1
|
Ramírez-Guerrero S, Guardo-Maya S, Medina-Rincón GJ, Orrego-González EE, Cabezas-Pérez R, González-Reyes RE. Taurine and Astrocytes: A Homeostatic and Neuroprotective Relationship. Front Mol Neurosci 2022; 15:937789. [PMID: 35866158 PMCID: PMC9294388 DOI: 10.3389/fnmol.2022.937789] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/17/2022] [Indexed: 12/20/2022] Open
Abstract
Taurine is considered the most abundant free amino acid in the brain. Even though there are endogenous mechanisms for taurine production in neural cells, an exogenous supply of taurine is required to meet physiological needs. Taurine is required for optimal postnatal brain development; however, its brain concentration decreases with age. Synthesis of taurine in the central nervous system (CNS) occurs predominantly in astrocytes. A metabolic coupling between astrocytes and neurons has been reported, in which astrocytes provide neurons with hypotaurine as a substrate for taurine production. Taurine has antioxidative, osmoregulatory, and anti-inflammatory functions, among other cytoprotective properties. Astrocytes release taurine as a gliotransmitter, promoting both extracellular and intracellular effects in neurons. The extracellular effects include binding to neuronal GABAA and glycine receptors, with subsequent cellular hyperpolarization, and attenuation of N-methyl-D-aspartic acid (NMDA)-mediated glutamate excitotoxicity. Taurine intracellular effects are directed toward calcium homeostatic pathway, reducing calcium overload and thus preventing excitotoxicity, mitochondrial stress, and apoptosis. However, several physiological aspects of taurine remain unclear, such as the existence or not of a specific taurine receptor. Therefore, further research is needed not only in astrocytes and neurons, but also in other glial cells in order to fully comprehend taurine metabolism and function in the brain. Nonetheless, astrocyte’s role in taurine-induced neuroprotective functions should be considered as a promising therapeutic target of several neuroinflammatory, neurodegenerative and psychiatric diseases in the near future. This review provides an overview of the significant relationship between taurine and astrocytes, as well as its homeostatic and neuroprotective role in the nervous system.
Collapse
Affiliation(s)
- Sofía Ramírez-Guerrero
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Santiago Guardo-Maya
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Germán J. Medina-Rincón
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Eduardo E. Orrego-González
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Ricardo Cabezas-Pérez
- Grupo de Investigación en Ciencias Biomédicas GRINCIBIO, Facultad de Medicina, Universidad Antonio Nariño, Bogotá, Colombia
| | - Rodrigo E. González-Reyes
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
- *Correspondence: Rodrigo E. González-Reyes,
| |
Collapse
|
2
|
Menzie J, Prentice H, Wu JY. Neuroprotective Mechanisms of Taurine against Ischemic Stroke. Brain Sci 2013; 3:877-907. [PMID: 24961429 PMCID: PMC4061860 DOI: 10.3390/brainsci3020877] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 05/14/2013] [Accepted: 05/17/2013] [Indexed: 02/02/2023] Open
Abstract
Ischemic stroke exhibits a multiplicity of pathophysiological mechanisms. To address the diverse pathophysiological mechanisms observed in ischemic stroke investigators seek to find therapeutic strategies that are multifaceted in their action by either investigating multipotential compounds or by using a combination of compounds. Taurine, an endogenous amino acid, exhibits a plethora of physiological functions. It exhibits antioxidative properties, stabilizes membrane, functions as an osmoregulator, modulates ionic movements, reduces the level of pro-inflammators, regulates intracellular calcium concentration; all of which contributes to its neuroprotective effect. Data are accumulating that show the neuroprotective mechanisms of taurine against stroke pathophysiology. In this review, we describe the neuroprotective mechanisms employed by taurine against ischemic stroke and its use in clinical trial for ischemic stroke.
Collapse
Affiliation(s)
- Janet Menzie
- Program in Integrative Biology, Florida Atlantic University, Boca Raton, FL 33431, USA.
| | - Howard Prentice
- Department of Biomedical Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA.
| | - Jang-Yen Wu
- Program in Integrative Biology, Florida Atlantic University, Boca Raton, FL 33431, USA.
| |
Collapse
|
4
|
Chen RQ, Wang SH, Yao W, Wang JJ, Ji F, Yan JZ, Ren SQ, Chen Z, Liu SY, Lu W. Role of glycine receptors in glycine-induced LTD in hippocampal CA1 pyramidal neurons. Neuropsychopharmacology 2011; 36:1948-58. [PMID: 21593734 PMCID: PMC3154115 DOI: 10.1038/npp.2011.86] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Glycine in the hippocampus can exert its effect on both synaptic NMDA receptors (NMDARs) and extrasynaptic functional glycine receptors (GlyRs) via distinct binding sites. Previous studies have reported that glycine induces long-term potentiation (LTP) through the activation of synaptic NMDARs. However, little is known about the potential role of the activated GlyRs that are largely located in extrasynaptic regions. We report here that relatively high levels of glycine achieved either by exogenous glycine application or by the elevation of endogenous glycine accumulation with an antagonist of the glycine transporter induced long-term depression (LTD) of excitatory postsynaptic currents (EPSCs) in hippocampal CA1 pyramidal neurons. The co-application of glycine with the selective GlyR antagonist strychnine changed glycine-induced LTD (Gly-LTD) to LTP. Blocking the postsynaptic GlyR-gated net chloride flux by manipulating intracellular chloride concentrations failed to elicit any changes in EPSCs. These results suggest that GlyRs are involved in Gly-LTD. Furthermore, this new form of chemical LTD was accompanied by the internalization of postsynaptic AMPA receptors and required the activation of NMDARs. Therefore, our present findings reveal an important function of GlyR activation and modulation in gating the direction of synaptic plasticity.
Collapse
Affiliation(s)
- Rong-Qing Chen
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China,Key Laboratory for Neurodegenerative Disease of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Shan-Hui Wang
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China,Key Laboratory for Neurodegenerative Disease of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Wen Yao
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China,Key Laboratory for Neurodegenerative Disease of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Jing-Jing Wang
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China,Key Laboratory for Neurodegenerative Disease of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Fang Ji
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China,Key Laboratory for Neurodegenerative Disease of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Jing-Zhi Yan
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China,Key Laboratory for Neurodegenerative Disease of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Si-Qiang Ren
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China,Key Laboratory for Neurodegenerative Disease of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Zheng Chen
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China,Key Laboratory for Neurodegenerative Disease of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Su-Yi Liu
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China,Key Laboratory for Neurodegenerative Disease of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Wei Lu
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China,Key Laboratory for Neurodegenerative Disease of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China,Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China,Key Laboratory for Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China,Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China, Tel: +86 25 86862822, Fax: +86 25 86862822, E-mail:
| |
Collapse
|
5
|
Abstract
Taurine is a free amino acid found in high millimolar concentrations in mammalian tissue and is particularly abundant in the retina. Mammals synthesize taurine endogenously with varying abilities, with some species more dependent on dietary sources of taurine than others. Human children appear to be more dependent on dietary taurine than adults. Specifically, it has been established that visual dysfunction in both human and animal subjects results from taurine deficiency. Moreover, the deficiency is reversed with simple nutritional supplementation with taurine. The data suggest that taurine is an important neurochemical factor in the visual system. However, the exact function or functions of taurine in the retina are still unresolved despite continuing scientific study. Nevertheless, the importance of taurine in the retina is implied in the following experimental findings: (1) Taurine exhibits significant effects on biochemical systems in vitro. (2) The distribution of taurine is tightly regulated in the different retinal cell types through the development of the retina. (3) Taurine depletion results in significant retinal lesions. (4) Taurine release and uptake has been found to employ distinct regulatory mechanisms in the retina.
Collapse
Affiliation(s)
- Julius D Militante
- Department of Pharmacology, Texas Tech University Health Sciences Center, Lubbock 79430, USA
| | | |
Collapse
|
6
|
Sullivan DM, Erb L, Anglade E, Weisman GA, Turner JT, Csaky KG. Identification and characterization of P2Y2 nucleotide receptors in human retinal pigment epithelial cells. J Neurosci Res 1997; 49:43-52. [PMID: 9211988 DOI: 10.1002/(sici)1097-4547(19970701)49:1<43::aid-jnr5>3.0.co;2-d] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
P2 nucleotide receptor expression in cultured human retinal pigment epithelial (RPE) cells was investigated using the photoaffinity ATP analog BzATP, polymerase chain reaction of reverse-transcribed RNA (RT-PCR) and fura-2 fluorescence measurement of changes in intracellular free calcium concentration ([Ca2+]i). In experiments carried out in RPE cells at passage 10-15, addition of micromolar concentrations of ATP, UTP, and ATPgammaS to RPE cells resulted in a rapid, transient 3.5-fold increase in [Ca2+]i followed by a prolonged elevation that was twofold above the original baseline. Similar results were obtained from cells at passage 2. Characteristics of nucleotide-stimulated calcium mobilization in RPE cells, including partial inhibition by pertussis toxin, suggest that a G protein-coupled receptor mediates this response. Consistent with the expression of a P2Y2 nucleotide receptor subtype in RPE cells, [alpha-32P]BzATP labeled a 53-kDa protein in plasma membranes, and RT-PCR revealed the presence of P2Y2 receptor RNA. Adenosine had no effect on [Ca2+]i in RPE cells, indicating that the A2 subtype of P1 receptor described previously in human RPE is not involved in the response to nucleotides. Together the results indicate that human RPE cells express functional P2Y2 nucleotide receptors.
Collapse
Affiliation(s)
- D M Sullivan
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Quinn MR, Harris CL. Taurine allosterically inhibits binding of [35S]-t-butylbicyclophosphorothionate (TBPS) to rat brain synaptic membranes. Neuropharmacology 1995; 34:1607-13. [PMID: 8788958 DOI: 10.1016/0028-3908(95)00118-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The modulatory effects of taurine on [35S]-t-butylbicyclophosphorothionate (TBPS) binding to rat brain synaptic membranes were evaluated and compared with that of GABA. Taurine allosterically inhibited TBPS binding by interacting with a bicuculline-sensitive site, similar to GABA. Taurine was as effective as GABA but less potent. The potency of taurine inhibition of TBPS binding varied among brain regions with cerebellum > olfactory bulb > cortex, similar to that of GABA. Inhibition of TBPS binding to cortical membranes measured under nonequilibrium conditions yielded a dynamic biphasic inhibition curve that was similarly shaped for GABA and taurine. The effect of taurine on TBPS binding was pharmacologically specific in that beta-alanine and guanadinoethanesulfonate were as effective as taurine, while hypotaurine and alpha-aminoethylhydrogen sulfate were only partially effective at high concentrations, and isethionic acid was without effect. Taurine, similar to GABA, enhanced the effects of pentobarbital on TBPS binding when present at concentrations that were otherwise ineffective on their own. The results of these studies support the notion that taurine interacts with the GABA recognition site of the GABAA receptor complex.
Collapse
Affiliation(s)
- M R Quinn
- Laboratory of Neurotransmitter Biochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | | |
Collapse
|
8
|
López-Colomé AM, Salceda R, Fragoso G. Specific interaction of glutamate with membranes from cultured retinal pigment epithelium. J Neurosci Res 1993; 34:454-61. [PMID: 8097266 DOI: 10.1002/jnr.490340410] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Excitatory amino acids (EAA) have been shown to induce phagocytosis in retinal pigment epithelial (RPE) cells. In order to explore if this action is receptor-mediated, we have identified and characterized receptors for L-glutamate through the binding of [3H]L-glutamate to membranes from chick RPE cells in primary culture. Specific binding was found saturable, with KB = 333nM and Bmax = 3.2 pmol/mg protein in frozen/thawed membranes. Na(+)-independent binding was present in cultures of 16 and 25 days in vitro, and was not affected by temperature. Pharmacological profile of analogues of EAA at different receptor types suggests the presence of a metabotropic type receptor (L-glutamate > S-2-amino-3-phosphonopropionate > 2-amino-4-phosphonobutyrate = trans-(1S,3R)-1-aminocyclopentane-1,3-dicarboxylate > quisqualate). Excitatory amino acid analogues acting at the NMDA-receptor also displaced bound L-glutamate, and a noticeable stimulation of specific binding of this ligand by glycine was shown; this effect was mimicked by D-serine and 1-hydroxy-3-aminopyrrolidone-2 (HA-966) but not by 7-chlorokynurenate, and was not inhibited by strychnine. Since taurine and GABA also increased specific binding, it is likely that modulation of EAA receptors in RPE differs from that in neurons.
Collapse
|