1
|
Amanlou A, Eslami F, Shayan M, Mortazavi P, Dehpour AR. Anticonvulsive evaluation and histopathological survey of thalidomide synthetic analogs on lithium-pilocarpine-induced status epilepticus in rats. Res Pharm Sci 2021; 16:586-595. [PMID: 34760007 PMCID: PMC8562405 DOI: 10.4103/1735-5362.327505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/04/2021] [Accepted: 09/09/2021] [Indexed: 11/18/2022] Open
Abstract
Background and purpose: Status epilepticus is a severe neurological disorder that can be life-threatening. Thalidomide and its analogs have shown promising results to confront pentylenetetrazole-induced seizures. This study aimed to evaluate the potential effects of three synthesized thalidomide derivatives on lithium-pilocarpine-induced status epilepticus. Experimental approach: To induce status epilepticus, rats received lithium chloride (127 mg/kg, i.p.) and pilocarpine HCl (60 mg/kg, i.p.) 20 h after lithium chloride injection. Thirty min before pilocarpine HCl administration, rats received hyoscine N-butyl bromide (1 mg/kg, i.p.) and concurrently one of the test compounds (5B, 5C, and 5D), diazepam, thalidomide, or vehicle (4% DMSO) to evaluate their anti-epileptic effects. Epileptic seizures scores were assessed through the Racine scale. Twenty-four h after injection of pilocarpine, brain samples were extracted for further histopathological evaluation. Findings/Results: Results revealed that among tested compounds (5B, 5C, and 5D), only compound 5C (1 mg/kg) exhibited excellent anti-epileptic activity comparable to diazepam (10 mg/kg). Compound 5D (100 mg/kg) only demonstrated comparable anti-epileptic activity to thalidomide (1 mg/kg). Compound 5B did not have any anti-epileptic activity even at the dose of 100 mg/kg. The histopathological survey showed that compound 5C has more neuroprotective effects than diazepam and thalidomide in the cortex of the brain. In the cornu ammonis 1 region, thalidomide had higher protective properties and in the cornu ammonis 3 and dentate gyrus areas, diazepam had higher efficacy to prevent necrosis. Conclusion and implications: Compound 5C is a good candidate for further studies regarding its potency, compared to thalidomide and diazepam.
Collapse
Affiliation(s)
- Arash Amanlou
- Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, I.R. Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, I.R. Iran
| | - Faezeh Eslami
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, I.R. Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. Iran
| | - Maryam Shayan
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, I.R. Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. Iran
| | - Pejman Mortazavi
- Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, I.R. Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, I.R. Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. Iran
| |
Collapse
|
2
|
Upaganlawar AB, Wankhede NL, Kale MB, Umare MD, Sehgal A, Singh S, Bhatia S, Al-Harrasi A, Najda A, Nurzyńska-Wierdak R, Bungau S, Behl T. Interweaving epilepsy and neurodegeneration: Vitamin E as a treatment approach. Biomed Pharmacother 2021; 143:112146. [PMID: 34507113 DOI: 10.1016/j.biopha.2021.112146] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 12/29/2022] Open
Abstract
Epilepsy is the most common neurological disorder, affecting nearly 50 million people worldwide. The condition can be manifested either due to genetic predisposition or acquired from acute insult which leads to alteration of cellular and molecular mechanisms. Evaluating the latest and the current knowledge in regard to the mechanisms underlying molecular and cellular alteration, hyperexcitability is a consequence of an imbalanced state wherein enhance excitatory glutamatergic and reduced inhibitory GABAergic signaling is considered to be accountable for seizures associated damage. However, neurodegeneration contributing to epileptogenesis has become increasingly appreciated. The components at the helm of neurodegenerative alterations during epileptogenesis include GABAergic neuronal and receptor changes, neuroinflammation, alteration in axonal transport, oxidative stress, excitotoxicity, and other cellular as well as functional changes. Targeting neurodegeneration with vitamin E as an antioxidant, anti-inflammatory and neuroprotective may prove to be one of the therapeutic approaches useful in managing epilepsy. In this review, we discuss and converse about the seizure-induced episodes as a link for the development of neurodegenerative and pathological consequences of epilepsy. We also put forth a summary of the potential intervention with vitamin E therapy in the management of epilepsy.
Collapse
Affiliation(s)
- Aman B Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra, India
| | - Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Mohit D Umare
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Agnieszka Najda
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences, Lublin, Poland.
| | | | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Romania
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
3
|
Ahmed Juvale II, Che Has AT. The evolution of the pilocarpine animal model of status epilepticus. Heliyon 2020; 6:e04557. [PMID: 32775726 PMCID: PMC7393986 DOI: 10.1016/j.heliyon.2020.e04557] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/05/2020] [Accepted: 07/22/2020] [Indexed: 02/02/2023] Open
Abstract
The pilocarpine animal model of status epilepticus is a well-established, clinically translatable model that satisfies all of the criteria essential for an animal model of status epilepticus: a latency period followed by spontaneous recurrent seizures, replication of behavioural, electrographic, metabolic, and neuropathological changes, as well as, pharmacoresistance to anti-epileptic drugs similar to that observed in human status epilepticus. However, this model is also characterized by high mortality rates and studies in recent years have also seen difficulties in seizure induction due to pilocarpine resistant animals. This can be attributed to differences in rodent strains, species, gender, and the presence of the multi-transporter, P-glycoprotein at the blood brain barrier. The current paper highlights the various alterations made to the original pilocarpine model over the years to combat both the high mortality and low induction rates. These range from the initial lithium-pilocarpine model to the more recent Reduced Intensity Status Epilepticus (RISE) model, which finally brought the mortality rates down to 1%. These modifications are essential to improve animal welfare and future experimental outcomes.
Collapse
Affiliation(s)
- Iman Imtiyaz Ahmed Juvale
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
4
|
Guerriero RM, Gaillard WD. Imaging modalities to diagnose and localize status epilepticus. Seizure 2019; 68:46-51. [DOI: 10.1016/j.seizure.2018.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 01/07/2023] Open
|
5
|
Ruangkittisakul A, Sharopov S, Kantor C, Kuribayashi J, Mildenberger E, Luhmann H, Kilb W, Ballanyi K. Methylxanthine-evoked perturbation of spontaneous and evoked activities in isolated newborn rat hippocampal networks. Neuroscience 2015; 301:106-20. [DOI: 10.1016/j.neuroscience.2015.05.069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/11/2015] [Accepted: 05/27/2015] [Indexed: 11/29/2022]
|
6
|
Fujikawa DG. The role of excitotoxic programmed necrosis in acute brain injury. Comput Struct Biotechnol J 2015; 13:212-21. [PMID: 25893083 PMCID: PMC4398818 DOI: 10.1016/j.csbj.2015.03.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 03/19/2015] [Accepted: 03/21/2015] [Indexed: 12/20/2022] Open
Abstract
Excitotoxicity involves the excessive release of glutamate from presynaptic nerve terminals and from reversal of astrocytic glutamate uptake, when there is excessive neuronal depolarization. N-methyl-d-aspartate (NMDA) receptors, a subtype of glutamate receptor, are activated in postsynaptic neurons, opening their receptor-operated cation channels to allow Ca2 + influx. The Ca2 + influx activates two enzymes, calpain I and neuronal nitric oxide synthase (nNOS). Calpain I activation produces mitochondrial release of cytochrome c (cyt c), truncated apoptosis-inducing factor (tAIF) and endonuclease G (endoG), the lysosomal release of cathepsins B and D and DNase II, and inactivation of the plasma membrane Na+–Ca2 + exchanger, which add to the buildup of intracellular Ca2 +. tAIF is involved in large-scale DNA cleavage and cyt c may be involved in chromatin condensation; endoG produces internucleosomal DNA cleavage. The nuclear actions of the other proteins have not been determined. nNOS forms nitric oxide (NO), which reacts with superoxide (O2−) to form peroxynitrite (ONOO−). These free radicals damage cellular membranes, intracellular proteins and DNA. DNA damage activates poly(ADP-ribose) polymerase-1 (PARP-1), which produces poly(ADP-ribose) (PAR) polymers that exit nuclei and translocate to mitochondrial membranes, also releasing AIF. Poly(ADP-ribose) glycohydrolase hydrolyzes PAR polymers into ADP-ribose molecules, which translocate to plasma membranes, activating melastatin-like transient receptor potential 2 (TRPM-2) channels, which open, allowing Ca2 + influx into neurons. NADPH oxidase (NOX1) transfers electrons across cellular membranes, producing O2−. The result of these processes is neuronal necrosis, which is a programmed cell death that is the basis of all acute neuronal injury in the adult brain.
Collapse
|
7
|
Zhao Y, Spigolon G, Bonny C, Culman J, Vercelli A, Herdegen T. The JNK inhibitor D-JNKI-1 blocks apoptotic JNK signaling in brain mitochondria. Mol Cell Neurosci 2011; 49:300-10. [PMID: 22206897 DOI: 10.1016/j.mcn.2011.12.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 11/19/2011] [Accepted: 12/14/2011] [Indexed: 02/08/2023] Open
Abstract
Kainic acid (KA) induced seizures provokes an extensive neuronal degeneration initiated by c-Jun N-terminal kinases (JNK) as central mediators of excitotoxicity. However, the actions of their individual isoforms in cellular organelles including mitochondria remain to be elucidated. Here, we have studied the activation of JNK1, JNK2 and JNK3 and their activators, mitogen-activated protein kinase kinase (MKK) 4/7, in brain mitochondria, cytosolic and nuclear fractions after KA seizures. In the mitochondrial fraction, KA significantly increased the presence of JNK1, JNK3 and MKK4 and stimulated their phosphorylation i.e. activation. The pro-apoptotic proteins, Bim and Bax were induced and, consequently, the ratio Bcl-2-Bax decreased. These changes were paralleled by the release of cytochrome c and cleavage of poly(ADP-ribose)-polymerase (PARP). The JNK peptide inhibitor, D-JNKI-1 (XG-102) reversed these pathological events in the mitochondria and almost completely abolished cytochrome c release and PARP cleavage. Importantly, JNK3, but not JNK1 or JNK2, was associated with Bim in mitochondria and D-JNKI-1 prevented the formation of this apoptotic complex. Apart from of the attenuation of c-Jun phosphorylation in the nucleus, D-JNKI-1 did not affect the level of JNK3 isoform in the nuclear and cytosolic fractions. These findings provide novel insights into the mode of action of individual JNK isoforms in cell organelles and points to the JNK3 pool in mitochondria as a target of the JNK inhibitor D-JNKI-1 to confer neuroprotection.
Collapse
Affiliation(s)
- Yi Zhao
- Institute for Experimental and Clinical Pharmacology, University Hospital of Schleswig-Holstein, Campus Kiel, Hospital Strasse 4, 24105 Kiel, Germany
| | | | | | | | | | | |
Collapse
|
8
|
Tumor necrosis factor-α (TNF-α) augments AMPA-induced Purkinje neuron toxicity. Brain Res 2011; 1386:1-14. [DOI: 10.1016/j.brainres.2011.01.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 01/17/2011] [Accepted: 01/19/2011] [Indexed: 11/23/2022]
|
9
|
Sugiura Y, Taguchi R, Setou M. Visualization of spatiotemporal energy dynamics of hippocampal neurons by mass spectrometry during a kainate-induced seizure. PLoS One 2011; 6:e17952. [PMID: 21445350 PMCID: PMC3062556 DOI: 10.1371/journal.pone.0017952] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 02/18/2011] [Indexed: 11/18/2022] Open
Abstract
We report the use of matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry combined with capillary electrophoresis (CE) mass spectrometry to visualize energy metabolism in the mouse hippocampus by imaging energy-related metabolites. We show the distribution patterns of ATP, ADP, and AMP in the hippocampus as well as changes in their amounts and distribution patterns in a murine model of limbic, kainate-induced seizure. As an acute response to kainate administration, we found massive and moderate reductions in ATP and ADP levels, respectively, but no significant changes in AMP levels--especially in cells of the CA3 layer. The results suggest the existence of CA3 neuron-selective energy metabolism at the anhydride bonds of ATP and ADP in the hippocampal neurons during seizure. In addition, metabolome analysis of energy synthesis pathways indicates accelerated glycolysis and possibly TCA cycle activity during seizure, presumably due to the depletion of ATP. Consistent with this result, the observed energy depletion significantly recovered up to 180 min after kainate administration. However, the recovery rate was remarkably low in part of the data-pixel population in the CA3 cell layer region, which likely reflects acute and CA3-selective neural death. Taken together, the present approach successfully revealed the spatiotemporal energy metabolism of the mouse hippocampus at a cellular resolution--both quantitatively and qualitatively. We aim to further elucidate various metabolic processes in the neural system.
Collapse
Affiliation(s)
- Yuki Sugiura
- Department of Molecular Anatomy, Hamamatsu Medical School, Higashi-ku, Hamamatsu, Shizuoka, Japan
| | - Ryo Taguchi
- Department of Metabolome, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Mitsutoshi Setou
- Department of Molecular Anatomy, Hamamatsu Medical School, Higashi-ku, Hamamatsu, Shizuoka, Japan
- * E-mail:
| |
Collapse
|
10
|
Auer RN. Histopathology of Cerebral Ischemia. Stroke 2011. [DOI: 10.1016/b978-1-4160-5478-8.10005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Waldbaum S, Liang LP, Patel M. Persistent impairment of mitochondrial and tissue redox status during lithium-pilocarpine-induced epileptogenesis. J Neurochem 2010; 115:1172-82. [PMID: 21219330 DOI: 10.1111/j.1471-4159.2010.07013.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Mitochondrial dysfunction and oxidative stress are known to occur following acute seizure activity but their contribution during epileptogenesis is largely unknown. The goal of this study was to determine the extent of mitochondrial oxidative stress, changes to redox status, and mitochondrial DNA (mtDNA) damage during epileptogenesis in the lithium-pilocarpine model of temporal lobe epilepsy. Mitochondrial oxidative stress, changes in tissue and mitochondrial redox status, and mtDNA damage were assessed in the hippocampus and neocortex of Sprague-Dawley rats at time points (24h to 3months) following lithium-pilocarpine administration. A time-dependent increase in mitochondrial hydrogen peroxide (H(2)O(2)) production coincident with increased mtDNA lesion frequency in the hippocampus was observed during epileptogenesis. Acute increases (24-48h) in H(2)O(2) production and mtDNA lesion frequency were dependent on the severity of convulsive seizure activity during initial status epilepticus. Tissue levels of GSH, GSH/GSSG, coenzyme A (CoASH), and CoASH/CoASSG were persistently impaired at all measured time points throughout epileptogenesis, that is, acutely (24-48h), during the 'latent period' (48h to 7days), and chronic epilepsy (21days to 3months). Together with our previous work, these results demonstrate the model independence of mitochondrial oxidative stress, genomic instability, and persistent impairment of mitochondrial specific redox status during epileptogenesis. Lasting impairment of mitochondrial and tissue redox status during the latent period, in addition to the acute and chronic phases of epileptogenesis, suggests that redox-dependent processes may contribute to the progression of epileptogenesis in experimental temporal lobe epilepsy.
Collapse
Affiliation(s)
- Simon Waldbaum
- Department of Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | | | | |
Collapse
|
12
|
Yeon JA, Kim SJ. Neuroprotective Effect of Taurine against Oxidative Stress-Induced Damages in Neuronal Cells. Biomol Ther (Seoul) 2010. [DOI: 10.4062/biomolther.2010.18.1.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
13
|
Waldbaum S, Patel M. Mitochondria, oxidative stress, and temporal lobe epilepsy. Epilepsy Res 2010; 88:23-45. [PMID: 19850449 PMCID: PMC3236664 DOI: 10.1016/j.eplepsyres.2009.09.020] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 09/18/2009] [Accepted: 09/22/2009] [Indexed: 10/20/2022]
Abstract
Mitochondrial oxidative stress and dysfunction are contributing factors to various neurological disorders. Recently, there has been increasing evidence supporting the association between mitochondrial oxidative stress and epilepsy. Although certain inherited epilepsies are associated with mitochondrial dysfunction, little is known about its role in acquired epilepsies such as temporal lobe epilepsy (TLE). Mitochondrial oxidative stress and dysfunction are emerging as key factors that not only result from seizures, but may also contribute to epileptogenesis. The occurrence of epilepsy increases with age, and mitochondrial oxidative stress is a leading mechanism of aging and age-related degenerative disease, suggesting a further involvement of mitochondrial dysfunction in seizure generation. Mitochondria have critical cellular functions that influence neuronal excitability including production of adenosine triphosphate (ATP), fatty acid oxidation, control of apoptosis and necrosis, regulation of amino acid cycling, neurotransmitter biosynthesis, and regulation of cytosolic Ca(2+) homeostasis. Mitochondria are the primary site of reactive oxygen species (ROS) production making them uniquely vulnerable to oxidative stress and damage which can further affect cellular macromolecule function, the ability of the electron transport chain to produce ATP, antioxidant defenses, mitochondrial DNA stability, and synaptic glutamate homeostasis. Oxidative damage to one or more of these cellular targets may affect neuronal excitability and increase seizure susceptibility. The specific targeting of mitochondrial oxidative stress, dysfunction, and bioenergetics with pharmacological and non-pharmacological treatments may be a novel avenue for attenuating epileptogenesis.
Collapse
Affiliation(s)
- Simon Waldbaum
- Department of Pharmaceutical Sciences University of Colorado Denver School of Pharmacy Aurora, CO 80045 U.S.A
| | - Manisha Patel
- Department of Pharmaceutical Sciences University of Colorado Denver School of Pharmacy Aurora, CO 80045 U.S.A
| |
Collapse
|
14
|
Kienzler F, Norwood BA, Sloviter RS. Hippocampal injury, atrophy, synaptic reorganization, and epileptogenesis after perforant pathway stimulation-induced status epilepticus in the mouse. J Comp Neurol 2009; 515:181-96. [PMID: 19412934 DOI: 10.1002/cne.22059] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Prolonged dentate granule cell discharges produce hippocampal injury and chronic epilepsy in rats. In preparing to study this epileptogenic process in genetically altered mice, we determined whether the background strain used to generate most genetically altered mice, the C57BL/6 mouse, is vulnerable to stimulation-induced seizure-induced injury. This was necessary because C57BL/6 mice are reportedly resistant to the neurotoxic effects of kainate-induced seizures, which we hypothesized to be related to strain differences in kainate's effects, rather than genetic differences in intrinsic neuronal vulnerability. Bilateral perforant pathway stimulation-induced granule cell discharge for 4 hours under urethane anesthesia produced degeneration of glutamate receptor subunit 2 (GluR2)-positive hilar mossy cells and peptide-containing interneurons in both FVB/N (kainate-vulnerable) and C57BL/6 (kainate-resistant) mice, indicating no strain differences in neuronal vulnerability to seizure activity. Granule cell discharge for 2 hours in C57BL/6 mice destroyed most GluR2-positive dentate hilar mossy cells, but not peptide-containing hilar interneurons, indicating that mossy cells are the neurons most vulnerable to this insult. Stimulation for 24 hours caused extensive hippocampal neuron loss and injury to the septum and entorhinal cortex, but no other detectable damage. Mice stimulated for 24 hours developed hippocampal sclerosis, granule cell mossy fiber sprouting, and chronic epilepsy, but not the granule cell layer hypertrophy (granule cell dispersion) produced by intrahippocampal kainate. These results demonstrate that perforant pathway stimulation in mice reliably reproduces the defining features of human mesial temporal lobe epilepsy with hippocampal sclerosis. Experimental studies in transgenic or knockout mice are feasible if electrical stimulation is used to produce controlled epileptogenic insults.
Collapse
Affiliation(s)
- Friederike Kienzler
- Departments of Pharmacology and Neurology, University of Arizona College of Medicine, Tucson, Arizona 85724, USA
| | | | | |
Collapse
|
15
|
|
16
|
Niquet J, Auvin S, Archie M, Seo DW, Allen S, Sankar R, Wasterlain CG. Status Epilepticus Triggers Caspase-3 Activation and Necrosis in the Immature Rat Brain. Epilepsia 2007; 48:1203-6. [PMID: 17441993 DOI: 10.1111/j.1528-1167.2007.01102.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The mode and mechanism of neuronal death induced by status epilepticus (SE) in the immature brain have not been fully characterized. In this study, we analyzed the contribution of neuronal necrosis and caspase-3 activation to CA1 damage following lithium-pilocarpine SE in P14 rat pups. By electron microscopy, many CA1 neurons displayed evidence of early necrosis 6 hours following SE, and the full ultrastructural features of necrosis at 24-72 hours. Caspase-3 was activated in injured (acidophilic) neurons 24 hours following SE, raising the possibility that they died by caspase-dependent "programmed" necrosis.
Collapse
Affiliation(s)
- Jerome Niquet
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Farahvar A, Meisami E. Novel two-dimensional morphometric maps and quantitative analysis reveal marked growth and structural recovery of the rat hippocampal regions from early hypothyroid retardation. Exp Neurol 2007; 204:541-55. [PMID: 17261283 PMCID: PMC1924968 DOI: 10.1016/j.expneurol.2006.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Accepted: 10/23/2006] [Indexed: 11/30/2022]
Abstract
Effects of postnatal hypothyroidism and recovery from this condition on regional growth of the rat hippocampus (HC) were studied using two-dimensional (2D) foldout, morphometric maps of HC and its constituent CA1-CA4 regions. The maps were derived from unfolding serial coronal sections of the rat forebrain, consisting of the entire rostrocaudal extent of HC pyramidal cell layer in the normal control and hypothyroid weanling (P25, postnatal day 25) and young adult (P90) male rats, as well as animals allowed to recover from hypothyroid-induced growth retardation at weaning. The maps revealed novel views of HC regions for assessment of topological relationships and measurement of surface areas of the HC cortical sheet (pyramidal cell layer). In normal control P90 rats, the unfolded HC on each side extended 4 times more laterally than rostrocaudally; total HC surface area was about 40 mm(2), compared to 30 mm(2) in the weanling, indicating 35% growth from P25 to P90; CA1 took up 52% of the total HC surface area, followed by CA3 (31%) and CA2 and CA4, 8% each. Hypothyroidism resulted in significant (p<0.01) 11% and 20% reductions in the HC surface area in P25 and P90 rats, respectively; CA1 and CA4 regions suffered the most reductions while CA3 and CA2 regions the least. Recovering rats examined at P90 exhibited remarkable growth plasticity and recovery in HC regions, as evident by their near normal HC cortical surface area values, compared to age-matched controls. The 2D maps also revealed growth deficits in all HC regions of the hypothyroid rats; recovery in these parameters occurred across all dimensions, although the anterior-posterior growth was more severely affected than the mediolateral one. These results are confirmed and extended by volumetric analysis of laminar volumes of HC regions presented in a companion paper [Farahvar, A., Darwish, N., Sladek, S., Meisami, E., in press. Marked recovery of functional metabolic activity and laminar volumes in the rat hippocampus and dentate gyrus following postnatal hypothyroid growth retardation: a quantitative cytochrome oxidase study. Exp. Neurol.]. These results imply that HC regions, in contrast to whole brain, possess exceptional growth plasticity, as shown by ability to dramatically recover from early hypothyroid retardation; also 2D morphometric maps are useful tools to visualize complex and convoluted regional sheet of HC cortex and depict quantitative aspects of growth in normal and experimental conditions.
Collapse
Affiliation(s)
- Arash Farahvar
- Department of Molecular and Integrative Physiology, Medical Scholars Program, University of Illinois, 407 S. Goodwin Avenue, Urbana-Champaign, IL 61801, USA
| | | |
Collapse
|
18
|
Abstract
We examined the mechanism of neuronal necrosis induced by hypoxia, excitotoxicity or non-excitotoxic hypoxia. Our observations showed that neuronal necrosis can be an active process starting with early mitochondrial swelling, followed by cytochrome c release and caspase cascade. Energy failure and/or calcium overloading of mitochondria may trigger this sequence of events. We called this form of necrosis ‘programmed necrosis’. We discuss in this paper the contribution of another mitochondrial death factor, apoptosis-inducing factor.
Collapse
Affiliation(s)
- J Niquet
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
19
|
Fukumitsu N, Ogi S, Uchiyama M, Mori Y. Effects of diazepam on125I-iomazenil-benzodiazepine receptor binding and epileptic seizures in the El mouse. Ann Nucl Med 2006; 20:541-6. [PMID: 17134021 DOI: 10.1007/bf03026818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To investigate changes in free benzodiazepine receptor density in response to repeated, long-term administration of diazepam in epilepsy, we assessed 125I-iomazenil (125I-IMZ) binding in a mouse model. METHODS El mice were divided into two groups of 12 mice each which received either no diazepam (E1(D[-]) group) or 2 mg/kg of diazepam per week (El(D[+]) group). Nine ddY mice were used as a control. Once each week from the age of 5 to 19 weeks, the El mice received stimulation to produce epileptic seizures 20 minutes after receiving intraperitoneal injections. At 20 weeks of age, a total dose of 0.37 MBq of 125I-IMZ was injected in all mice and their brains were rapidly removed 3 hours later. The incidence of epileptic seizures at the age of 19 weeks and the autoradiograms of the brain were compared. RESULTS The incidence of epileptic seizures in response to weekly stimulation was significantly lower in the E1(D[+]) group than in the E1(D[-]) group (p < 0.001). The percent injected doses of 125I-IMZ per gram of tissue in the cortex, hippocampus and amygdala were significantly lower in the E1(D[+]) group than in the E1(D[-]) group (p < 0.05). CONCLUSION The results suggest that diazepam binds competitively to 125I-IMZ as an agonist to free benzodiazepine receptor sites in the cortex, hippocampus and amygdala and shows anticonvulsant effect in E1 mice.
Collapse
|
20
|
Meller R, Clayton C, Torrey DJ, Schindler CK, Lan JQ, Cameron JA, Chu XP, Xiong ZG, Simon RP, Henshall DC. Activation of the caspase 8 pathway mediates seizure-induced cell death in cultured hippocampal neurons. Epilepsy Res 2006; 70:3-14. [PMID: 16542823 PMCID: PMC1618926 DOI: 10.1016/j.eplepsyres.2006.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 01/06/2006] [Accepted: 02/03/2006] [Indexed: 11/21/2022]
Abstract
In response to harmful stresses, cells induce programmed cell death (PCD) or apoptosis. Seizures can induce neural damage and activate biochemical pathways associated with PCD. Since seizures trigger intracellular calcium overload, it has been presumed that the intrinsic cell death pathway mediated by mitochondrial dysfunction would modulate cell death following seizures. However, previous work suggests that the extrinsic cell death pathway may initiate the damage program. Here we investigate intrinsic versus extrinsic cell death pathway activation using caspase cleavage as a marker for activation of these pathways in a rat in vitro model of seizures. Hippocampal cells, chronically treated with kynurenic acid, had kynurenic acid withdrawn to induce seizure-like activity for 40 min. Subjecting rat hippocampal cultures to seizures increased cell death and apoptosis-like DNA fragmentation using TUNEL staining. Seizure-induced cell death was blocked by both MK801 (10 microM) and CNQX (40 microM), which suggests multiple glutamate receptors regulate seizure-induced cell death. Cleavage of the initiator caspases, caspase 8 and 12 were increased 4h following seizure, and cleavage of the quintessential executioner caspase, caspase 3 was increased 4h following seizure. In contrast, caspase 9 cleavage only increased 24h following seizure. Using an affinity labeling approach to trap activated caspases in situ, we show that caspase 8 is the apical caspase activated following seizures. Finally, we show that the caspase 8 inhibitor Ac-IETD-CHO was more effective at blocking seizure-induced cell death than the caspase 9 inhibitor Ac-LEHD-CHO. Taken together, our data suggests the extrinsic cell death pathway-associated caspase 8 is activated following seizures in vitro.
Collapse
Affiliation(s)
- R Meller
- Robert S. Dow Neurobiology Laboratories, Legacy Research, Portland, OR 97232, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Epilepsy is a common, chronic neurologic disorder characterized by recurrent unprovoked seizures. Experimental modeling and clinical neuroimaging of patients has shown that certain seizures are capable of causing neuronal death. Such brain injury may contribute to epileptogenesis, impairments in cognitive function or the epilepsy phenotype. Research into cell death after seizures has identified the induction of the molecular machinery of apoptosis. Here, the authors review the clinical and experimental evidence for apoptotic cell death pathway function in the wake of seizure activity. We summarize work showing intrinsic (mitochondrial) and extrinsic (death receptor) apoptotic pathway function after seizures, activation of the caspase and Bcl-2 families of cell death modulators and the acute and chronic neuropathologic impact of intervening in these molecular cascades. Finally, we describe evolving data on nonlethal roles for these proteins in neuronal restructuring and cell excitability that have implications for shaping the epilepsy phenotype. This review highlights the work to date on apoptosis pathway signaling during seizure-induced neuronal death and epileptogenesis, and speculates on how emerging roles in brain remodeling and excitability have enriched the number of therapeutic strategies for protection against seizure-damage and epileptogenesis.
Collapse
Affiliation(s)
- David C Henshall
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.
| | | |
Collapse
|
22
|
Chuang YC, Chang AYW, Lin JW, Hsu SP, Chan SHH. Mitochondrial Dysfunction and Ultrastructural Damage in the Hippocampus during Kainic Acid-induced Status Epilepticus in the Rat. Epilepsia 2004; 45:1202-9. [PMID: 15461674 DOI: 10.1111/j.0013-9580.2004.18204.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE Prolonged and continuous epileptic seizure (status epilepticus) results in cellular changes that lead to neuronal damage. We investigated whether these cellular changes entail mitochondrial dysfunction and ultrastructural damage in the hippocampus, by using a kainic acid (KA)-induced experimental status epilepticus model. METHODS In Sprague-Dawley rats maintained under chloral hydrate anesthesia, KA (0.5 nmol) was microinjected unilaterally into the CA3 subfield of the hippocampus to induce seizure-like hippocampal EEG activity. The activity of key mitochondrial respiratory chain enzymes in the dentate gyrus (DG), or CA1 or CA3 subfield of the hippocampus was measured 30 or 180 min after application of KA. Ultrastructure of mitochondria in those three hippocampal subfields during KA-induced status epilepticus also was examined with electron microscopy. RESULTS Microinjection of KA into the CA3 subfield of the hippocampus elicited progressive build-up of seizure-like hippocampal EEG activity. Enzyme assay revealed significant depression of the activity of nicotinamide adenine dinucleotide cytochrome c reductase (marker for Complexes I+III) in the DG, or CA1 or CA3 subfields 180 min after KA-elicited temporal lobe status epilepticus. Conversely, the activities of succinate cytochrome c reductase (marker for Complexes II+III) and cytochrome c oxidase (marker for Complex IV) remained unaltered. Discernible mitochondrial ultrastructural damage, varying from swelling to disruption of membrane integrity, also was observed in the hippocampus 180 min after hippocampal application of KA. CONCLUSIONS Our results demonstrated that dysfunction of Complex I respiratory chain enzyme and mitochondrial ultrastructural damage in the hippocampus are associated with prolonged seizure during experimental temporal lobe status epilepticus.
Collapse
Affiliation(s)
- Yao-Chung Chuang
- Department of Neurology, E-Da Hospital and I-Shou University, Kaohsiung, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
23
|
Strahlendorf J, Box C, Attridge J, Diertien J, Finckbone V, Henne WM, Medina MS, Miles R, Oomman S, Schneider M, Singh H, Veliyaparambil M, Strahlendorf H. AMPA-induced dark cell degeneration of cerebellar Purkinje neurons involves activation of caspases and apparent mitochondrial dysfunction. Brain Res 2004; 994:146-59. [PMID: 14642640 DOI: 10.1016/j.brainres.2003.09.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cerebellar Purkinje neurons (PNs) are selectively vulnerable to AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepriopionic acid)-induced delayed neurotoxicity known as dark cell degeneration (DCD) that is expressed as cytoplasmic and nuclear condensation, neuron shrinkage, and failure of physiology. The present study was initiated to determine whether AMPA-receptor-induced DCD in PNs is associated with Bax translocation to the mitochondria, cytochrome C release from the mitochondria, changes in mitochondrial potential, and activation of representative initiator and executor caspases that include caspase-9, caspase-3, and caspase-7. AMPA consistently and rapidly hyperpolarized mitochondria as reflected by an increase in MitoTracker Red CMS Ros fluorescence. Increases in Bax immunoreactivity were quantitatively and temporally variable and Bax failed to localize to mitochondria. Additionally, we observed a marked increase in immunoreactivity of cytochrome C although its release from mitochondria was not apparent. Mitochondrial membrane hyperpolarization and increases in cytochrome C immunoreactivity preceded caspase activation. Immunohistochemical analyses revealed the active form of caspases-3 and -9 were markedly and significantly increased in PNs following 30 microM AMPA, and caspase-9 activation preceded caspase-3. Increases in active caspase-7 immunoreactivity were less frequently encountered in PNs. Thus DCD shares some characteristics of apoptotic programmed cell death, but lacks typical mitochondrial pathophysiology associated with classic apoptosis. These findings suggest that AMPA-induced DCD is a form of active PCD that lies on a spectrum between classical apoptosis and passive necrosis.
Collapse
Affiliation(s)
- Jean Strahlendorf
- Department of Physiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Histopathology of Cerebral Ischemia. Stroke 2004. [DOI: 10.1016/b0-44-306600-0/50048-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
25
|
Oliveira A, Hodges H, Rezaie P. Excitotoxic lesioning of the rat basal forebrain with S-AMPA: consequent mineralization and associated glial response. Exp Neurol 2003; 179:127-38. [PMID: 12618119 DOI: 10.1016/s0014-4886(02)00012-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Regional depositions of calcium within the basal ganglia, cortex, cerebellum, and white matter and at perivascular sites have been observed in several pathological conditions. These generally indicate signs of ongoing apoptosis or necrotic processes, whereby the activation of glutamate receptors causes a rise in intracellular calcium levels leading to mineralization of neurons, and ultimately to cell death. The selective degeneration of cholinergic neurons in the basal forebrain is a major neuropathological component of Alzheimer's disease, and may result in abnormal deposition of calcium. In experimental models, selective lesions of the basal forebrain can be induced by intraparenchymal infusions of excito- or immunotoxins targeting cholinergic neurons. Excitotoxic lesions are often accompanied by calcium deposition within affected areas. In a previous study we also noted the presence of unusual deposition in areas close to the site of injections following unilateral S-AMPA-induced lesions of the basal forebrain (T. Perry, H. Hodges, and J. A. Gray, 2001, Brain Res. Bull. 54, 29-48). In this paper, we have characterized these deposits histologically and evaluated the microglial (CD11b) and astrocytic (GFAP) responses at 8 and 16 weeks following lesioning of the nucleus basalis magnocellularis with S-AMPA. The resulting deposits were heterogeneous in morphology and composed primarily of calcium. Small granular deposits were detected around blood vessels, whereas larger calcospherites were situated within the parenchyma. These deposits were more widely dispersed at 16 weeks postlesioning, affected neighboring nuclei, and displayed a progressive increase in size and frequency of occurrence. However, calcification within these regions was differentially associated with microglial and astrocytic reactivity at the two time points. Both microglial and astrocytic responses were pronounced at 8 weeks, whereas at 16 weeks, astrocytic reactivity prevailed and the microglial response was markedly attenuated. Importantly, the pattern of reactivity for microglia detected at 8 weeks was specifically localized to vulnerable nucleated areas prior to their substantial accumulation of calcium deposits, which was clearly evident by 16 weeks. We suggest that the initial microglial response could be used as a selective predictor of tissue necrosis and subsequent calcification, and that astrocytes, which form a glial scar in the affected tissues, may contribute toward the buildup of calcium deposits. The functional relevance of these findings is discussed.
Collapse
Affiliation(s)
- Alcyr Oliveira
- Department of Psychology, Institute of Psychiatry, King's College London, DeCrespigny Park, London, UK.
| | | | | |
Collapse
|
26
|
Johnson LJ, Chung W, Hanley DF, Thakor NV. Optical scatter imaging detects mitochondrial swelling in living tissue slices. Neuroimage 2002; 17:1649-57. [PMID: 12414303 DOI: 10.1006/nimg.2002.1264] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mitochondrial swelling is observed in neuronal injury and is a key event in many pathways to cell death. Currently, there is no technique for directly measuring mitochondrial size changes within living tissue slices with a field of view of several millimeters. In this paper, we test our hypothesis that Mie light-scatter theory can be used to study mitochondrial swelling in living tissue sections. Using a unique dual-angle scatter ratio (DASR) optical imaging system previously demonstrated to be sensitive to latex particle size changes and N-methyl-D-aspartate (NMDA) treatment of hippocampal slices, we studied mitochondrial swelling induced by 500 microM NMDA treatment of hippocampal slices. We observed a strong (R(2) = 0.73) and significant (P < 0.000005) correlation between the electron microscopy-determined diameters of swollen, intact mitochondria and the DASR imaging. We examined the robustness of the technique by evaluating the correlation between the dual-angle scatter ratio and the diameter of the dendrites, observed to swell, in NMDA-treated slices and found no correlation (R(2) = 0.06). The advantage of DASR imaging over electron microscopy or other methods of studying mitochondrial swelling is the sensitivity of DASR imaging to mitochondrial swelling over a large field of view (>9 mm(2)) in an intact tissue slice. This novel technique may allow for the study of regional changes in mitochondrial swelling and recovery as sequential events within a single specimen. This technique will eventually be useful in studying the efficacy of stroke and other disease therapies targeting mitochondrial swelling.
Collapse
Affiliation(s)
- Lee J Johnson
- Johns Hopkins University, School of Medicine, Department of Biomedical Engineering, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
27
|
Abstract
Pharmacological neuroprotection against the consequences of seizures can be considered as primary neuroprotection where the object is to diminish the initial insult by suppressing the seizure activity or diminishing the associated ionic fluxes (of which the entry of Na+ and Ca2+ are the most significant), and secondary neuroprotection where the target is some later event in the chain linking ionic changes to altered brain morphology or function. Thus primary neuroprotection is provided by antiepileptic drugs and compounds acting on voltage-sensitive Na+ and Ca2+ channels or on glutamate receptors (NMDA, AMPA/KA or Group I metabotropic). Secondary neuroprotection may be a result of acting on the cascade leading to necrosis (e.g. free radical scavengers, NitricOxide synthase inhibitors, CycloOxygenase-2 inhibitors) or the cascades leading to apoptosis (e.g. MAP-kinase inhibitors, caspase-3 inhibitors). Other approaches may diminish the long-term morphological and functional effects of seizures (e.g. neurotrophin-related therapies). We need improved preclinical tests for identifying novel compounds with potential for providing secondary neuroprotection and antiepileptogenesis. Clinical trials of neuroprotective agents in chronic epilepsy in adults pose major practical difficulties but the severe childhood epilepsies provide opportunities for aggressive testing of novel compounds.
Collapse
Affiliation(s)
- Brian S Meldrum
- GKT School of Biomedical Sciences, Henriette Raphael House, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
28
|
Meldrum BS. Concept of activity-induced cell death in epilepsy: historical and contemporary perspectives. PROGRESS IN BRAIN RESEARCH 2002; 135:3-11. [PMID: 12143350 DOI: 10.1016/s0079-6123(02)35003-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Selective neuronal loss following status epilepticus was first described just under 100 years ago. The acute pathology following status epilepticus was shown to be 'ischemic cell change' and was assumed to arise through hypoxia/ischemia. Less than 30 years ago it was proposed, from experiments in primates, that the selective neuronal loss in hippocampus and cortex resulted from the abnormal electrical discharges. Selectively vulnerable neurons show swollen, calcium-loaded mitochondria in the soma and focally in dendrites. Burst firing with a massive Ca2+ entry needs to be sustained for 30-120 min to produce necrotic cell death. Lesser stress may produce apoptosis or immediate early gene expression with enhanced expression of many enzymes and receptor subunits. Changes in enzyme, transporter, ion-channel or receptor function or in network properties may lead to altered vulnerability to the effects of seizures. This type of modification and the cumulative effect of oxidative damage to proteins and lipids may explain the long-term consequences of repetitive brief seizures.
Collapse
Affiliation(s)
- Brian S Meldrum
- GKT Department of Biomedical Sciences, Kings College, London, UK.
| |
Collapse
|
29
|
Garthwaite G, Garthwaite J. AMPA Neurotoxicity in Rat Cerebellar and Hippocampal Slices: Histological Evidence for Three Mechanisms. Eur J Neurosci 2002; 3:715-728. [PMID: 12106458 DOI: 10.1111/j.1460-9568.1991.tb01668.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Excitatory amino acid-induced death of central neurons may be mediated by at least two receptor types, the so-called NMDA (N-methyl-d-aspartate) and AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionate) receptors. We have studied the neurodegenerative mechanisms set in motion by AMPA receptor activation using incubated slices of 8-day-old rat cerebellum and hippocampus. In both preparations, AMPA induced a pattern of degeneration that differed markedly from the one previously shown to be elicited by NMDA. In cerebellar slices, AMPA induced the degeneration of most Purkinje cells together with a population of Golgi cells; in hippocampal slices the neurons were affected in the order CA3 > CA1 > dentate granule cells. Three mechanisms could be discerned: an acute one in which neurons (e.g. cerebellar Golgi cells) underwent a rapid degeneration; a delayed one in which the neurons (Purkinje cells and hippocampal neurons) appeared to be only mildly affected immediately after a 30 min exposure but then underwent a protracted degeneration during the postincubation period (1.5 - 3 h); and finally a slow toxicity, which took place during long (2 h) exposures to AMPA (3 - 30 microM). Although Purkinje cells were vulnerable in both cases, the efficacy of AMPA was higher for the delayed mechanism than for the slow one. The pathology displayed by the acutely destroyed Golgi neurons was a classical oedematous necrosis, whereas most neurons vulnerable to the delayed and slow mechanisms displayed a 'dark cell degeneration', whose cytological features bore a close resemblance to those of neurons irreversibly damaged by ischaemia, hypoglycaemia or status epilepticus in vivo.
Collapse
Affiliation(s)
- Giti Garthwaite
- Department of Physiology, University of Liverpool, Brownlow Hill, P.O. Box 147, Liverpool L69 3BX, UK
| | | |
Collapse
|
30
|
Suzuki M, Kudo A, Sugawara A, Yoshida K, Kubo Y, Suzuki T, Ogasawara K, Doi M, Ogawa A. Amino acid concentrations in the blood of the jugular vein and peripheral artery after traumatic brain injury: decreased release of glutamate into the jugular vein in the early phase. J Neurotrauma 2002; 19:285-92. [PMID: 11893028 DOI: 10.1089/08977150252807027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The gross behavior of excitatory amino acids in patients with traumatic brain injury (TBI), including uptake, transport, metabolism, and clearance, was investigated by analysis of the levels of 41 amino acids in the blood of the jugular vein (JV), which is the primary venous drainage conduit of the brain, and a peripheral artery. Blood samples from the JV and a peripheral artery of eight patients with TBI were collected at 6 h, 6 to 24 h, and over 24 h after TBI, and analyzed using high performance liquid chromatography. Blood samples from 101 normal subjects were also measured. The levels of glutamate (Glu), gamma-aminobutyric acid (GABA), aspartate, glutamine, and cystine deviated from the normal range, and were considered pathological. The level of Glu in the JV was significantly lower than that in the artery (p < 0.05), and the level of GABA in the JV was significantly higher than that in the artery (p < 0.01), but the other three amino acids showed no significant differences. Significantly chronological changes in the difference between the blood levels in the JV and artery were observed for Glu. Measurement of the Glu level in the JV and artery may indicate gross metabolic change in the brain following TBI.
Collapse
Affiliation(s)
- Michiyasu Suzuki
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- Nathaniel A Chuang
- Division of Neuroradiology, Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
32
|
Henshall DC, Bonislawski DP, Skradski SL, Araki T, Lan JQ, Schindler CK, Meller R, Simon RP. Formation of the Apaf-1/cytochrome c complex precedes activation of caspase-9 during seizure-induced neuronal death. Cell Death Differ 2001; 8:1169-81. [PMID: 11753565 DOI: 10.1038/sj.cdd.4400921] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2001] [Revised: 04/26/2001] [Accepted: 05/24/2001] [Indexed: 12/26/2022] Open
Abstract
In this study we examine the in vivo formation of the Apaf-1/cytochrome c complex and activation of caspase-9 following limbic seizures in the rat. Seizures were elicited by unilateral intraamygdala microinjection of kainic acid to induce death of CA3 neurons within the hippocampus of the rat. Apaf-1 was found to interact with cytochrome c within the injured hippocampus 0-24 h following seizures by co-immunoprecipitation analysis and immunohistochemistry demonstrated Apaf-1/cytochrome c co-localization. Cleavage of caspase-9 was detected approximately 4 h following seizure cessation within ipsilateral hippocampus and was accompanied by increased cleavage of the substrate Leu-Glu-His-Asp-p-nitroanilide (LEHDpNA) and subsequent strong caspase-9 immunoreactivity within neurons exhibiting DNA fragmentation. Finally, intracerebral infusion of z-LEHD-fluoromethyl ketone increased numbers of surviving CA3 neurons. These data suggest seizures induce formation of the Apaf-1/cytochrome c complex prior to caspase-9 activation and caspase-9 may be a potential therapeutic target in the treatment of brain injury associated with seizures.
Collapse
Affiliation(s)
- D C Henshall
- Robert S. Dow Neurobiology Laboratories, Legacy Research, Portland, OR 97232, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Moussa RC, Ikeda-Douglas CJ, Thakur V, Milgram NW, Gurd JW. Seizure activity results in increased tyrosine phosphorylation of the N-methyl-D-aspartate receptor in the hippocampus. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 95:36-47. [PMID: 11687275 DOI: 10.1016/s0169-328x(01)00231-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Systemic administration of kainic acid (KA) induces status epilepticus (SE) that causes neurodegeneration and may subsequently lead to spontaneous recurrent seizures. We investigated the effects of KA-induced SE on tyrosine phosphorylation and solubility properties of the NMDA receptor. Following 1 h of SE, total protein tyrosine phosphorylation was elevated in both the hippocampus and frontal cortex relative to controls. Tyrosine phosphorylation of the NMDA receptor subunits NR2A and NR2B was also enhanced following SE. Animals that received KA but did not develop SE, did not exhibit increased tyrosine phosphorylation. SE resulted in a decrease in the solubility of NMDA receptor subunits and of PSD-95 in 1% deoxycholate. In contrast, the detergent solubility of AMPA and kainate receptors was not affected. These findings demonstrate that SE alters tyrosine phosphorylation of the NMDA receptor, and indicate that the interaction of the NMDA receptor with other components of the NMDA receptor complex are altered as a consequence of seizure activity.
Collapse
Affiliation(s)
- R C Moussa
- Centre for the Neurobiology of Stress, Division of Life Sciences, University of Toronto at Scarborough, Canada
| | | | | | | | | |
Collapse
|
34
|
Naquet R. Hippocampal lesions in epilepsy: a historical review. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2001; 45:447-67. [PMID: 11130911 DOI: 10.1016/s0074-7742(01)45023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- R Naquet
- Institut de Neurobiologie Alfred Fessard, CNRS Gif sur Yvette, France
| |
Collapse
|
35
|
Parsons JT, Churn SB, Kochan LD, DeLorenzo RJ. Pilocarpine-induced status epilepticus causes N-methyl-D-aspartate receptor-dependent inhibition of microsomal Mg(2+)/Ca(2+) ATPase-mediated Ca(2+) uptake. J Neurochem 2000; 75:1209-18. [PMID: 10936204 DOI: 10.1046/j.1471-4159.2000.0751209.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Status epilepticus is associated with sustained and elevated levels of cytosolic Ca(2+). To elucidate the mechanisms associated with changes of cytosolic Ca(2+) after status epilepticus, this study was initiated to evaluate the effect of pilocarpine-induced status epilepticus on Mg(2+)/Ca(2+) ATPase-mediated Ca(2+) uptake in microsomes isolated from rat cortex, because the Ca(2+) uptake mechanism plays a major role in regulating intracellular Ca(2+) levels. The data demonstrated that the initial rate and overall Ca(2+) uptake in microsomes from pilocarpine treated animals were significantly inhibited compared with those in microsomes from saline-treated control animals. It was also shown that the inhibition of Ca(2+) uptake caused by status epilepticus was not an artifact of increased Ca(2+) release from microsomes, selective isolation of damaged microsomes from the homogenate, or decreased Mg(2+)/Ca(2+) ATPase protein in the microsomes. Pretreatment with the NMDA antagonist dizocilpine maleate blocked status epilepticus-induced inhibition of the initial rate and overall Ca(2+) uptake. The data suggest that inhibition of microsomal Mg(2+)/Ca(2+) ATPase Ca(2+) uptake is involved in NMDA-dependent deregulation of cytosolic Ca(2+) homeostasis associated with status epilepticus.
Collapse
Affiliation(s)
- J T Parsons
- Department of Neurology, Medical College of Virginia Commonwealth University, Richmond, Virginia 23298-0599, USA
| | | | | | | |
Collapse
|
36
|
Pal S, Sombati S, Limbrick DD, DeLorenzo RJ. In vitro status epilepticus causes sustained elevation of intracellular calcium levels in hippocampal neurons. Brain Res 1999; 851:20-31. [PMID: 10642824 DOI: 10.1016/s0006-8993(99)02035-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Calcium ions and calcium-dependent systems have been implicated in the pathophysiology of status epilepticus (SE). However, the dynamics of intracellular calcium ([Ca2+]i) levels during SE has not yet been studied. We have employed the hippocampal neuronal culture (HNC) model of in vitro SE that produces continuous epileptiform discharges to study spatial and dynamic changes in [Ca2+]i levels utilizing confocal laser scanning microscopy and the calcium binding dye, indo-1. During SE, the average [Ca2+]i levels increased from control levels of 150-200 nM to levels of 450-600 nM. This increased [Ca2+]i was maintained for the duration of SE. Following SE, [Ca2+]i levels gradually returned to basal values. The duration of SE was shown to affect the ability of the neuron to restore resting [Ca2+]i levels. Both N-methyl-D-aspartate (NMDA) receptor-gated and voltage-gated Ca2+ channels (VGCCs) contributed to the increased calcium entry during SE. Moreover, this elevation in [Ca2+]i occurred in both the nucleus and cytosol. These results provide the first dynamic measurement of [Ca2+]i during prolonged electrographic seizure discharges in an in vitro SE model and suggest that prolonged epileptiform discharges give rise to abnormal sustained increases in [Ca2+]i levels that may play a role in the neuronal cell damage and long-term plasticity changes associated with SE.
Collapse
Affiliation(s)
- S Pal
- Department of Neurology, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0599, USA
| | | | | | | |
Collapse
|
37
|
Blümcke I, Zuschratter W, Schewe JC, Suter B, Lie AA, Riederer BM, Meyer B, Schramm J, Elger CE, Wiestler OD. Cellular pathology of hilar neurons in Ammon's horn sclerosis. J Comp Neurol 1999; 414:437-53. [PMID: 10531538 DOI: 10.1002/(sici)1096-9861(19991129)414:4<437::aid-cne2>3.0.co;2-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In addition to functionally affected neuronal signaling pathways, altered axonal, dendritic, and synaptic morphology may contribute to hippocampal hyperexcitability in chronic mesial temporal lobe epilepsies (MTLE). The sclerotic hippocampus in Ammon's horn sclerosis (AHS)-associated MTLE, which shows segmental neuronal cell loss, axonal reorganization, and astrogliosis, would appear particularly susceptible to such changes. To characterize the cellular hippocampal pathology in MTLE, we have analyzed hilar neurons in surgical hippocampus specimens from patients with MTLE. Anatomically well-preserved hippocampal specimens from patients with AHS (n = 44) and from patients with focal temporal lesions (non-AHS; n = 20) were studied using confocal laser scanning microscopy (CFLSM) and electron microscopy (EM). Hippocampal samples from three tumor patients without chronic epilepsies and autopsy samples were used as controls. Using intracellular Lucifer Yellow injection and CFLSM, spiny pyramidal, multipolar, and mossy cells as well as non-spiny multipolar neurons have been identified as major hilar cell types in controls and lesion-associated MTLE specimens. In contrast, none of the hilar neurons from AHS specimens displayed a morphology reminiscent of mossy cells. In AHS, a major portion of the pyramidal and multipolar neurons showed extensive dendritic ramification and periodic nodular swellings of dendritic shafts. EM analysis confirmed the altered cellular morphology, with an accumulation of cytoskeletal filaments and increased numbers of mitochondria as the most prominent findings. To characterize cytoskeletal alterations in hilar neurons further, immunohistochemical reactions for neurofilament proteins (NFP), microtubule-associated proteins, and tau were performed. This analysis specifically identified large and atypical hilar neurons with an accumulation of low weight NFP. Our data demonstrate striking structural alterations in hilar neurons of patients with AHS compared with controls and non-sclerotic MTLE specimens. Such changes may develop during cellular reorganization in the epileptogenic hippocampus and are likely to contribute to the pathogenesis or maintenance of temporal lobe epilepsy.
Collapse
Affiliation(s)
- I Blümcke
- Department of Neuropathology, University of Bonn Medical Center, D-53105 Bonn, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Yiu SH, Knaus EE. Synthesis of valproate, valerate, and 1-methyl-1, 4-dihydropyridyl-3-carbonyloxy ester derivatives of Hantzsch 1,4-dihydropyridines as potential prodrugs and their evaluation as calcium channel antagonist and anticonvulsant agents. Drug Dev Res 1999. [DOI: 10.1002/(sici)1098-2299(199909)48:1<26::aid-ddr4>3.0.co;2-m] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Antonelli T, Ferraro L, Hillion J, Tomasini MC, Rambert FA, Fuxe K. Modafinil prevents glutamate cytotoxicity in cultured cortical neurons. Neuroreport 1998; 9:4209-13. [PMID: 9926875 DOI: 10.1097/00001756-199812210-00038] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The ability of modafinil (Modiodal) to protect cortical neurons from glutamate-induced degeneration was evaluated by measuring electrically evoked [3H]GABA release and [3H]GABA uptake in primary cerebral cortical cultures. In normal cells, electrical stimulation (10 Hz, 2 min) increased [3H]GABA release (FR-NER St1 = 0.77+/-0.14; St2/St1 ratio = 0.94+/-0.02). The exposure of sister cells to glutamate, reduced electrically evoked [3H]GABA release (FR-NER St1 = 0.40+/-0.05; St2/St1 ratio = 0.60+/-0.08). Modafinil (0.3-1 microM) prevented the glutamate-induced reduction of the St2/St1 ratio (0.85+/-0.11; 0.88+/-0.05, respectively). A similar protective effect was observed for [3H]GABA uptake. These findings suggest that modafinil may be neuroprotective in that it attenuates glutamate-induced excitotoxicity in cortical neurons.
Collapse
Affiliation(s)
- T Antonelli
- Department of Experimental and Clinical Medicine, University of Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
40
|
Tomasini MC, Antonelli T. Electrically evoked [3H]GABA release from cerebral cortical cultures: an in vitro approach for studying glutamate-induced neurotoxicity. Synapse 1998; 30:247-54. [PMID: 9776128 DOI: 10.1002/(sici)1098-2396(199811)30:3<247::aid-syn2>3.0.co;2-b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the present study the [3H]GABA release in the rat cerebral cortex primary cultures, kept at rest or electrically stimulated, was measured. In addition, the development of excitotoxic cell damage caused by pretreating the cells for 10 min with increasing glutamate concentrations (10-300 microM) was examined 2 and 24 h after the insult. Cellular injury was quantitatively assessed by measuring the electrically-evoked [3H] GABA release, the [3H] GABA uptake, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide staining. Trains of electrical pulses at different frequencies (2, 5, 10, and 20 Hz) applied to the cultures elicited a [3H]GABA release which was frequency related, Ca++-dependent, and tetrodotoxin sensitive. Either 2 or 24 h after glutamate exposure, the electrically evoked [3H]GABA release was reduced by glutamate in a concentration dependent manner, while [3H]GABA uptake and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide staining appeared less sensitive. The N-methyl-D-aspartate, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and metabotropic receptor antagonists were tested on 100 microM glutamate-exposed cells and a prominent N-methyl-D-aspartate receptor-mediated component was observed. The present findings indicate that the electrically-evoked [3H]GABA release from cerebral cortical cells could represent a useful approach not only to study the spike-triggered neurosecretion but also to the neuronal damage caused by glutamate, as well as to test potential neuroprotective compounds.
Collapse
Affiliation(s)
- M C Tomasini
- Department of Experimental and Clinical Medicine, University of Ferrara, Italy
| | | |
Collapse
|
41
|
Carvalho FF, Nencioni AL, Lebrun I, Sandoval MR, Dorce VA. Behavioral, electroencephalographic, and histopathologic effects of a neuropeptide isolated from Tityus serrulatus scorpion venom in rats. Pharmacol Biochem Behav 1998; 60:7-14. [PMID: 9610917 DOI: 10.1016/s0091-3057(97)00407-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The effects of intrahippocampal administration of a neuropeptide (TS-8F toxin) isolated from Tityus serrulatus scorpion venom have been determined on behavior, limbic seizures, and neuronal degeneration in rats. Behavioral observation showed orofacial automatism, wet dog shakes, and myoclonus. Concomitantly, the electroencephalographic record showed high-frequency and high-voltage spikes that evolved to seizure activity in the hippocampus and cortex. Seven days after TS-8F toxin microinjection, neuronal damage was observed in CA1 and CA2 pyramidal cells and in granular cells of the dentate gyrus. The results suggest that TS-8F toxin may be responsible, at least in part, by the epileptic effects observed with the crude venom. Thus, this toxin may be a useful tool in the study of some neurobiological process.
Collapse
Affiliation(s)
- F F Carvalho
- Laboratory of Pharmacology, School of Veterinary Medicine, São Paulo University, Butantan Institute, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
42
|
Bengzon J, Kokaia Z, Elmér E, Nanobashvili A, Kokaia M, Lindvall O. Apoptosis and proliferation of dentate gyrus neurons after single and intermittent limbic seizures. Proc Natl Acad Sci U S A 1997; 94:10432-7. [PMID: 9294228 PMCID: PMC23380 DOI: 10.1073/pnas.94.19.10432] [Citation(s) in RCA: 606] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/1997] [Accepted: 07/15/1997] [Indexed: 02/05/2023] Open
Abstract
Neuronal apoptosis was observed in the rat dentate gyrus in two experimental models of human limbic epilepsy. Five hours after one hippocampal kindling stimulation, a marked increase of in situ terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling (TUNEL) of fragmented DNA was observed in nuclei located within and on the hilar border of the granule cell layer and in the polymorphic region. Forty kindling stimulations with 5-min interval produced higher numbers of labeled nuclei compared with one stimulation. The increase of TUNEL-positive nuclei was prevented by the protein synthesis inhibitor cycloheximide but not affected by the N-methyl-D-aspartate receptor antagonist MK-801. Kainic acid-induced seizures lead to a pattern of labeling in the hippocampal formation identical to that evoked by kindling. A large proportion of cells displaying TUNEL-positive nuclei was double-labeled by the neuron-specific antigen NeuN, demonstrating the neuronal identity of apoptotic cells. Either 1 or 40 kindling stimulations also gave rise to a marked increase of the number of cells double-labeled with the mitotic marker bromodeoxyuridine and NeuN in the subgranular zone and on the hilar border of the dentate granule cell layer. The present data show that single and intermittent, brief seizures induce both apoptotic death and proliferation of dentate gyrus neurons. We hypothesize that these processes, occurring early during epileptogenesis, are primary events in the development of hippocampal pathology in animals and possibly also in patients suffering from temporal lobe epilepsy.
Collapse
Affiliation(s)
- J Bengzon
- Section of Restorative Neurology, Wallenberg Neuroscience Center, University Hospital, S-221 85 Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
43
|
Meldrum BS. First Alfred Meyer Memorial Lecture Epileptic brain damage: a consequence and a cause of seizures. Neuropathol Appl Neurobiol 1997. [DOI: 10.1111/j.1365-2990.1997.tb01201.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Kawaguchi K, Simon RP. Non-NMDA but not NMDA blockade at deep prepiriform cortex protects against hippocampal cell death in status epilepticus. Brain Res 1997; 753:152-6. [PMID: 9125442 DOI: 10.1016/s0006-8993(97)00007-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The present study investigates the role of pharmacologic blockade of NMDA (N-methyl-D-aspartate) and non-NMDA receptors at deep prepiriform cortex (area tempestas, AT) in neuronal injury during prolonged seizures in rat. Status epilepticus was induced by intravenous kainate (15 mg/kg) and neuronal death was assessed in hippocampal CA3 sector 72 h following status epilepticus. Unilateral equimolar microinjections of 2-amino-7-phosphonoheptanoic acid (AP-7), an NMDA receptor antagonist, or 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline (NBQX), a non-NMDA receptor antagonist, into AT were given prior to kainate administration. Counts of surviving cells in CA3 ipsilateral to NBQX-injected AT were significantly greater than on the contralateral control-side, but no significant difference between the AP-7-injected and saline-injected side was found. These results indicate that neurotransmission via non-NMDA receptors is more important than that via NMDA receptors at AT in the genesis of neuronal injury in hippocampus during kainate-induced status epilepticus.
Collapse
Affiliation(s)
- K Kawaguchi
- Department of Neurology, University of Pittsburgh, PA 15213, USA
| | | |
Collapse
|
45
|
Sasahira M, Lowry T, Simon RP. Neuronal injury in experimental status epilepticus in the rat: role of acidosis. Neurosci Lett 1997; 224:177-80. [PMID: 9131665 DOI: 10.1016/s0304-3940(97)00168-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Systemic and cerebral acidosis accompanies generalized tonic-clonic seizures and status epilepticus. Acidosis during status may be modified by neuromuscular paralysis, intubation and ventilation, or administration of a base, but the effect of acidosis on neuronal injury from status is uncertain. We studied the effect of acidosis, induced by hypercarbic ventilation, on heat-shock protein (HSP72) induction in rat brain as a measure of neuronal injury in experimental status epilepticus. Acidosis was found to attenuate neuronal injury, independent of its anticonvulsant effect.
Collapse
Affiliation(s)
- M Sasahira
- Department of Neurology, University of Pittsburgh Medical School, PA 15213, USA
| | | | | |
Collapse
|
46
|
Goldensohn ES, Porter RJ, Schwartzkroin PA. The American Epilepsy Society: an historic perspective on 50 years of advances in research. Epilepsia 1997; 38:124-50. [PMID: 9024195 DOI: 10.1111/j.1528-1157.1997.tb01088.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
47
|
He QP, Smith ML, Li PA, Siesjö BK. Necrosis of the substantia nigra, pars reticulate, in flurothyl-induced status epilepticus is ameliorated by the spin trap alpha phenyl-N-tert-butyl nitrone. Free Radic Biol Med 1997; 22:917-22. [PMID: 9119262 DOI: 10.1016/s0891-5849(96)00478-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The objective of the present study was to explore whether a diffusible free radical scavenger can ameliorate the pan-neurotic lesions of the substantia nigra, pars reticulate (SNPR), which are incurred in rats subjected to status epilepticus of more than 30 min duration. Vehicle-injected animals had flurothyl seizures induced for 45 min. The seizures were then terminated and the animals were recovered for 7 d to allow histopathological evaluation of the SNPR lesions. Drug-treated animals, which were otherwise treated identically, were given either 100-800 mg/ kg of dimethylthiourea (DMTU), a diffusible hydroxyl ion scavenger, or the diffusible spin trap alpha-phenyl N-tert-butyl nitrone (PBN) in a dose of 100 mg/kg i.p.. All animals given DMTU died 2 to 8 h after status epilepticus, but PBN was tolerated well by the animals. The amount of flurothyl required to sustain the electrographic seizures was identical in the vehicle- and drug-injected groups, demonstrating that PBN did not suppress seizure activity. Vehicle-injected animals had large bilateral infarcts localized to the SNPR. Of the six animals treated with PBN, one had a small, unilateral lesions, and in all other animals the SNPR had a normal histological appearance. The results strongly suggest that the pan-necrotic lesions of the SNPR incurred during ongoing seizure activity represent a free radical-mediated lesion.
Collapse
Affiliation(s)
- Q P He
- Laboratory for Experimental Brain research, University of Lund, Sweden
| | | | | | | |
Collapse
|
48
|
Sabers A, Møller A, Scheel-Krüger J, Mouritzen Dam A. No loss in total neuron number in the thalamic reticular nucleus and neocortex in the genetic absence epilepsy rats from Strasbourg. Epilepsy Res 1996; 26:45-8. [PMID: 8985685 DOI: 10.1016/s0920-1211(96)00038-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The thalamic reticular nucleus (nRt) as well as the neocortex are involved in the bilateral spike- and wave-discharge loop in genetic absence epilepsy rats from Strasbourg (GAERS). Neuron loss in different brain areas has been described in relation to epilepsy with convulsive seizures. We have previously investigated the ventrolateral/posterior nucleus of thalamus in GAERS and found no neuron loss. We applied the same efficient and unbiased stereological methods to nRt and to neocortex and again found no loss of neurons. The oscillatory properties of nRt are not related to neurons loss.
Collapse
Affiliation(s)
- A Sabers
- Department of Neurology, Hvidovre University Hospital, Copenhagen, Denmark
| | | | | | | |
Collapse
|
49
|
Yiu S, Knaus EE. Synthesis, biological evaluation, calcium channel antagonist activity, and anticonvulsant activity of felodipine coupled to a dihydropyridine-pyridinium salt redox chemical delivery system. J Med Chem 1996; 39:4576-82. [PMID: 8917646 DOI: 10.1021/jm960531r] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
3-(2-Hydroxyethyl) 5-methyl 1,4-dihydro-2,6-dimethyl-4-(2,3-dichlorophenyl)-3,5-pyridinedi-carboxyla te (7) was prepared using a modified Hantzsch reaction, which was then elaborated to 3-[2-[[(1-methyl-1,4-dihydropyrid-3-yl)carbonyl]oxy]ethyl]5-methyl 1,4-dihydro-2,6-dimethyl-4-(2,3-dichlorophenyl)-3,5-pyridinedicarboxylat e [10, felodipine-chemical delivery system (CDS)]. The equipotent 3-(2-hydroxyethyl) 7 (IC50 = 3.04 x 10(-8) M) and felodipine-CDS (10, IC50 = 3.10 x 10(-8) M) were, respectively, 2- and 21-fold less potent calcium channel antagonists than the reference drugs nimodipine (IC50 = 1.49 x 10(-8) M) and felodipine (IC50 = 1.45 x 10(-9) M). Compounds 7, 10, nimodipine, and felodipine are highly lipophilic (Kp = 236, 366, 187, and 442, respectively). 3-(2-Hydroxyethyl) 7, felodipine-CDS (10), and felodipine provided protection against maximal electroshock-induced seizures in mice but were inactive in the subcutaneous metrazol anticonvulsant screen. In vitro incubation studies of felodipine with rat plasma and 20% brain homogenates showed felodipine was very stable in both biological media. Similar incubations of felodipine-CDS showed its rate of biotransformation followed psuedo-first-order kinetics with half-lives of 15.5 h in rat plasma and 1.3 h in 20% rat brain homgenates. In vivo biodistribution of felodipine and felodipine-CDS was studied. Uptake of felodipine in brain produced a peak brain concentration of 5 micrograms/g of brain tissue at 5 min, after which it rapidly egressed from brain resulting in undetectable levels at 60 min. Peak blood concentrations of 10 occurred at about 7 min followed by a rapid decline to a near undetectable concentration by 17 min. The pyridinium salt species 9, resulting from oxidation of 10, also reached peak concentrations at about 7 min but it slowly decreased to undetectable concentrations at 2 h. 3-(2-Hydroxyethyl) 7 remained at near undetectable concentrations throughout a 2 h time period. Localization of 10 in brain provided a peak concentration of 4.2 micrograms/g of brain tissue at 5 min and then decreased to negligible concentrations at 15 min. The concentration of oxidized pyridinium species 9 in brain remained high providing detectable concentrations up to 4 days. In contrast, the concentration of the 3-(2-hydroxyethyl) hydrolysis product 7 in brain remained at very low levels throughout the study. The slow hydrolysis rate of the pyridinium ester 9 to the 3-(2-hydroxyethyl) 7 and the rapid egression of felodipine-CDS from brain are believed to contribute to the moderate anticonvulsant activity exhibited hy the felodipine-CDS (10).
Collapse
Affiliation(s)
- S Yiu
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
50
|
Tanaka K, Graham SH, Simon RP. The role of excitatory neurotransmitters in seizure-induced neuronal injury in rats. Brain Res 1996; 737:59-63. [PMID: 8930350 DOI: 10.1016/0006-8993(96)00658-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Prolonged seizures have long been known to be associated with cell injury and cell death in brain. Such seizure-related neuronal injury has been assumed to be mediated by glutamate, the same excitatory amino acid in the central nervous system which propagates the seizure itself. Elevated extracellular concentrations of glutamate have not been demonstrated in brain during seizures in experimental animals. However, these studies have not been performed during status of a duration adequate to induce cell injury, a time when the putative neurotoxins might be demonstrable. We therefore induced status epilepticus (recorded both with conventional surface EEG and with deep electrodes in the area of greatest vulnerability, the piriform cortex) and lengthened the time of status to the point of cell death. Seizures were induced with intravenous kainic acid, and prolonged by injecting the NMDA antagonist AP-7 into the substantia nigra. Microdialysis probes were introduced into the piriform cortex of one hemisphere to assess the presence of extracellular glutamate. In the contralateral hemisphere the degree of neuronal injury was estimated by measurement of heat shock protein (HSP) expression and cell death quantified by acid fuchsin staining. In this model, neuronal injury correlates linearly with seizure duration; however, elevation of glutamate in the extracellular space was not seen even when neuronal injury was profound.
Collapse
Affiliation(s)
- K Tanaka
- Department of Neurology, University of Pittsburgh Medical School, PA 15213, USA
| | | | | |
Collapse
|