine and muscimol, probably because they are effective substrates for GABA transporters in the ventral midbrain.
Collapse
Affiliation(s)
- K Z Shen
- Department of Physiology and Pharmacology, Oregon Health Sciences University, Portland 97201, USA
| | | |
Collapse
|
4
|
Obrocea GV, Morris ME. Comparison of changes evoked by GABA (γ-aminobutyric acid) and anoxia in [K+]o, [Cl-]o, and [Na+]o in stratum pyramidale and stratum radiatum of the guinea pig hippocampus. Can J Physiol Pharmacol 2000. [DOI: 10.1139/y00-001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ion-selective microelectrode recordings were made to assess a possible contribution of extracellular γ-aminobutyric acid (GABA) accumulation to early responses evoked in the brain by anoxia and ischemia. Changes evoked by GABA or N2 in [K+]o, [Cl-]o, [Na+]o, and [TMA+]o were recorded in the cell body and dendritic regions of the stratum pyramidale (SP) and stratum radiatum (SR), respectively, of pyramidal neurons in CA1 of guinea pig hippocampal slices. Bath application of GABA (1-10 mM) for approximately 5 min evoked changes in [K+]o and [Cl-]o with respective EC50 levels of 3.8 and 4.1 mM in SP, and 4.7 and 5.6 mM in SR. In SP 5 mM GABA reversibly increased [K+]o and [Cl-]o and decreased [Na+]o; replacement of 95% O2 -5% CO2 by 95% N2 -5% CO2 for a similar period of time evoked changes which were for each ion in the same direction as those with GABA. In SR both GABA and N2 caused increases in [K+]o and decreases in [Cl-]o and [Na+]o. The reduction of extracellular space, estimated from levels of [TMA+]o during exposures to GABA and N2, was 5-6% and insufficient to cause the observed changes in ion concentration. Ion changes induced by GABA and N2 were reversibly attenuated by the GABAA receptor antagonist bicuculline methiodide (BMI, 100 µM). GABA-evoked changes in [K+]o in SP and SR and [Cl-]o in SP were depressed by >=90%, and of [Cl-]o in SR by 50%; N2-evoked changes in [K+]o in SP and SR were decreased by 70% and those of [Cl-]o by 50%. BMI blocked Δ [Na+]o with both GABA and N2 by 20-30%. It is concluded that during early anoxia: (i) accumulation of GABA and activation of GABAA receptors may contribute to the ion changes and play a significant role, and (ii) responses in the dendritic (SR) regions are greater than and (or) differ from those in the somal (SP) layers. A large component of the [K+]o increase may involve a GABA-evoked Ca2+-activated gk, secondary to [Ca2+]i increase. A major part of [Cl-]o changes may arise from GABA-induced gCl and glial efflux, with strong stimulation of active outward transport and anion exchange at SP, and inward Na+/K+/2Cl- co-transport at SR. Na+ influx is attributable mainly to Na+-dependent transmitter uptake, with only a small amount related to GABAA receptor activation. Although the release and (or) accumulation of GABA during anoxia might be viewed as potentially protectant, the ultimate role may more likely be an important contribution to toxicity and delayed neuronal death. Key words: brain slices, ion-selective microelectrodes, stratum pyramidale, stratum radiatum, bicuculline methiodide, extracellular space shrinkage.
Collapse
|
5
|
Linster C, Wyble BP, Hasselmo ME. Electrical stimulation of the horizontal limb of the diagonal band of broca modulates population EPSPs in piriform cortex. J Neurophysiol 1999; 81:2737-42. [PMID: 10368393 DOI: 10.1152/jn.1999.81.6.2737] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Electrical stimulation of the horizontal limb of the diagonal band of Broca (HDB) was coupled with recording of evoked potentials in the piriform cortex. Stimulation of the HDB caused an enhancement of the late, disynaptic component of the evoked potential elicited by stimulation of the lateral olfactory tract but caused a suppression of the synaptic potential elicited by stimulation of the posterior piriform cortex. The muscarinic antagonist scopolamine blocked both effects of HDB stimulation. The enhancement of disynaptic potentials could be due to cholinergic depolarization of pyramidal cells, whereas the suppression of potentials evoked by posterior piriform stimulation could be due to presynaptic inhibition of intrinsic fiber synaptic transmission by acetylcholine.
Collapse
Affiliation(s)
- C Linster
- Department of Psychology and Program in Neuroscience, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | |
Collapse
|
6
|
Crépel V, Khazipov R, Ben-Ari Y. Blocking GABA(A) inhibition reveals AMPA- and NMDA-receptor-mediated polysynaptic responses in the CA1 region of the rat hippocampus. J Neurophysiol 1997; 77:2071-82. [PMID: 9114256 DOI: 10.1152/jn.1997.77.4.2071] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have investigated the conditions required to evoke polysynaptic responses in the isolated CA1 region of hippocampal slices from Wistar adult rats. Experiments were performed with extracellular and whole cell recording techniques. In the presence of bicuculline (10 microM), 6-cyano-7-nitroquinoxaline-2-3-dione (10 microM), glycine (10 microM), and a low external concentration of Mg2+ (0.3 mM), electrical stimulation of the Schaffer collaterals/commissural pathway evoked graded N-methyl-D-aspartate (NMDA)-receptor-mediated late field potentials in the stratum radiatum of the CA1 region. These responses were generated via polysynaptic connections because their latency varied strongly and inversely with the stimulation intensity and they were abolished by a high concentration of divalent cations (7 mM Ca2+). These responses likely were driven by local collateral branches of CA1 pyramidal cell axons because focal application of tetrodotoxin (30 microM) in the stratum oriens strongly reduced the late synaptic component and antidromic stimulation of CA1 pyramidal cells could evoke the polysynaptic response. Current-source density analysis suggested that the polysynaptic response was generated along the proximal part of the apical dendrites of CA1 pyramidal cells (50-150 microm below the pyramidal cell layer in the stratum radiatum). In physiological concentration of Mg2+ (1.3 mM), the pharmacologically isolated NMDA-receptor-mediated polysynaptic response was abolished. In control artificial cerebrospinal fluid (with physiological concentration of Mg2+), bicuculline ( 10 microM) generated a graded polysynaptic response. Under these conditions, this response was mediated both by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/NMDA receptors. In the presence of D-2-amino-5-phosphonovalerate (50 microM), the polysynaptic response could be mediated by AMPA receptors, although less efficiently. In conclusion, suppression of gamma-aminobutyric acid-A inhibition reveals glutamate receptor-mediated network-driven events in the isolated CA1 region. These polysynaptic responses are mediated by AMPA and/or NMDA receptors depending on the pharmacological conditions and the external concentration of Mg2+ used. We suggest that these responses are driven by local recurrent collaterals of CA1 pyramidal cells.
Collapse
Affiliation(s)
- V Crépel
- Institut National de la Santé et de la Recherche Médicale U 29, Université René Descartes, Paris, France
| | | | | |
Collapse
|
7
|
Affiliation(s)
- K Kaila
- Department of Zoology, University of Helsinki, Finland
| |
Collapse
|
8
|
Mott DD, Lewis DV. The pharmacology and function of central GABAB receptors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1994; 36:97-223. [PMID: 7822122 DOI: 10.1016/s0074-7742(08)60304-9] [Citation(s) in RCA: 182] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In conclusion, GABAB receptors enable GABA to modulate neuronal function in a manner not possible through GABAA receptors alone. These receptors are present at both pre- and postsynaptic sites and can exert both inhibitory and disinhibitory effects. In particular, GABAB receptors are important in regulating NMDA receptor-mediated responses, including the induction of LTP. They also can regulate the filtering properties of neural networks, allowing peak transmission in the frequency range of theta rhythm. Finally, GABAB receptors are G protein-coupled to a variety of intracellular effector systems, and thereby have the potential to produce long-term changes in the state of neuronal activity, through actions such as protein phosphorylation. Although the majority of the effects of GABAB receptors have been reported in vitro, recent studies have also demonstrated that GABAB receptors exert electrophysiological actions in vivo. For example, GABAB receptor antagonists reduce the late IPSP in vivo and consequently can decrease inhibition of spontaneous neuronal firing following a stimulus (Lingenhöhl and Olpe, 1993). In addition, blockade of GABAB receptors can increase spontaneous activity of central neurons, suggesting the presence of GABAB receptor-mediated tonic inhibition (Andre et al., 1992; Lingenhöhl and Olpe, 1993). Despite these electrophysiological effects, antagonism of GABAB receptors has generally been reported to produce few behavioral actions. This lack of overt behavioral effects most likely reflects the modulatory nature of the receptor action. Nevertheless, two separate behavioral studies have recently reported an enhancement of cognitive performance in several different animal species following blockade of GABAB receptors (Mondadori et al., 1992; Carletti et al., 1993). Because of their small number of side effects, GABAB receptor antagonists may represent effective therapeutic tools for modulation of cognition. Alternatively, the lack of overt behavioral effects of GABAB receptors may indicate that these receptors are more important in pathologic rather than normal physiological states (Wojcik et al., 1989). For example, a change in receptor affinity or receptor number brought on by the pathology could enhance the effectiveness of GABAB receptors. Of significance, CGP 35348 has been shown to block absence seizures in genetically seizure prone animals, while inducing no seizures in control animals (Hosford et al., 1992; Liu et al., 1992). Thus, GABAB receptors may represent effective sites for pharmacological regulation of absence seizures. Perhaps further behavioral effects of these receptors will become apparent only after additional studies have been performed using the highly potent antagonists that have been recently introduced.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- D D Mott
- Department of Pediatrics (Neurology), Duke University Medical Center, Durham, North Carolina 27710
| | | |
Collapse
|
9
|
Abstract
In the CNS, gamma-aminobutyric acid (GABA) acts as an inhibitory transmitter via ligand-gated GABAA receptor channels and G protein-coupled GABAB receptors. Both of these receptor types mediate inhibitory postsynaptic transmission in the hippocampus. In addition to these direct postsynaptic actions, GABAB receptor agonists inhibit excitatory transmission through presynaptic receptors on excitatory afferent terminals. However, a physiological role for the GABAB receptors on excitatory nerve endings has not been established. In this study, we have found a brief, heterosynaptic depression of excitatory synaptic transmission in the CA1 region of the hippocampal slice following short-lasting repetitive stimulation and determined that this inhibition is mediated by presynaptic GABAB receptors. The inhibition of GABA uptake greatly enhanced both the presynaptic action of GABA and the slow GABAB-mediated inhibitory postsynaptic current. Transmitter uptake was also found to regulate the "spill-over" of GABA at conventional GABAA synapses. These results suggest that uptake mechanisms restrict the spatial range of both point-to-point synaptic transmission mediated by GABA and its action at a distance.
Collapse
Affiliation(s)
- J S Isaacson
- Physiology Graduate Program, University of California, San Francisco 94143-0450
| | | | | |
Collapse
|
10
|
Solís JM, Nicoll RA. Postsynaptic action of endogenous GABA released by nipecotic acid in the hippocampus. Neurosci Lett 1992; 147:16-20. [PMID: 1336151 DOI: 10.1016/0304-3940(92)90764-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Intracellular and whole-cell recording from CA1 pyramidal cells and dentate granule cells was used to study the release of endogenous GABA by nipecotic acid. Local application of nipecotic acid produced responses that could be entirely blocked by a combination of the GABAA receptor antagonist picrotoxin and the GABAB receptor antagonist CGP 35348. These responses were due to the heteroexchange release of endogenous GABA because they were blocked by low Na+ which blocks the GABA transporter and by SKF 89976 which is a competitive antagonist of the GABA transporter. Local application of nipecotic acid could, depending on the location, evoke pure GABAA or pure GABAB responses supporting proposals that GABAA and GABAB receptors can be segregated at separate inhibitory synapses.
Collapse
Affiliation(s)
- J M Solís
- Department of Pharmacology, University of Califoria, San Francisco 91413-0450
| | | |
Collapse
|
11
|
Kaila K, Rydqvist B, Pasternack M, Voipio J. Inward current caused by sodium-dependent uptake of GABA in the crayfish stretch receptor neurone. J Physiol 1992; 453:627-45. [PMID: 1464849 PMCID: PMC1175577 DOI: 10.1113/jphysiol.1992.sp019248] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A two-microelectrode current-voltage clamp and Cl(-)-selective microelectrodes were used to examine the effects of gamma-aminobutyric acid (GABA) on membrane potential, current and intracellular Cl- activity (aiCl) in the crayfish stretch receptor neurone. All experimental solutions were CO2-HCO3- free. 2. GABA (500 microM) produced a mono- or biphasic depolarization (amplitude < or = 10 mV), often with a prominent initial depolarizing component followed by a transient shift to a more negative level. In some neurones, an additional depolarizing phase was seen upon washout of GABA. Receptor desensitization, being absent, played no role in the multiphasic actions of GABA. 3. The pronounced increase in membrane conductance evoked by GABA (500 microM) was associated with an increase in aiCl which indicates that the depolarizing action was not due to a current carried by Cl- ions. 4. The currents activated by GABA under voltage clamp conditions were inwardly directed when recorded at the level of the resting membrane potential, and they often revealed a biphasic character. The reversal potential of peak currents activated by pulses of 500 microM-GABA (EGABA) was 9-12 mV more positive than the reversal potential of the simultaneously measured net Cl- flux (ECl). ECl was 2-7 mV more negative than the resting membrane potential. 5. EGABA (measured using pulses of 500 microM-GABA) was about 10 mV more positive than the reversal potential of the current activated by 500 microM-muscimol, a GABA agonist that is a poor substrate of the Na(+)-dependent GABA uptake system. 6. In the absence of Na+, the depolarization and inward current caused by 500 microM-GABA were converted to a hyperpolarization and to an outward current. Muscimol produced an immediate outward current both in the presence and absence of Na+. 7. Following block of the inhibitory channels by picrotoxin (100-200 microM), the depolarizing effect of 500 microM-GABA was enhanced and the transient hyperpolarizing shifts were abolished. 8. In the presence of picrotoxin, GABA (> or = 2 microM) produced a concentration-dependent monophasic inward current which had a reversal potential of +30 to +60 mV. This current was inhibited in the absence of Na+ and by the GABA uptake blocker, nipecotic acid. Unlike the channel-mediated current, the picrotoxin-insensitive current was activated without delay also at low (2-10 microM) concentrations of GABA.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- K Kaila
- Department of Zoology, University of Helsinki, Finland
| | | | | | | |
Collapse
|
12
|
|
13
|
Silva-Barrat C, Champagnat J, Brailowsky S, Menini C, Naquet R. Relationship between tolerance to GABAA agonist and bursting properties in neocortical neurons during GABA-withdrawal syndrome. Brain Res 1989; 498:289-98. [PMID: 2790484 DOI: 10.1016/0006-8993(89)91107-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The interruption of intracortical, chronic GABA infusion is known to give rise to 'GABA withdrawal syndrome' (GWS) consisting of electroencephalographic paroxysmal focal activities, associated with behavioral epileptic signs. Neocortical slices were obtained from rats presenting the GWS (GWS slices), and intracellular recordings were performed in the vicinity of the gamma-aminobutyric acid (GABA)-infused site. Electrical stimulation of the underlying white matter induced paroxysmal depolarization shifts (PDSs) in virtually all neurons. Bath-applied GABA (1-10 microM) had no effect on these neurons, while the same dose range was found effective in blocking action potentials in saline-infused cortex slices obtained from control rats. In the GWS slices a population of neurons presented, in addition to synaptically induced PDSs, voltage-dependent and cobalt-sensitive PDSs and bursts of action potentials induced by depolarizing current injections. These intrinsic bursting neurons were unresponsive to high doses of GABA (100 microM). Dose-response curves of isoguvacine, a specific GABAA agonist, showed a shift to the right for the intrinsic bursting cells whatever the parameter measured (depolarization or conductance increase): the ED50 was 50-100 times higher for intrinsic bursting cells than for other non-intrinsic bursting cells, thus indicating that intrinsic bursting cells are tolerant to GABAA agonist. This tolerance may result from a decreased number of receptors or from a change in their properties as a consequence of the previous prolonged GABA infusion. The decrease in the GABA efficacy could lead to disinhibition and could thus give the appearance of epileptic events.
Collapse
Affiliation(s)
- C Silva-Barrat
- Laboratoire de Physiologie Nerveuse, C.N.R.S., Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
14
|
Babb TL, Pretorius JK, Kupfer WR, Brown WJ. Distribution of glutamate-decarboxylase-immunoreactive neurons and synapses in the rat and monkey hippocampus: light and electron microscopy. J Comp Neurol 1988; 278:121-38. [PMID: 3209750 DOI: 10.1002/cne.902780108] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We have studied the distribution of gamma-aminobutyric acid (GABA) neurons, axons, and synapses in the rat and monkey hippocampal formation by using glutamate decarboxylase (GAD) immunocytochemistry together with Nissl stains, electron microscopy, and double-labeled retrograde transport of horseradish peroxidase. The numbers of GAD-containing (putative GABA) neurons and their percentages compared to all Nissl-stained neurons were calculated throughout all the various fields and strata of the mammalian hippocampus. Although their numbers are greatest in the polymorph region of the fascia dentata (FD) and in the principal cell layers stratum pyramidale (SP) and stratum granulosum (SG), GAD immunoreactive (GAD-IR) cells are numerous in other strata that contain mostly dendrites and scattered cells. These GAD-IR (putative GABA) neurons in dendritic regions may be involved in feedforward dendritic inhibition or may directly inhibit nearby neurons. We used a postmortem delay technique, which resulted in apparent diffusion of GAD into dendrites and axons and allowed better visualization of the extensive dendritic domain of GAD-IR neurons. Computerized image analysis of GAD-IR puncta indicated that putative GABA terminals were numerous on apical and basilar dendrites of all pyramidal cells but unexpectedly highest in the monkey presubiculum. In the rat, GAD-IR neurons projected axons ipsilaterally from every region to the fascia dentata and CA1; however, commissural GAD-IR axons to the fascia dentata arose from GAD-IR neurons in only the contralateral fascia dentata and subiculum. Electron microscopy of GAD-stained hippocampus identified GAD-IR neurons with non-GAD-IR (possibly excitatory) synapses and GAD-IR terminals on somata and dendrites, 80% being the symmetric type and 20% the asymmetric type. In contrast, non-GAD-IR terminals were asymmetric 80% of the time.
Collapse
Affiliation(s)
- T L Babb
- Department of Neurology, University of California, Los Angeles 90024
| | | | | | | |
Collapse
|
15
|
Sivilotti L. Nipecotic acid enhances synaptic transmission in the frog optic tectum by an action independent of GABA uptake inhibition. Neurosci Lett 1988; 88:107-12. [PMID: 2840608 DOI: 10.1016/0304-3940(88)90323-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In the frog optic tectum maintained in vitro at 7 degrees C to depress gamma-aminobutyric acid (GABA) transport systems the GABA uptake inhibitor nipecotic acid reversibly enhanced field potentials evoked by optic nerve stimulation. This effect was dose dependent and picrotoxin sensitive. Responses to low concentrations of GABA agonists were not affected by nipecotic acid, whereas responses to the maximal muscimol concentration were depressed. It is suggested that in addition to its well known inhibitory action on GABA uptake systems, nipecotic acid can evoke GABA mimetic effects whose precise origin is presently unclear.
Collapse
Affiliation(s)
- L Sivilotti
- Department of Pharmacology, St. Bartholomew's Hospital Medical College, London, U.K
| |
Collapse
|
16
|
KROGSGAARD-LARSEN POVL, HJEDS HANS, FALCH ERIK, JØRGENSEN FLEMMINGS, NIELSEN LONE. Recent Advances in GABA Agonists, Antagonists and Uptake Inhibitors: Structure–Activity Relationships and Therapeutic Potential. ADVANCES IN DRUG RESEARCH 1988. [DOI: 10.1016/b978-0-12-013317-8.50009-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Bijak M. Daily changes in the mouse cingulate cortex responsivity to neurotransmitters and depolarizing medium: an extracellular in vitro study. GENERAL PHARMACOLOGY 1988; 19:107-11. [PMID: 2894331 DOI: 10.1016/0306-3623(88)90014-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
1. The reaction of the mouse cingulate cortex neurons to the applied substances, measured as changes in the spontaneous activity, was investigated for daily variations in the in vitro slice preparation. 2. Glutamate- and GABA-evoked excitation and inhibition, respectively, were followed by long-lasting after-effects which showed greater potency in slices prepared in the evening. 3. Acetylcholine evoked excitation, inhibition and multiphasic effects. The incidence of an excitatory reaction prevailed in slices prepared in the evening. 4. The majority of cells studied in the evening were inhibited after application of a depolarizing medium, while in the morning the reaction was equally divided between excitation and inhibition. 5. The obtained results suggest that a day-night modulation is imposed upon the reactivity of the cingulate cortex neurons, and that daily changes in the reactivity are observed in vitro.
Collapse
Affiliation(s)
- M Bijak
- Polish Academy of Sciences, Institute of Pharmacology, Kraków
| |
Collapse
|
18
|
|
19
|
Bakke HK, Murison R, Walther B. Effect of central noradrenaline depletion on corticosterone levels and gastric ulcerations in rats. Brain Res 1986; 368:256-61. [PMID: 3697726 DOI: 10.1016/0006-8993(86)90569-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Effects of central noradrenergic depletion on the stress responses of rats were explored using the new selective neurotoxin (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4)). Noradrenergic depletion using DSP-4 was followed by a reduction in basal corticosterone levels after 7 days. Three weeks after DSP-4 treatment, animals exhibited less severe and fewer gastric ulcerations than control animals following 23 h immobilization stress, but stress levels of corticosterone were similar for the two groups. No differences could be found in the peripheral gastric levels of noradrenaline between experimental and control animals, while central noradrenaline was reduced to approximately 30% of control levels. The data support previous findings using other methods that central noradrenaline is an important factor in stress-induced gastric ulceration. The peripheral mechanisms for the protective effects of DSP-4 remain to be elucidated, and studies of these may cast light on the efferent pathways between the central nervous system and gastric mucosa which are involved in stress-induced gastric pathology.
Collapse
|
20
|
Abstract
In rats under urethane, iontophoretic applications of GABA (30-60 nA) in the str. pyramidale of CA1, showed a rapidly fading inhibitory effect. By contrast, GABA had a well-maintained inhibitory effect in str. radiatum. During iontophoresis of nipecotic acid (30-85 nA) identical applications of GABA in str. pyramidale caused a more prominent depression without fading, which suggests that removal of GABA, by uptake, can at least in part account for 'fading'. Nipecotic acid also prolonged the paired-pulse inhibition, presumably by prolonging the duration of inhibitory postsynaptic potentials.
Collapse
|
21
|
Dalkara T, Krnjević K, Ropert N, Yim CY. Chemical modulation of ephaptic activation of CA3 hippocampal pyramids. Neuroscience 1986; 17:361-70. [PMID: 2871519 DOI: 10.1016/0306-4522(86)90252-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In rats under urethane anaesthesia, antidromic population spikes were evoked in CA3 pyramidal layer by fimbrial/commissural stimulation at a very low frequency (approximately 0.5 Hz). Submaximal population spikes--between 20 and 90% of maximum--were enhanced by 8-38% by applications of acetylcholine and bicuculline, or by medial septal stimulation. Noradrenaline had a less pronounced and regular facilitatory action, whereas gamma-aminobutyrate and glutamate only depressed population spikes. Maximal enhancement by acetylcholine or bicuculline was observed when the antidromic population spike was initially at 38-53% of maximum amplitude. A simple explanation of these results is that acetylcholine and bicuculline, by raising their excitability, facilitate the excitation of non-invaded pyramidal cells by antidromic field potentials. They are fully in keeping with previous intracellular observations on ephaptic interactions between CA3 neurons, and provide a further illustration, in situ, of the importance of increased excitability and disinhibition--whether caused by drugs or synaptic action--in promoting synchronized excitation by ephaptic currents.
Collapse
|
22
|
Artemenko DP, Gerasimov VD. Gaba sensitivity of the somata and dendrites of pyramidal cells in isolated slices of rat hippocampus. NEUROPHYSIOLOGY+ 1986. [DOI: 10.1007/bf01053386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Thalmann RH, Hershkowitz N. Some factors that influence the decrement in the response to GABA during its continuous iontophoretic application to hippocampal neurons. Brain Res 1985; 342:219-33. [PMID: 4041822 DOI: 10.1016/0006-8993(85)91120-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The response decrement that occurs during continuous iontophoretic application of GABA to hippocampal neurons was characterized by intracellular methods in the rat hippocampal slice. Using several paradigms that compared the responses to GABA with those to poorly transported analogues, we then identified a large component of this decrement that appeared to be independent of GABA uptake and metabolism, and that is probably independent of intracellular chloride accumulation as well. This decrement, which both developed and recovered with half times that average between 3 and 5s, is too brief to directly account for long-term plasticity of the GABA synapse. However, its time course is appropriate to participation in the development of cellular responses to brief flurries of GABA-mediated inhibitory postsynaptic potentials that may occur normally, or that may occur abnormally during a seizure or artificial tetany.
Collapse
|
24
|
Dingledine R, Korn SJ. Gamma-aminobutyric acid uptake and the termination of inhibitory synaptic potentials in the rat hippocampal slice. J Physiol 1985; 366:387-409. [PMID: 2414435 PMCID: PMC1193039 DOI: 10.1113/jphysiol.1985.sp015804] [Citation(s) in RCA: 114] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Intracellular recordings were made from CA1 pyramidal cells in the rat hippocampal slice to study the processes that influence the time course of inhibitory post-synaptic potentials (i.p.s.p.s) mediated by gamma-aminobutyric acid (GABA), and conductance changes evoked by ionophoretically applied GABA. The GABA-uptake inhibitors, nipecotic acid and cis-4-OH-nipecotic acid (1 mM), greatly prolonged conductance increases associated with both hyperpolarizing and depolarizing responses to ionophoretically applied GABA. In contrast to their effects on GABA-evoked conductances, uptake inhibitors only slightly prolonged antidromically evoked i.p.s.p.s. Their primary effect occurred after the i.p.s.p. had decayed to 5-30% of its peak. 4-OH-isonipecotic acid, a nipecotic acid analogue that does not inhibit GABA uptake, did not prolong i.p.s.p.s or ionophoretically evoked conductance changes. Sodium pentobarbitone (100 microM), a drug that prolongs the open time of GABA-activated chloride channels, potentiated both i.p.s.p.s and responses to ionophoretically applied GABA. Whereas pentobarbitone also prolonged i.p.s.p.s, it did not prolong responses to ionophoretically applied GABA. The prolongation of i.p.s.p.s by pentobarbitone occurred equally in both the early and late phases of the i.p.s.p., in contrast to the effects of GABA-uptake inhibitors. I.p.s.p.s did not usually decay exponentially. The observation that uptake inhibitors prolonged the late but not the early decay phase of the i.p.s.p., together with the previous finding that the conductance change persists for the duration of the i.p.s.p., indicate that GABA is present in the synapse throughout much of the i.p.s.p. These data suggest that diffusion of GABA out of the synapse, a non-exponential process, is an important determinant of the i.p.s.p. decay time course. Increasing the extracellular potassium concentration from 3.5 to 8.5 mM resulted in spontaneously occurring, synchronous burst firing of pyramidal cells. Cis-4-OH-nipecotic acid significantly reduced the number and amplitude of extracellularly recorded population spikes within each burst. We conclude that diffusion, channel open time and GABA uptake all influence the time course of GABA-mediated i.p.s.p.s. The time course of a single, brief i.p.s.p. is determined predominantly by post-synaptic channel kinetics and diffusion of GABA out of the synapse, whereas the inhibition produced by prolonged synaptic bursts or relatively long application of exogenous GABA can be markedly influenced by GABA uptake.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
25
|
Lerma J, Herreras O, del Rio RM. Electrophysiological evidence that nipecotic acid can be used in vivo as a false transmitter. Brain Res 1985; 335:377-80. [PMID: 2860948 DOI: 10.1016/0006-8993(85)90498-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Dentate gyrus of the rat hippocampal formation was perfused with the potent inhibitor of GABA uptake, nipecotic acid, by means of an implanted dialytrode. Evoked population spikes in dentate gyrus were decreased in amplitude and often abolished during perfusion. However, multiple (2-4) population spikes developed shortly after nipecotic acid withdrawal. This excitability increase, which presented a pattern of repetitive discharge resembling that following blocking of GABAergic transmission was interpreted as electrophysiological evidence that nipecotic acid can act as a false transmitter 'in vivo', as previously postulated from uptake and release 'in vitro' studies.
Collapse
|