1
|
Khan J, Ali G, Saeed A, Khurshid A, Ahmad S, Kashtoh H, Ataya FS, Bathiha GES, Ullah A, Khan A. Efficacy assessment of novel methanimine derivatives in chronic constriction injury-induced neuropathic model: An in-vivo, ex-vivo and In-Silico approach. Eur J Pharm Sci 2024; 198:106797. [PMID: 38735401 DOI: 10.1016/j.ejps.2024.106797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
The multicomponent etiology, complex clinical implications, dose-based side effect and degree of pain mitigation associated with the current pharmacological therapy is incapable in complete resolution of chronic neuropathic pain patients which necessitates the perpetual requirement of novel medication therapy. Therefore, this study explored the ameliorative aptitude of two novel methanimine imitative like (E)-N-(4-nitrobenzylidene)-4‑chloro-2-iodobenzamine (KB 09) and (E)-N-(4-methylbenzylidene)-4‑chloro-2-iodobenzamine (KB 10) in chronic constriction injury (CCI) of sciatic nerve induced neuropathic pain in rat model. Standard behavioral tests like dynamic and static allodynia, cold, thermal and mechanical hyperalgesia along with rotarod activity were performed at various experimental days like 0, 3, 7, 14 and 21. Enzyme linked immunosorbent assay (ELISA) on spinal tissue and antioxidant assays on sciatic nerve were executed accompanied by molecular docking and simulation studies. Prolonged ligation of sciatic nerve expressively induced hyperalgesia as well as allodynia in rats. KB 09 and KB 10 substantially attenuated the CCI elicited hyperalgesia and allodynia. They significantly reduced the biomarkers of pain and inflammation like Interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) in ELISA and while enhanced the GSH, SOD and CAT and diminished the MDA levels during antioxidant assays. KB 09 displayed -9.62 kcal/mol with TNF-α and -7.68 kcal/mol binding energy with IL-6 whereas KB 10 exhibited binding energy of -8.20 kcal/mol with IL-6 while -11.68 kcal/mol with TNF-α and hence both trial compounds ensured stable interaction with IL-6 and TNF-α during computational analysis. The results advocated that both methanimine derivatives might be novel candidates for attenuation of CCI-induced neuropathic pain prospects via anti-nociceptive, anti-inflammatory and antioxidant mechanisms.
Collapse
Affiliation(s)
- Jawad Khan
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan.
| | - Gowhar Ali
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan.
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University Islamabad 45320, Pakistan
| | - Asma Khurshid
- Department of Chemistry, Quaid-I-Azam University Islamabad 45320, Pakistan.
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University Peshawar 25000, Pakistan
| | - Hamdy Kashtoh
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Korea.
| | - Farid S Ataya
- Department of Biochemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Gaber El-Saber Bathiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheria, Egypt
| | - Aman Ullah
- Department of Pharmacy, Saba Medical Center, Abu Dhabi PO Box 20316, United Arab Emirates
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, P.O Box 33, Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman
| |
Collapse
|
2
|
Pușcașu C, Negreș S, Zbârcea CE, Ungurianu A, Ștefănescu E, Blebea NM, Chiriță C. Evaluating the Antihyperalgesic Potential of Sildenafil-Metformin Combination and Its Impact on Biochemical Markers in Alloxan-Induced Diabetic Neuropathy in Rats. Pharmaceuticals (Basel) 2024; 17:783. [PMID: 38931450 PMCID: PMC11206800 DOI: 10.3390/ph17060783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
(1) Background: Globally, about 600 million people are afflicted with diabetes, and one of its most prevalent complications is neuropathy, a debilitating condition. At the present time, the exploration of novel therapies for alleviating diabetic-neuropathy-associated pain is genuinely captivating, considering that current therapeutic options are characterized by poor efficacy and significant risk of side effects. In the current research, we evaluated the antihyperalgesic effect the sildenafil (phosphodiesterase-5 inhibitor)-metformin (antihyperglycemic agent) combination and its impact on biochemical markers in alloxan-induced diabetic neuropathy in rats. (2) Methods: This study involved a cohort of 70 diabetic rats and 10 non-diabetic rats. Diabetic neuropathy was induced by a single dose of 130 mg/kg alloxan. The rats were submitted to thermal stimulus test using a hot-cold plate and to tactile stimulus test using von Frey filaments. Moreover, at the end of the experiment, the animals were sacrificed and their brains and livers were collected to investigate the impact of this combination on TNF-α, IL-6, nitrites and thiols levels. (3) Results: The results demonstrated that all sildenafil-metformin combinations decreased the pain sensitivity in the von Frey test, hot plate test and cold plate test. Furthermore, alterations in nitrites and thiols concentrations and pro-inflammatory cytokines (specifically TNF-α and IL-6) were noted following a 15-day regimen of various sildenafil-metformin combinations. (4) Conclusions: The combination of sildenafil and metformin has a synergistic effect on alleviating pain in alloxan-induced diabetic neuropathy rats. Additionally, the combination effectively decreased inflammation, inhibited the rise in NOS activity, and provided protection against glutathione depletion.
Collapse
Affiliation(s)
- Ciprian Pușcașu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (C.P.); (S.N.); (A.U.); (E.Ș.); (C.C.)
| | - Simona Negreș
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (C.P.); (S.N.); (A.U.); (E.Ș.); (C.C.)
| | - Cristina Elena Zbârcea
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (C.P.); (S.N.); (A.U.); (E.Ș.); (C.C.)
| | - Anca Ungurianu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (C.P.); (S.N.); (A.U.); (E.Ș.); (C.C.)
| | - Emil Ștefănescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (C.P.); (S.N.); (A.U.); (E.Ș.); (C.C.)
| | - Nicoleta Mirela Blebea
- Faculty of Pharmacy, “Ovidius” University of Constanța, Căpitan Aviator Al. Şerbănescu 6, 900470 Constanța, Romania;
| | - Cornel Chiriță
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (C.P.); (S.N.); (A.U.); (E.Ș.); (C.C.)
| |
Collapse
|
3
|
Su N, Cai P, Dou Z, Yin X, Xu H, He J, Li Z, Li C. Brain nuclei and neural circuits in neuropathic pain and brain modulation mechanisms of acupuncture: a review on animal-based experimental research. Front Neurosci 2023; 17:1243231. [PMID: 37712096 PMCID: PMC10498311 DOI: 10.3389/fnins.2023.1243231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Neuropathic pain (NP) is known to be associated with abnormal changes in specific brain regions, but the complex neural network behind it is vast and complex and lacks a systematic summary. With the help of various animal models of NP, a literature search on NP brain regions and circuits revealed that the related brain nuclei included the periaqueductal gray (PAG), lateral habenula (LHb), medial prefrontal cortex (mPFC), and anterior cingulate cortex (ACC); the related brain circuits included the PAG-LHb and mPFC-ACC. Moreover, acupuncture and injurious information can affect different brain regions and influence brain functions via multiple aspects to play an analgesic role and improve synaptic plasticity by regulating the morphology and structure of brain synapses and the expression of synapse-related proteins; maintain the balance of excitatory and inhibitory neurons by regulating the secretion of glutamate, γ-aminobutyric acid, 5-hydroxytryptamine, and other neurotransmitters and receptors in the brain tissues; inhibit the overactivation of glial cells and reduce the release of pro-inflammatory mediators such as interleukins to reduce neuroinflammation in brain regions; maintain homeostasis of glucose metabolism and regulate the metabolic connections in the brain; and play a role in analgesia through the mediation of signaling pathways and signal transduction molecules. These factors help to deepen the understanding of NP brain circuits and the brain mechanisms of acupuncture analgesia.
Collapse
Affiliation(s)
- Na Su
- First Clinical Medicine College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Pingping Cai
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital, Jinan, China
| | - Zhiqiang Dou
- College of Acupuncture and Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoxue Yin
- Department of Science and Education, Shandong Academy of Chinese Medicine, Jinan, China
| | - Hongmin Xu
- Department of Gynecology, Laiwu Hospital of Traditional Chinese, Jinan, China
| | - Jing He
- First Clinical Medicine College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhaofeng Li
- College of Acupuncture and Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
- International Office, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changzhong Li
- Department of Obstetrics and Gynecology, Shenzhen Hospital, Peking University, Shenzhen, China
- Department of Gynecology, Shandong Provincial Hospital, Jinan, China
| |
Collapse
|
4
|
Morita M, Watanabe S, Nomura N, Takano-Matsuzaki K, Oyama M, Iwai T, Tanabe M. Sulfatide-selectin signaling in the spinal cord induces mechanical allodynia. J Neurochem 2023; 164:658-670. [PMID: 36528843 DOI: 10.1111/jnc.15743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/08/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
Sulfatide is a sulfated glycosphingolipid that is present abundantly in myelin sheaths of the brain and spinal cord. It is synthesized by a cerebroside sulfotransferase encoded by Gal3st1, which catalyzes the transfer of sulfate from 3'-phosphoadenylylsulfate to galactosylceramide. We previously reported that Gal3st1 gene expression in the spinal cord is up-regulated 1 day after intraplantar injection of complete Freund's adjuvant (CFA), indicating that sulfatide is involved in inflammatory pain. In the present study, we found that intrathecal injection of sulfatide led to mechanical allodynia. Sulfatide caused levels of glial fibrillary acidic protein (GFAP) and nitric oxide in the spinal cord to increase. Mechanical allodynia induced by intrathecal injection of sulfatide was blocked by nitric oxide synthase inhibitors and by suppression of astrocyte activation by L-α-aminoadipate. These results suggest that sulfatide-induced mechanical allodynia involved glial activation and nitric oxide production. Blocking selectin, a sulfatide-binding protein, with bimosiamose attenuated sulfatide-induced allodynia and ameliorated CFA-induced mechanical allodynia during inflammatory pain. Finally, elevated levels of sulfatide concentration in the spinal cord were observed during CFA-induced inflammatory pain. The elevated sulfatide levels enhanced selectin activation in the spinal cord, resulting in mechanical allodynia. Our data suggest that sulfatide-selectin interaction plays a key role in inflammatory pain.
Collapse
Affiliation(s)
- Motoki Morita
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan.,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Shun Watanabe
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan.,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Natsumi Nomura
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan.,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Kanako Takano-Matsuzaki
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan.,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Misa Oyama
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan.,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Takashi Iwai
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan.,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Mitsuo Tanabe
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan.,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Tokyo, Japan
| |
Collapse
|
5
|
Pan HT, Xi ZQ, Wei XQ, Wang K. A network pharmacology approach to predict potential targets and mechanisms of " Ramulus Cinnamomi (cassiae) - Paeonia lactiflora" herb pair in the treatment of chronic pain with comorbid anxiety and depression. Ann Med 2022; 54:413-425. [PMID: 35098831 PMCID: PMC8812742 DOI: 10.1080/07853890.2022.2031268] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Traditional Chinese medicine (TCM) prescriptions have multiple bioactive properties. "Gui Zhi-Shao Yao" herb pair is widely used to treat chronic pain (CP), as well as anxiety and depression. However, its related targets and underlying mechanisms have not been deciphered. METHODS In this study, the network pharmacology method was used to explore the bioactive components and targets of "Gui Zhi-Shao Yao" herb pair and further elucidate its potential biological mechanisms of action in the treatment of CP with comorbid anxiety disorder (AD) and mental depression (MD). RESULTS Following a series of analyses, we identified 15 active compounds, hitting 130 potential targets. After the intersections the targets of this herb pair and CP, AD and MD - sorted by the value of degree - nine targets were identified as the vital ones: Akt1, IL6, TNF, PTGS2, JUN, CASP3, MAPK8, PPARγ and NOS3. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis results demonstrated 11 pathways, such as AGE-RAGE signalling pathway, IL-17 signalling pathway, TNF signalling pathway, which primarily participate in the pathological processes. CONCLUSIONS This study preliminarily predicted and verified the pharmacological and molecular mechanisms of "Gui Zhi-Shao Yao" herb pair for treating CP with comorbid AD and MD from a holistic perspective. In vivo and in vitro experiments will be required to further investigate the mechanisms.KEY MESSAGEA network pharmacology approach was applied to identify key targets and molecular mechanisms.Nine targets were regarded as the vital targets for chronic pain with comorbid anxiety and depression.Predicted 11 pathways were the potential therapy targets and pharmacological mechanism of "Gui Zhi-Shao Yao" herb pair.
Collapse
Affiliation(s)
- Hao-Tian Pan
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zi-Qi Xi
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Qiang Wei
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ke Wang
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Huang Y, Jiao B, Zhu B, Xiong B, Lu P, Ai L, Yang N, Zhao Y, Xu H. Nitric Oxide in the Spinal Cord Is Involved in the Hyperalgesia Induced by Tetrahydrobiopterin in Chronic Restraint Stress Rats. Front Neurosci 2021; 15:593654. [PMID: 33867911 PMCID: PMC8044835 DOI: 10.3389/fnins.2021.593654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/17/2021] [Indexed: 11/13/2022] Open
Abstract
It has been well recognized that exposure to chronic stress could increase pain responding and exacerbate pain symptoms, resulting in stress-induced hyperalgesia. However, the mechanisms underlying stress-induced hyperalgesia are not yet fully elucidated. To this end, we observed that restraint as a stressful event exacerbated mechanical and thermal hyperalgesia, accompanied with up-regulation of nitric oxide (NO) (P < 0.001), GTP cyclohydrolase 1 (GCH1) (GCH1 mRNA: P = 0.001; GCH1 protein: P = 0.001), and tetrahydrobiopterin (BH4) concentration (plasma BH4: P < 0.001; spinal BH4: P < 0.001) on Day 7 in restraint stress (RS) rats. Intrathecal injection of N ω-nitro-L-arginine methyl ester (L-NAME), a non-specific NO synthase inhibitor, or N-([3-(aminomethyl)phenyl]methyl) ethanimidamide, a special inhibitor of inducible NO synthase (iNOS), for seven consecutive days attenuated stress-induced hyperalgesia and decreased the production of NO (P < 0.001). Interestingly, 7-nitro indazole, a special inhibitor of neuronal NO synthase, alleviated stress-induced hyperalgesia but did not affect spinal NO synthesis. Furthermore, intrathecal injection of BH4 not only aggravated stress-induced hyperalgesia but also up-regulated the expression of spinal iNOS (iNOS mRNA: P = 0.015; iNOS protein: P < 0.001) and NO production (P < 0.001). These findings suggest that hyperalgesia induced by RS is associated with the modulation of the GCH1-BH4 system and constitutively expressed spinal iNOS. Thus, the GCH1-BH4-iNOS signaling pathway may be a new novel therapeutic target for pain relief in the spinal cord.
Collapse
Affiliation(s)
- Ying Huang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bo Jiao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Zhu
- Department of Anesthesiology, Chengdu Second People's Hospital, Chengdu, China
| | - Bingrui Xiong
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Lu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Ai
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Yang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yilin Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Xu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Hegazy N, Rezq S, Fahmy A. Renin-angiotensin system blockade modulates both the peripheral and central components of neuropathic pain in rats: Role of calcitonin gene-related peptide, substance P and nitric oxide. Basic Clin Pharmacol Toxicol 2020; 127:451-460. [PMID: 32542932 DOI: 10.1111/bcpt.13453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/18/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022]
Abstract
Nonetheless, renin-angiotensin-aldosterone system (RAAS) blockers attenuate neuropathic pain (NP), the exact molecular mechanisms of this effect are not completely understood. The study aimed to investigate the role of calcitonin gene-related peptide (CGRP), substance P (SP) and nitric oxide (NO), which are all involved in pain modulation, in the analgesic effect of different RAAS blockers in NP both on the peripheral and on the central levels. NP was induced by sciatic nerve chronic constriction injury (CCI, 14 days) in rats, that were given either centrally (telmisartan and ramipril) or peripherally (losartan and enalapril) acting angiotensin-converting enzyme inhibitors (ACE-Is) or angiotensin receptor blockers (ARBs). Behavioural assessment was performed, and CGRP, SP and NO levels were detected in the injured sciatic nerve and the brainstem at the end of experiment. CCI rats showed increased spontaneous pain response and foot deformity along with elevated CGRP, SP and NO levels. ARBs and ACE-Is treatment improved pain behaviour and reduced SP and NO levels. However, sciatic CGRP was increased with different interventions and brainstem CGRP was only elevated in the losartan group. These findings suggest an intermediary role of CGRP, SP and NO in RAAS blockers analgesic effect in NP.
Collapse
Affiliation(s)
- Nora Hegazy
- Department of Pharmacology and Toxicology, School of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Samar Rezq
- Department of Pharmacology and Toxicology, School of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Ahmed Fahmy
- Department of Pharmacology and Toxicology, School of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
8
|
Demirkazik A, Ozdemir E, Arslan G, Taskiran AS, Pelit A. The effects of extremely low-frequency pulsed electromagnetic fields on analgesia in the nitric oxide pathway. Nitric Oxide 2019; 92:49-54. [PMID: 31408675 DOI: 10.1016/j.niox.2019.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 08/04/2019] [Accepted: 08/06/2019] [Indexed: 10/26/2022]
Abstract
There is growing interest in the effects of extremely low-frequency electromagnetic fields on mechanisms in biological organisms. This study's goal is to determine the role of the Nitiric Oxide (NO) pathway for thermal pain by intentionally interfering with it using a pulsed electromagnetic field generated by an extremely low-frequency alternating current (ELF-PEMF) in combination with BAY41-2272 (sGC activator), NOS inhibitor l-NAME, and NO donor l-arginine. This study included 72 adult male Wistar albino rats (mean weight of 230 ± 12 g). The rats were kept at room temperature (22 ± 2 °C) in a 12-h light/dark cycle and in a room with sound insulation. PEMF (50 Hz, 5 mT) were applied four times a day for 30 min and at 15-min intervals for 15 days. Analgesic effects were assessed with tail-flick and hot-plate tests. Before the tests, NO donor l-arginine (300 mg/kg), sGC activator BAY41-2272 (10 mg/kg), and NOS inhibitor l-name (40 mg/kg) were injected intraperitoneally into rats in six randomly-selected groups. The maximum analgesic effect of a 5 mT electromagnetic field was on day 7. PEMF significantly increased the analgesia effect when the functioning of the NO pathway was ensured with l-arginine, which is a NO donor, and BAY41-2271, which is the intracellular receptor and sGC activator. However, there was no difference between rats treated with PEMF and the NOS inhibitor l-NAME as compared to rats only treated with PEMF. In conclusion, PEMF generate analgesia by activating the NO pain pathway.
Collapse
Affiliation(s)
- Ayse Demirkazik
- Departments of Biophysics, School of Medicine, Cumhuriyet University, Sivas, Turkey.
| | - Ercan Ozdemir
- Departments of Physiology, School of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Gökhan Arslan
- Departments of Physiology, School of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Ahmet Sevki Taskiran
- Departments of Physiology, School of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Aykut Pelit
- Department of Biophysics, School of Medicine, Cukurova University, Adana, Turkey
| |
Collapse
|
9
|
Chen SH, Lue JH, Hsiao YJ, Lai SM, Wang HY, Lin CT, Chen YC, Tsai YJ. Elevated galanin receptor type 2 primarily contributes to mechanical hypersensitivity after median nerve injury. PLoS One 2018; 13:e0199512. [PMID: 29928003 PMCID: PMC6013116 DOI: 10.1371/journal.pone.0199512] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/09/2018] [Indexed: 12/22/2022] Open
Abstract
In this study, we investigated temporal changes in galanin receptor type 2 (GalR2) expression in NF200-, galanin-, neuropeptide Y (NPY)-, and neuronal nitric oxide synthase (nNOS)-like immunoreactive (LI) dorsal root ganglion (DRG) neurons after median nerve chronic constriction injury (CCI), and the effects of GalR2 on c-Fos expression in the cuneate nucleus (CN). Double immunofluorescence labeling methods were used to appraise changes in GalR2 expression in NF200-LI, galanin-LI, NPY-LI, and nNOS-LI DRG neurons after CCI. The von Frey assay was used to assess the efficiency of intraplantar administration of saline, M871 (a GalR2 antagonist), or AR-M1896 (a GalR2 agonist) on neuropathic signs of rats with CCI. The effects of alterations in c-Fos expression were assessed in all treatments. The percentage of GalR2-LI neurons in lesioned DRGs increased and peaked at 1 week after CCI. We further detected that percentages of GalR2-LI neurons labeled for NF200, galanin, NPY, and nNOS significantly increased following CCI. Furthermore, M871 remarkably attenuated tactile allodynia, but the sensation was slightly aggravated by AR-M1896 after CCI. Consequentially, after electrical stimulation of the CCI-treated median nerve, the number of c-Fos-LI neurons in the cuneate nucleus (CN) was significantly reduced in the M871 group, whereas it increased in the AR-M1896 group. These results suggest that activation of GalR2, probably through NPY or nitric oxide, induces c-Fos expression in the CN and transmits mechanical allodynia sensations to the thalamus.
Collapse
Affiliation(s)
- Seu-Hwa Chen
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - June-Horng Lue
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yung-Jung Hsiao
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Mei Lai
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Ying Wang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chi-Te Lin
- Department of Nursing, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Ya-Chin Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Ju Tsai
- Graduate Institute of Biomedical and Pharmaceutical Science, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
10
|
Sandes SMS, Heimfarth L, Brito RG, Santos PL, Gouveia DN, Carvalho AMS, Quintans JSS, da Silva-Júnior EF, de Aquino TM, França PHB, de Araújo-Júnior JX, Albuquerque-Júnior RLC, Zengin G, Schmitt M, Bourguignon JJ, Quintans-Júnior LJ. Evidence for the involvement of TNF-α, IL-1β and IL-10 in the antinociceptive and anti-inflammatory effects of indole-3-guanylhydrazone hydrochloride, an aromatic aminoguanidine, in rodents. Chem Biol Interact 2018; 286:1-10. [PMID: 29499192 DOI: 10.1016/j.cbi.2018.02.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 02/15/2018] [Accepted: 02/20/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Indole-3-guanylhydrazone hydrochloride (LQM01) is a new derivative of aminoguanidine hydrochloride, an aromatic aminoguanidine. METHODS Mice were treated with LQM01 (5, 10, 25 or 50 mg/kg, i.p.), vehicle (0.9% saline i.p.) or a standard drug. The mice were subjected to carrageenan-induced pleurisy, abdominal writhing induced by acetic acid, the formalin test and the hot-plate test. The model of non-inflammatory chronic muscle pain induced by saline acid was also used. Mice from the chronic protocol were assessed for withdrawal threshold, muscle strength and motor coordination. LQM01 or vehicle treated mice were evaluated for Fos protein. RESULTS LQM01 inhibits TNF-α and IL-1β production, as well as leukocyte recruitment during inflammation process. The level of IL-10 in LQM01-treated mice increased in pleural fluid. In addition, LQM01 decreased the nociceptive behavior in the acetic acid induced writhing test, the formalin test (both phases) and increased latency time on the hot-plate. LQM01 treatment also decreased mechanical hyperalgesia in mice with chronic muscle pain, with no changes in muscle strength and motor coordination. LQM01 reduced the number of Fos positive cells in the superficial dorsal horn. This compound exhibited antioxidant properties in in vitro assays. CONCLUSIONS LQM01 has an outstanding anti-inflammatory and analgesic profile, probably mediated through a reduction in proinflammatory cytokines release, increase in IL-10 production and reduction in neuron activity in the dorsal horn of the spinal cord in mice. GENERAL SIGNIFICANCE Beneficial effects of LQM01 suggest that it has some important clinical features and can play a role in the management of 'dysfunctional pain' and inflammatory diseases.
Collapse
Affiliation(s)
- Silvia M S Sandes
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Luana Heimfarth
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Renan G Brito
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Priscila L Santos
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Daniele N Gouveia
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Alexandra M S Carvalho
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Jullyana S S Quintans
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | - Thiago M de Aquino
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | - Paulo H B França
- Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | - João X de Araújo-Júnior
- Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | | | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Campus, Konya, Turkey
| | - Martine Schmitt
- CNRS, University of Strasbourg, Laboratoire d'Innovation Thérapeutique, UMR 7200, Laboratory of Excellence Médalis, Faculté de Pharmacie, 74, Route du Rhin, 67401, Illkirch Cedex, France
| | - Jean-Jacques Bourguignon
- CNRS, University of Strasbourg, Laboratoire d'Innovation Thérapeutique, UMR 7200, Laboratory of Excellence Médalis, Faculté de Pharmacie, 74, Route du Rhin, 67401, Illkirch Cedex, France
| | - Lucindo J Quintans-Júnior
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil.
| |
Collapse
|
11
|
Abstract
The exteroceptive somatosensory system is important for reflexive and adaptive behaviors and for the dynamic control of movement in response to external stimuli. This review outlines recent efforts using genetic approaches in the mouse to map the spinal cord circuits that transmit and gate the cutaneous somatosensory modalities of touch, pain, and itch. Recent studies have revealed an underlying modular architecture in which nociceptive, pruritic, and innocuous stimuli are processed by distinct molecularly defined interneuron cell types. These include excitatory populations that transmit information about both innocuous and painful touch and inhibitory populations that serve as a gate to prevent innocuous stimuli from activating the nociceptive and pruritic transmission pathways. By dissecting the cellular composition of dorsal-horn networks, studies are beginning to elucidate the intricate computational logic of somatosensory transformation in health and disease.
Collapse
Affiliation(s)
- Stephanie C Koch
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA;
| | - David Acton
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA;
| | - Martyn Goulding
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA;
| |
Collapse
|
12
|
Manzhulo IV, Ogurtsova OS, Tyrtyshnaia AA, Dyuizen IV. Neuro-microglial interactions in the spinal centers of pain modulation in the neuropathic pain syndrome. NEUROCHEM J+ 2017. [DOI: 10.1134/s1819712417010081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Morrone LA, Scuteri D, Rombolà L, Mizoguchi H, Bagetta G. Opioids Resistance in Chronic Pain Management. Curr Neuropharmacol 2017; 15:444-456. [PMID: 28503117 PMCID: PMC5405610 DOI: 10.2174/1570159x14666161101092822] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 08/11/2016] [Accepted: 10/24/2016] [Indexed: 01/07/2023] Open
Abstract
Chronic pain management represents a serious healthcare problem worldwide. Chronic pain affects approximately 20% of the adult European population and is more frequent in women and older people. Unfortunately, its management in the community remains generally unsatisfactory and rarely under the control of currently available analgesics. Opioids have been used as analgesics for a long history and are among the most used drugs; however, while there is no debate over their short term use for pain management, limited evidence supports their efficacy of long-term treatment for chronic non-cancer pain. Therapy with opioids is hampered by inter-individual variability and serious side effects and some opioids often result ineffective in the treatment of chronic pain and their use is controversial. Accordingly, for a better control of chronic pain a deeper knowledge of the molecular mechanisms underlying resistance to opiates is mandatory.
Collapse
Affiliation(s)
- Luigi A. Morrone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
- University Consortium for Adaptive Disorders and Head Pain (UCADH), Section of Neuropharmacology of Normal and Pathological Neuronal Plasticity, University of Calabria, Rende, Italy
| | - Damiana Scuteri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Laura Rombolà
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Hirokazu Mizoguchi
- Department of Physiology and Anatomy, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Giacinto Bagetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
- University Consortium for Adaptive Disorders and Head Pain (UCADH), Section of Neuropharmacology of Normal and Pathological Neuronal Plasticity, University of Calabria, Rende, Italy
| |
Collapse
|
14
|
de Los Monteros-Zuñiga AE, Izquierdo T, Quiñonez-Bastidas GN, Rocha-González HI, Godínez-Chaparro B. Anti-allodynic effect of mangiferin in neuropathic rats: Involvement of nitric oxide-cyclic GMP-ATP sensitive K + channels pathway and serotoninergic system. Pharmacol Biochem Behav 2016; 150-151:190-197. [PMID: 27984097 DOI: 10.1016/j.pbb.2016.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 10/14/2016] [Accepted: 10/19/2016] [Indexed: 11/17/2022]
Abstract
The neurobiology of neuropathic pain is caused by injury in the central or peripheral nervous system. Recent evidence points out that mangiferin shows anti-nociceptive effect in inflammatory pain. However, its role in inflammatory and neuropathic pain and the possible mechanisms of action are not yet established. The purpose of this study was to determine the possible anti-allodynic effect of mangiferin in rats with spinal nerve ligation (SNL). Furthermore, we sought to investigate the possible mechanisms of action that contribute to these effects. Mechanical allodynia to stimulation with the von Frey filaments was measured by the up and down method. Intrathecal administration of mangiferin prevented, in a dose-dependent fashion, SNL-induced mechanical allodynia. Mangiferin-induced anti-allodynia was prevented by the intrathecal administration of L-NAME (100μg/rat, non-selective nitric oxide synthase inhibitor), ODQ (10μg/rat, inhibitor of guanylate-cyclase) and glibenclamide (50μg/rat, channel blocker of ATP-sensitive K+ channels). Moreover, methiothepin (30μg/rat, non-selective 5-HT receptor antagonist), WAY-100635 (6μg/rat, selective 5-HT1A receptor antagonist), SB-224289 (5μg/rat, selective 5-HT1B receptor antagonist), BRL-15572 (4μg/rat, selective 5-HT1D receptor antagonist) and SB-659551 (6μg/rat, selective 5-HT5A receptor antagonist), but not naloxone (50μg/rat, non-selective opioid receptor antagonist), were able to prevent mangiferin-induced anti-allodynic effect. These data suggest that the anti-allodynic effect induced by mangiferin is mediated at least in part by the serotoninergic system, involving the activation of 5-HT1A/1B/1D/5A receptors, as well as the nitric oxide-cyclic GMP-ATP-sensitive K+ channels pathway, but not by the opioidergic system, in the SNL model of neuropathic pain in rats.
Collapse
Affiliation(s)
- Antonio Espinosa de Los Monteros-Zuñiga
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Colonia Villa Quietud, 04960 Mexico, D.F., Mexico
| | - Teresa Izquierdo
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Colonia Villa Quietud, 04960 Mexico, D.F., Mexico
| | - Geovanna Nallely Quiñonez-Bastidas
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Colonia Villa Quietud, 04960 Mexico, D.F., Mexico
| | - Héctor Isaac Rocha-González
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Miguel Hidalgo, 11340 Mexico, D.F., Mexico
| | - Beatriz Godínez-Chaparro
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Colonia Villa Quietud, 04960 Mexico, D.F., Mexico.
| |
Collapse
|
15
|
Manzhulo IV, Ogurtsova OS, Kipryushina YO, Latyshev NA, Kasyanov SP, Dyuizen IV, Tyrtyshnaia AA. Neuron-astrocyte interactions in spinal cord dorsal horn in neuropathic pain development and docosahexaenoic acid therapy. J Neuroimmunol 2016; 298:90-7. [PMID: 27609281 DOI: 10.1016/j.jneuroim.2016.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/15/2016] [Accepted: 07/15/2016] [Indexed: 01/19/2023]
Abstract
The analgesic activity of docosahexaenoic acid (DHA, 22:6 n-3) was studied using a chronic constriction injury (CCI) rat model. Animals were subcutaneously injected with DHA emulsion at a dose of 4.5mg/kg (125mМ/kg) daily during 2weeks after surgery. We characterized the dynamics of GFAP-positive astrocyte, substance P (SP) and nNOS-positive neurons activity in the spinal cord dorsal horn (SCDH) superficial lamina. We found that DHA treatment decrease the intensity and duration of neurogenic pain syndrome, results in earlier stabilization of weight distribution, prevents the cold allodynia and dystrophic changings in denervated limb tissue. DHA treatment reduced the reactive astrocyte number, decrease SP-immunopositive fibers and nNOS-positive neurons number in the SCDH in neuropathic pain.
Collapse
Affiliation(s)
- Igor V Manzhulo
- A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 17 Palchevskii Str., 690041, Russia; School of Biomedicine, Far Eastern Federal University, Vladivostok, 8 Sukhanova Str., 690950, Russia.
| | - Olga S Ogurtsova
- A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 17 Palchevskii Str., 690041, Russia
| | - Yuliya O Kipryushina
- A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 17 Palchevskii Str., 690041, Russia
| | - Nikolay A Latyshev
- A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 17 Palchevskii Str., 690041, Russia
| | - Sergey P Kasyanov
- A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 17 Palchevskii Str., 690041, Russia
| | - Inessa V Dyuizen
- A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 17 Palchevskii Str., 690041, Russia
| | - Anna A Tyrtyshnaia
- A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 17 Palchevskii Str., 690041, Russia; School of Biomedicine, Far Eastern Federal University, Vladivostok, 8 Sukhanova Str., 690950, Russia
| |
Collapse
|
16
|
Longhi-Balbinot DT, Rossaneis AC, Pinho-Ribeiro FA, Bertozzi MM, Cunha FQ, Alves-Filho JC, Cunha TM, Peron JPS, Miranda KM, Casagrande R, Verri WA. The nitroxyl donor, Angeli's salt, reduces chronic constriction injury-induced neuropathic pain. Chem Biol Interact 2016; 256:1-8. [PMID: 27287419 DOI: 10.1016/j.cbi.2016.06.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/27/2016] [Accepted: 06/06/2016] [Indexed: 12/31/2022]
Abstract
Chronic pain is a major health problem worldwide. We have recently demonstrated the analgesic effect of the nitroxyl donor, Angeli's salt (AS) in models of inflammatory pain. In the present study, the acute and chronic analgesic effects of AS was investigated in chronic constriction injury of the sciatic nerve (CCI)-induced neuropathic pain in mice. Acute (7th day after CCI) AS treatment (1 and 3 mg/kg; s.c.) reduced CCI-induced mechanical, but not thermal hyperalgesia. The acute analgesic effect of AS was prevented by treatment with 1H-[1,2, 4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ, a soluble guanylate cyclase inhibitor), KT5823 (an inhibitor of protein kinase G [PKG]) or glibenclamide (GLB, an ATP-sensitive potassium channel blocker). Chronic (7-14 days after CCI) treatment with AS (3 mg/kg, s.c.) promoted a sustained reduction of CCI-induced mechanical and thermal hyperalgesia. Acute AS treatment reduced CCI-induced spinal cord allograft inflammatory factor 1 (known as Iba-1), interleukin-1β (IL-1β), and ST2 receptor mRNA expression. Chronic AS treatment reduced CCI-induced spinal cord glial fibrillary acidic protein (GFAP), Iba-1, IL-1β, tumor necrosis factor-α (TNF-α), interleukin-33 (IL-33) and ST2 mRNA expression. Chronic treatment with AS (3 mg/kg, s.c.) did not alter aspartate aminotransferase, alanine aminotransferase, urea or creatinine plasma levels. Together, these results suggest that the acute analgesic effect of AS depends on activating the cGMP/PKG/ATP-sensitive potassium channel signaling pathway. Moreover, chronic AS diminishes CCI-induced mechanical and thermal hyperalgesia by reducing the activation of spinal cord microglia and astrocytes, decreasing TNF-α, IL-1β and IL-33 cytokines expression. This spinal cord immune modulation was more prominent in the chronic treatment with AS. Thus, nitroxyl limits CCI-induced neuropathic pain by reducing spinal cord glial cells activation.
Collapse
Affiliation(s)
- Daniela T Longhi-Balbinot
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR 445, Km 380, Cx. Postal 10.011, 86057-970, Londrina, Parana, Brazil
| | - Ana C Rossaneis
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR 445, Km 380, Cx. Postal 10.011, 86057-970, Londrina, Parana, Brazil
| | - Felipe A Pinho-Ribeiro
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR 445, Km 380, Cx. Postal 10.011, 86057-970, Londrina, Parana, Brazil
| | - Mariana M Bertozzi
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR 445, Km 380, Cx. Postal 10.011, 86057-970, Londrina, Parana, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil
| | - José C Alves-Filho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil
| | - Jean P S Peron
- Department of Immunology, Institute of Biomedical Sciences, Ed. Biomédicas IV, University of Sao Paulo, Av. Prof. Dr. Lineu Prestes, 1730, 05508-900, São Paulo, Brazil
| | - Katrina M Miranda
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, University Hospital (Health Science Centre), Av. Robert Koch, 60, 86038-350, State University of Londrina, Parana, Brazil
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR 445, Km 380, Cx. Postal 10.011, 86057-970, Londrina, Parana, Brazil.
| |
Collapse
|
17
|
Zheng Y, Yin X, Huo F, Xiong H, Mei Z. Analgesic effects and possible mechanisms of iridoid glycosides from Lamiophlomis rotata (Benth.) Kudo in rats with spared nerve injury. JOURNAL OF ETHNOPHARMACOLOGY 2015; 173:204-211. [PMID: 26160748 DOI: 10.1016/j.jep.2015.06.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 06/19/2015] [Accepted: 06/25/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lamiophlomis rotata (Benth.) Kudo (L. rotata) is a medical plant that has been traditionally used for centuries for the treatment of pain, such as bone and muscle pain, joint pain and dysmenorrhea. Although iridoid glycosides of L. rotata (IGLR) are the major active components of it according to reports, it still remains poorly understood about the molecular mechanisms underlying analgesic effects of IGLR. The aim of the present study was to investigate the analgesic effect of IGLR on a spared nerve injury (SNI) model of neuropathic pain. MATERIALS AND METHODS The SNI model in rats was established by complete transection of the common peroneal and tibial distal branches of the sciatic nerve, leaving the sural branch intact. Then SNI rats were treated with IGLR for 14 days, using normal saline as the negative control. The paw withdrawal mechanical threshold (PMWT) in response to mechanical stimulation was measured by von Frey filaments on day 1 before operation and on days 1, 3, 5, 7, 9, 11, 13 and 14 after operation, respectively. After 14 days, the levels of nitric oxide (NO), nitric oxide synthase (NOS), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-10 (IL-10) and cyclic guanosine monophosphate (cGMP) in the spinal dorsal horn were measured by the corresponding kits, mRNA expression of inducible NOS (iNOS) and protein kinase G type I (PKGI) of spinal cord were analyzed by reverse-transcription polymerase chain reaction (RT-PCR). The expression of N-methyl-D-aspartate receptor (NMDAR) and protein kinase C (PKCγ) of the spinal dorsal horn was performed by Western blot. Before all the experiments, motor coordination performance and locomotor activity had been tested. RESULTS Our results showed that remarkable mechanical allodynia was observed on day 1 after operation in the SNI model, which was accompanied by a decrease in PMWT. Treatment with IGLR (200, 400, 800mg/kg) significantly alleviated SNI-induced mechanical allodynia, markedly decreased the levels of NO, NOS, TNF-α, IL-1β and cGMP, and increased the level of IL-10. Meanwhile, IGLR (200, 400, 800mg/kg) also inhibited the protein expression of NMDAR, PKCγ and the mRNA expression of iNOS and PKGΙ in the spinal cord. In addition, gavage with the IGLR aqueous extract (800mg/kg) did not signifiantly alter motor coordination or locomotor activity. CONCLUSIONS These results indicated IGLR could produce an anti-neuropathic pain effect that might partly be related to the inhibition of the NO/cGMP/PKG and NMDAR/PKC pathways and the level of TNF-α, IL-1β as well as to the increase of the level of IL-10 in spinal cord.
Collapse
Affiliation(s)
- Yanan Zheng
- College of Pharmacy, South-Central University for Nationalities, Wuhan 430074, China
| | - Xuefei Yin
- College of Pharmacy, South-Central University for Nationalities, Wuhan 430074, China
| | - Fuquan Huo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shanxi 710061, China
| | - Hui Xiong
- College of Pharmacy, South-Central University for Nationalities, Wuhan 430074, China.
| | - Zhinan Mei
- College of Pharmacy, South-Central University for Nationalities, Wuhan 430074, China.
| |
Collapse
|
18
|
Manzhulo IV, Dyuizen IV. Neurochemical changes in the rostral ventromedial nucleus of the medulla oblongata in rats with developing neuropathic pain. NEUROCHEM J+ 2015. [DOI: 10.1134/s1819712415030071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
Abstract
Morphine has been widely used for the treatment of acute, chronic, and cancer pain and is considered the strongest analgesic in clinical care. Conversely, morphine-induced analgesia may be accompanied by several side effects. Animal studies have demonstrated that low doses of morphine administered intrathecally can produce reliable analgesia for thermal, mechanical, and chemical nociceptive stimulation. On the other hand, high doses of morphine administered intrathecally may induce spontaneous nociceptive responses such as scratching, biting, and licking in mice as well as agitation and vocalization in rats. In addition, similar nociceptive responses including hyperalgesia, allodynia, and myoclonus have been observed in humans following intrathecal or systemic administration of high-dose morphine. It has been suggested that the spontaneous nociceptive behaviors evoked by high-dose morphine may be mediated by a non-opioid mechanism that is not yet fully understood. This review describes the mechanisms of spontaneous nociceptive behaviors evoked by high-dose morphine focusing on the neurotransmitters/neuromodulators released from primary afferent fibers.
Collapse
Affiliation(s)
- Chizuko Watanabe
- Department of Physiology and Anatomy, Tohoku Pharmaceutical University
| |
Collapse
|
20
|
Thomas J, Mustafa S, Johnson J, Nicotra L, Hutchinson M. The relationship between opioids and immune signalling in the spinal cord. Handb Exp Pharmacol 2015; 227:207-238. [PMID: 25846621 DOI: 10.1007/978-3-662-46450-2_11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Opioids are considered the gold standard for the treatment of moderate to severe pain. However, heterogeneity in analgesic efficacy, poor potency and side effects are associated with opioid use, resulting in dose limitations and suboptimal pain management. Traditionally thought to exhibit their analgesic actions via the activation of the neuronal G-protein-coupled opioid receptors, it is now widely accepted that neuronal activity of opioids cannot fully explain the initiation and maintenance of opioid tolerance, hyperalgesia and allodynia. In this review we will highlight the evidence supporting the role of non-neuronal mechanisms in opioid signalling, paying particular attention to the relationship of opioids and immune signalling.
Collapse
Affiliation(s)
- Jacob Thomas
- Discipline of Pharmacology, School of Medical Sciences, University of Adelaide, Adelaide, Australia,
| | | | | | | | | |
Collapse
|
21
|
Grodzki ACG, Poola B, Pasupuleti N, Nantz MH, Lein PJ, Gorin F. A novel carboline derivative inhibits nitric oxide formation in macrophages independent of effects on tumor necrosis factor α and interleukin-1β expression. J Pharmacol Exp Ther 2014; 352:438-47. [PMID: 25538105 DOI: 10.1124/jpet.114.220186] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Neuropathic pain is a maladaptive immune response to peripheral nerve injury that causes a chronic painful condition refractory to most analgesics. Nitric oxide (NO), which is produced by nitric oxide synthases (NOSs), has been implicated as a key factor in the pathogenesis of neuropathic pain. β-Carbolines are a large group of natural and synthetic indole alkaloids, some of which block activation of nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB), a predominant transcriptional regulator of NOS expression. Here, we characterize the inhibitory effects of a novel 6-chloro-8-(glycinyl)-amino-β-carboline (8-Gly carb) on NO formation and NF-κB activation in macrophages. 8-Gly carb was significantly more potent than the NOS inhibitor NG-nitro-L-arginine methyl ester in inhibiting constitutive and inducible NO formation in primary rat macrophages. 8-Gly carb interfered with NF-κB-mediated gene expression in differentiated THP1-XBlue cells, a human NF-κB reporter macrophage cell line, but only at concentrations severalfold higher than needed to significantly inhibit NO production. 8-Gly carb also had no effect on tumor necrosis factor α (TNFα)-induced phosphorylation of the p38 mitogen-activated protein kinase in differentiated THP1 cells, and did not inhibit lipopolysaccharide- or TNFα-stimulated expression of TNFα and interleukin-1β. These data demonstrate that relative to other carbolines and pharmacologic inhibitors of NOS, 8-Gly carb exhibits a unique pharmacological profile by inhibiting constitutive and inducible NO formation independent of NF-κB activation and cytokine expression. Thus, this novel carboline derivative holds promise as a parent compound, leading to therapeutic agents that prevent the development of neuropathic pain mediated by macrophage-derived NO without interfering with cytokine expression required for neural recovery following peripheral nerve injury.
Collapse
Affiliation(s)
- Ana Cristina G Grodzki
- Department of Molecular Biosciences, School of Veterinary Medicine (A.C.G.G., F.G., P.J.L.), and Department of Neurology, School of Medicine (N.P., F.G.), University of California, Davis, California; and Department of Chemistry, University of Louisville, Louisville, Kentucky (B.P., M.H.N.)
| | - Bhaskar Poola
- Department of Molecular Biosciences, School of Veterinary Medicine (A.C.G.G., F.G., P.J.L.), and Department of Neurology, School of Medicine (N.P., F.G.), University of California, Davis, California; and Department of Chemistry, University of Louisville, Louisville, Kentucky (B.P., M.H.N.)
| | - Nagarekha Pasupuleti
- Department of Molecular Biosciences, School of Veterinary Medicine (A.C.G.G., F.G., P.J.L.), and Department of Neurology, School of Medicine (N.P., F.G.), University of California, Davis, California; and Department of Chemistry, University of Louisville, Louisville, Kentucky (B.P., M.H.N.)
| | - Michael H Nantz
- Department of Molecular Biosciences, School of Veterinary Medicine (A.C.G.G., F.G., P.J.L.), and Department of Neurology, School of Medicine (N.P., F.G.), University of California, Davis, California; and Department of Chemistry, University of Louisville, Louisville, Kentucky (B.P., M.H.N.)
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine (A.C.G.G., F.G., P.J.L.), and Department of Neurology, School of Medicine (N.P., F.G.), University of California, Davis, California; and Department of Chemistry, University of Louisville, Louisville, Kentucky (B.P., M.H.N.)
| | - Fredric Gorin
- Department of Molecular Biosciences, School of Veterinary Medicine (A.C.G.G., F.G., P.J.L.), and Department of Neurology, School of Medicine (N.P., F.G.), University of California, Davis, California; and Department of Chemistry, University of Louisville, Louisville, Kentucky (B.P., M.H.N.)
| |
Collapse
|
22
|
Role of nitric oxide in altered nociception and memory following chronic stress. Physiol Behav 2014; 129:214-20. [DOI: 10.1016/j.physbeh.2014.02.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 02/05/2014] [Accepted: 02/28/2014] [Indexed: 01/28/2023]
|
23
|
Thomas J, Hutchinson MR. Exploring neuroinflammation as a potential avenue to improve the clinical efficacy of opioids. Expert Rev Neurother 2014; 12:1311-24. [DOI: 10.1586/ern.12.125] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Effects of selective and non-selective inhibitors of nitric oxide synthase on morphine- and endomorphin-1-induced analgesia in acute and neuropathic pain in rats. Neuropharmacology 2013; 75:445-57. [DOI: 10.1016/j.neuropharm.2013.08.031] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 08/05/2013] [Accepted: 08/27/2013] [Indexed: 12/29/2022]
|
25
|
The transition from acute to chronic pain: understanding how different biological systems interact. Can J Anaesth 2013; 61:112-22. [PMID: 24277113 DOI: 10.1007/s12630-013-0087-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 11/18/2013] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Although pain is an adaptive sensory experience necessary to prevent further bodily harm, the transition from acute to chronic pain is not adaptive and results in the development of a chronic clinical condition. How this transition occurs has been the focus of intense study for some time. The focus of the current review is on changes in neuronal plasticity as well as the role of immune cells and glia in the development of chronic pain from acute tissue injury and pain. PRINCIPAL FINDINGS Our understanding of the complex pathways that mediate the transition from acute to chronic pain continues to increase. Work in this area has already revealed the complex interactions between the nervous and immune system that result in both peripheral and central sensitization, essential components to the development of chronic pain. Taken together, a thorough characterization of the cellular mechanisms that generate chronic pain states is essential for the development of new therapies and treatments. Basic research leading to the development of new therapeutic targets is promising with the development of chloride extrusion enhancers. It is hoped that one day they will provide relief to patients with chronic pain. CONCLUSIONS A better understanding of how chronic pain develops at a mechanistic level can aid clinicians in treating their patients by showing how the underlying biology of chronic pain contributes to the clinical manifestations of pain. A thorough understanding of how chronic pain develops may also help identify new targets for future analgesic drugs.
Collapse
|
26
|
Bombardi C, Grandis A, Gardini A, Cozzi B. Nitrergic Neurons in the Spinal Cord of the Bottlenose Dolphin (Tursiops truncatus). Anat Rec (Hoboken) 2013; 296:1603-14. [DOI: 10.1002/ar.22766] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/13/2013] [Accepted: 05/23/2013] [Indexed: 12/11/2022]
Affiliation(s)
- Cristiano Bombardi
- Department of Veterinary Medical Science; University of Bologna; Via Tolara di Sopra, 50 40064 Ozzano dell'Emilia (BO) Italy
| | - Annamaria Grandis
- Department of Veterinary Medical Science; University of Bologna; Via Tolara di Sopra, 50 40064 Ozzano dell'Emilia (BO) Italy
| | - Anna Gardini
- Department of Veterinary Medical Science; University of Bologna; Via Tolara di Sopra, 50 40064 Ozzano dell'Emilia (BO) Italy
| | - Bruno Cozzi
- Department of Comparative Biomedicine and Food Science; University of Padova; Viale dell'Università 16 35020 Legnaro (PD) Italy
| |
Collapse
|
27
|
Lysophosphatidylcholine causes neuropathic pain via the increase of neuronal nitric oxide synthase in the dorsal root ganglion and cuneate nucleus. Pharmacol Biochem Behav 2013; 106:47-56. [DOI: 10.1016/j.pbb.2013.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 03/13/2013] [Accepted: 03/18/2013] [Indexed: 01/01/2023]
|
28
|
KIM SEONGKYU, KIM SEONGHO, NAH SEONGSU, LEE JIHYUN, HONG SEUNGJAE, KIM HYUNSOOK, LEE HYESOON, KIM HYOUNAH, JOUNG CHUNGIL, BAE JISUK, CHOE JUNGYOON, LEE SHINSEOK. Association of Guanosine Triphosphate Cyclohydrolase 1 Gene Polymorphisms with Fibromyalgia Syndrome in a Korean Population. J Rheumatol 2013; 40:316-22. [DOI: 10.3899/jrheum.120929] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Objective.Guanosine triphosphate cyclohydrolase 1 (GCH1) is the rate-limiting enzyme in the synthesis of tetrahydrobiopterin, which is an essential cofactor in nitric oxide (NO) production. Polymorphisms in theGCH1gene have been implicated in protection against pain sensitivity. The aim of our study was to determine whether single-nucleotide polymorphisms (SNP) in theGCH1gene affect susceptibility and/or pain sensitivity in fibromyalgia syndrome (FM).Methods.A total of 409 patients with FM and 422 controls were enrolled. The alleles and genotypes at 4 positions [rs3783641(T>A), rs841(C>T), rs752688(C>T), and rs4411417(T>C)] in theGCH1gene were analyzed. The associations of theGCH1SNP with susceptibility and clinical measures in patients with FM were assessed.Results.The frequencies of alleles and genotypes of the 4 SNP did not differ between patients with FM and healthy controls. Among 13 constructed haplotypes, we further examined 4 (CCTT, TTCT, TTCA, and CCTA) with > 1% frequency in both FM and controls. No associations ofGCH1polymorphisms with FM-related activity or severity indexes were found, although the number and total score of tender points in patients with FM differed among the 4 haplotypes (p = 0.03 and p = 0.01, respectively). The CCTA haplotype ofGCH1was associated with significantly lower pain sensitivity and occurred less frequently than the CCTT haplotype in patients with FM (p = 0.04, OR 0.45, 95% CI 0.21–0.96).Conclusion.Our study provides evidence that certainGCH1haplotypes may be protective against susceptibility and pain sensitivity in FM. Our data suggest that NO is responsible for pain sensitivity in the pathogenesis of FM.
Collapse
|
29
|
Arcos M, Palanca JM, Montes F, Barrios C. Antioxidants and Gabapentin Prevent Heat Hypersensitivity in a Neuropathic Pain Model. J INVEST SURG 2012; 26:109-17. [DOI: 10.3109/08941939.2012.713444] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
30
|
Wang S, Song L, Tan Y, Ma Y, Tian Y, Jin X, Lim G, Zhang S, Chen L, Mao J. A functional relationship between trigeminal astroglial activation and NR1 expression in a rat model of temporomandibular joint inflammation. PAIN MEDICINE 2012; 13:1590-600. [PMID: 23110394 DOI: 10.1111/j.1526-4637.2012.01511.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To examine the hypothesis that glial activation would regulate the expression of the N-methyl-D-aspartate receptor subunit 1 (NR1) in the trigeminal subnucleus caudalis (Sp5C) after temporomandibular joint (TMJ) inflammation. METHODS Inflammation of TMJ was produced in rats by injecting 50 μL complete Freund's adjuvant (CFA) into unilateral TMJ space. Sham control rats received incomplete Freund's adjuvant injection. Mechanical nociception in the affected and non-affected TMJ site was tested by using a digital algometer. Fractalkine, fluorocitrate, and/or MK801 were intracisternally administrated to examine the relationship between astroglial activation and NR1 upregulation. RESULTS CFA TMJ injection resulted in persistent ipsilateral mechanical hyperalgesia 1, 3, and 5 days after CFA injection. The inflammation also induced significant upregulation of CX3C chemokine receptor 1 and glial fibrillary acidic protein (GFAP) beginning on day 1 and of NR1 beginning on day 3 within the ipsilateral Sp5C. Intracisternal administration of fluorocitrate for 5 days blocked the development of mechanical hyperalgesia as well as the upregulation of GFAP and NR1 in the Sp5C. Conversely, intracisternal injection of fractalkine for 5 days exacerbated the expression of NR1 in Sp5C and mechanical hyperalgesia induced by TMJ inflammation. Moreover, once daily intracisternal fractalkine administration for 5 days in naïve rats induced the upregulation of NR1 and mechanical hyperalgesia. CONCLUSIONS These results suggest that astroglial activation contributes to the mechanism of TMJ pain through the regulation of NR1 expression in Sp5C.
Collapse
Affiliation(s)
- Shuxing Wang
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Leiphart JW, Dills CV, Levy RM. The analgesic effects of intrathecally pumped saline and artificial cerebrospinal fluid in a rat model of neuropathic pain. Neuromodulation 2012; 5:214-20. [PMID: 22150849 DOI: 10.1046/j.1525-1403.2002.02032.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Objective. This experiment was performed to test the hypothesis that intrathecally pumped saline, but not artificial cerebrospinal fluid (CSF), would be analgesic in a rat model of neuropathic pain. Materials and Methods. Surgery for the chronic constriction injury (CCI) model of neuropathic pain and intrathecal catheter placement were performed on the rats, baseline pain testing and pump implantation were performed 7 days later, and pain tests were repeated on days 1, 4, 7, and 14 after pump implantation. Results. Intrathecally pumped saline and artificial CSF were analgesic for cold allodynia (p < 0.05), and intrathecally pumped saline but not CSF for heat nociception in the affected paw (p < 0.005) compared to rats with unattached subcutaneous pumps. No analgesia was observed on tests of spontaneous pain or pressure hyperalgesia (p > 0.1). Conclusions. Intrathecally pumped saline and artificial CSF have analgesic effects on some neuropathic and normal, nociceptive pain signs in CCI rats.
Collapse
Affiliation(s)
- James W Leiphart
- Division of Neurosurgery, University of California at Los Angeles, Los Angeles, California and Departments of Neurosurgery, Physiology, and Institute for Neuroscience, Northwestern University, Chicago, Illinois
| | | | | |
Collapse
|
32
|
Carbon monoxide reduces neuropathic pain and spinal microglial activation by inhibiting nitric oxide synthesis in mice. PLoS One 2012; 7:e43693. [PMID: 22928017 PMCID: PMC3425507 DOI: 10.1371/journal.pone.0043693] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 07/23/2012] [Indexed: 12/29/2022] Open
Abstract
Background Carbon monoxide (CO) synthesized by heme oxygenase 1 (HO-1) exerts antinociceptive effects during inflammation but its role during neuropathic pain remains unknown. Our objective is to investigate the exact contribution of CO derived from HO-1 in the modulation of neuropathic pain and the mechanisms implicated. Methodology/Principal Findings We evaluated the antiallodynic and antihyperalgesic effects of CO following sciatic nerve injury in wild type (WT) or inducible nitric oxide synthase knockout (NOS2-KO) mice using two carbon monoxide-releasing molecules (CORM-2 and CORM-3) and an HO-1 inducer (cobalt protoporphyrin IX, CoPP) daily administered from days 10 to 20 after injury. The effects of CORM-2 and CoPP on the expression of HO-1, heme oxygenase 2 (HO-2), neuronal nitric oxide synthase (NOS1) and NOS2 as well as a microglial marker (CD11b/c) were also assessed at day 20 after surgery in WT and NOS2-KO mice. In WT mice, the main neuropathic pain symptoms induced by nerve injury were significantly reduced in a time-dependent manner by treatment with CO-RMs or CoPP. Both CORM-2 and CoPP treatments increased HO-1 expression in WT mice, but only CoPP stimulated HO-1 in NOS2-KO animals. The increased expression of HO-2 induced by nerve injury in WT, but not in NOS2-KO mice, remains unaltered by CORM-2 or CoPP treatments. In contrast, the over-expression of CD11b/c, NOS1 and NOS2 induced by nerve injury in WT, but not in NOS2-KO mice, were significantly decreased by both CORM-2 and CoPP treatments. These data indicate that CO alleviates neuropathic pain through the reduction of spinal microglial activation and NOS1/NOS2 over-expression. Conclusions/Significance This study reports that an interaction between the CO and nitric oxide (NO) systems is taking place following sciatic nerve injury and reveals that increasing the exogenous (CO-RMs) or endogenous (CoPP) production of CO may represent a novel strategy for the treatment of neuropathic pain.
Collapse
|
33
|
Liu M, Zhou L, Chen Z, Hu C. Analgesic effect of iridoid glycosides from Paederia scandens (LOUR.) MERRILL (Rubiaceae) on spared nerve injury rat model of neuropathic pain. Pharmacol Biochem Behav 2012; 102:465-70. [PMID: 22698486 DOI: 10.1016/j.pbb.2012.06.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 05/18/2012] [Accepted: 06/04/2012] [Indexed: 10/28/2022]
Abstract
Iridoid glycosides of Paederia scandens (IGPS) is a major active component isolated from traditional Chinese herb P. scandens (LOUR.) MERRILL (Rubiaceae). The aim of the present study was to investigate the analgesic effect of IGPS on spared nerve injury (SNI) model of neuropathic pain. The SNI model in rats was established by complete transection of the common peroneal and tibial distal branches of the sciatic nerve, leaving the sural branch intact. The mechanical withdrawal threshold (MWT) in response to mechanical stimulation was measured by electronic von Frey filaments on day 1 before operation and on days 1, 3, 5, 7, 10, and 14 after operation, respectively. Nitric oxide synthase (NOS) activity and nitric oxide (NO) production of spinal cord were measured by spectrophotometry and its cyclic guanosine monophosphate (cGMP) content by radioimmunoassay, mRNA expression of inducible NOS (iNOS) and protein kinase G type I (PKG-I, including PKG Ια and PKG Iβ) of spinal cord were analyzed by RT-PCR. There was a marked mechanical hypersensitivity response observed on day 1 after operation in SNI model, which accompanied with decreased MWT. Treatment with IGPS (70, 140, 280 mg/kg) significantly alleviated SNI-induced mechanical hypersensitivity response evidenced by increased MWT; as well as markedly decreased NOS activity, NO and cGMP levels. At the same time, IGPS (70, 140, 280 mg/kg) could also inhibit mRNA expression of iNOS, PKG Ια and PKG Iβ in the spinal cord. The results suggested that IGPS possesses antinociceptive effect, which may be partly related to the inhibition of NO/cGMP/PKG signaling pathway in the rat SNI model of neuropathic pain.
Collapse
Affiliation(s)
- Mei Liu
- Department of Pharmacology, Anhui Medical University, Hefei 230032, PR China
| | | | | | | |
Collapse
|
34
|
Affiliation(s)
- Eric E. Prommer
- Division of Hematology/Oncology, Mayo Clinic College of Medicine, Mayo Clinic Hospital, Scottsdale, Arizona
| |
Collapse
|
35
|
Abstract
Neurons in spinal dorsal horn lamina I play a pivotal role for nociception that critically depends on a proper balance between excitatory and inhibitory inputs. Any modification in synaptic strength may challenge this delicate balance. Long-term potentiation (LTP) at glutamatergic synapses between nociceptive C-fibers and lamina I neurons is an intensively studied cellular model of pain amplification. In contrast, nothing is presently known about long-term changes of synaptic strength at inhibitory synapses in the spinal dorsal horn. Using a spinal cord-dorsal root slice preparation from rats, we show that conditioning stimulation of primary afferent fibers with a stimulating protocol that induces LTP at C-fiber synapses also triggered LTP at GABAergic synapses (LTP(GABA)). This LTP(GABA) was heterosynaptic in nature and was mediated by activation of group I metabotropic glutamate receptors. Opening of ionotropic glutamate receptor channels of the AMPA/KA or NMDA subtype was not required for LTP(GABA). Paired-pulse ratio, coefficient of variation, and miniature IPSCs analysis revealed that LTP(GABA) was expressed presynaptically. Nitric oxide as a retrograde messenger signal mediated this increase of GABA release at spinal inhibitory synapses. This novel form of synaptic plasticity in spinal nociceptive circuits may be an essential mechanism to maintain the relative balance between excitation and inhibition and to improve the signal-to-noise ratio in nociceptive pathways.
Collapse
|
36
|
The pharmacological importance of agmatine in the brain. Neurosci Biobehav Rev 2012; 36:502-19. [DOI: 10.1016/j.neubiorev.2011.08.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 06/23/2011] [Accepted: 08/18/2011] [Indexed: 01/28/2023]
|
37
|
Romero TR, Resende LC, Duarte ID. The neuronal NO synthase participation in the peripheral antinociception mechanism induced by several analgesic drugs. Nitric Oxide 2011; 25:431-5. [DOI: 10.1016/j.niox.2011.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 07/12/2011] [Accepted: 08/08/2011] [Indexed: 12/17/2022]
|
38
|
Cury Y, Picolo G, Gutierrez VP, Ferreira SH. Pain and analgesia: The dual effect of nitric oxide in the nociceptive system. Nitric Oxide 2011; 25:243-54. [DOI: 10.1016/j.niox.2011.06.004] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 02/17/2011] [Accepted: 06/16/2011] [Indexed: 01/22/2023]
|
39
|
Nitric oxide implicates c-Fos expression in the cuneate nucleus following electrical stimulation of the transected median nerve. Neurochem Res 2011; 37:84-95. [PMID: 21892689 DOI: 10.1007/s11064-011-0585-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 07/27/2011] [Accepted: 08/21/2011] [Indexed: 12/19/2022]
Abstract
In this study, we investigated whether nitric oxide (NO) modulated injury-induced neuropeptide Y (NPY) releasing and c-Fos expression in the cuneate nucleus (CN) after median nerve transection (MNT). We first examined the temporal changes of neuronal nitric oxide synthase (nNOS) expression in the dorsal root ganglion (DRG) and CN after MNT. Following MNT, the amounts of nNOS-like immunoreactive (nNOS-LI) neurons in the DRG and CN significantly increased as compared with those of the sham-operated rats. Furthermore, 4 weeks after MNT, the increases of nNOS-LI neurons in the DRG and CN were attenuated by pre-emptive lidocaine treatment in a dose-dependent manner. Finally, 4 weeks after MNT, pre-stimulation administration of L-NAME (N (ω)-Nitro-L: -arginine methyl ester) or 7-NI (7-nitroindazole) suppressed the amount of NPY release from the stimulated terminals and thus attenuated c-Fos expression in the CN. Our data implied that NO would modulate neuronal activity in the DRG and CN both after MNT.
Collapse
|
40
|
Upregulation of neuronal nitric oxide synthase in the periphery promotes pain hypersensitivity after peripheral nerve injury. Neuroscience 2011; 190:367-78. [DOI: 10.1016/j.neuroscience.2011.05.064] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 05/09/2011] [Accepted: 05/25/2011] [Indexed: 11/23/2022]
|
41
|
Dableh LJ, Henry JL. The selective neuronal nitric oxide synthase inhibitor 7-nitroindazole has acute analgesic but not cumulative effects in a rat model of peripheral neuropathy. J Pain Res 2011; 4:85-90. [PMID: 21559354 PMCID: PMC3085267 DOI: 10.2147/jpr.s17007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Indexed: 11/23/2022] Open
Abstract
Chronic neuropathic pain that may arise from various nerve injuries or insults remains notoriously difficult to manage. The neuronal isoform of the enzyme nitric oxide synthase (nNOS) has been shown to be involved in the spinal transmission of nociception in animal models of chronic pain. The aim of this study is to evaluate the effect of single dose and repeated administration of a selective nNOS inhibitor. Rats were unilaterally implanted with a 2-mm polyethylene cuff around the sciatic nerve. Paw withdrawal thresholds were measured using von Frey filament stimulation. Rats were given 10, 20, or 30 mg/kg of 7-nitroindazole (7-NI), or vehicle, on days 2, 5, and 7 after model induction, respectively. Paw withdrawal thresholds were measured before and at 30 and 60 min after injection. 7-NI significantly increased paw withdrawal thresholds at 60 min at the 20 and 30 mg/kg dosages. In the second part of this study, rats were given 20 mg/kg 7-NI daily for five days starting immediately after cuff implantation (days 0 to 4), and the cuff was removed on day 4. Withdrawal thresholds were measured intermittently over a 24-day observation period. No differences in withdrawal thresholds were observed between drug and vehicle-treated rats. Therefore, early and repeated administration of 7-NI did not affect the development or progression of the model. In conclusion, inhibition of nNOS had an analgesic but not a pre-emptive effect in this model of peripheral neuropathic pain.
Collapse
Affiliation(s)
- Liliane J Dableh
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
42
|
Dagci T, Sengul G, Keser A, Onal A. NADPH-d and Fos reactivity in the rat spinal cord following experimental spinal cord injury and embryonic neural stem cell transplantation. Life Sci 2011; 88:746-52. [PMID: 21376061 DOI: 10.1016/j.lfs.2011.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 12/28/2010] [Accepted: 02/03/2011] [Indexed: 12/25/2022]
Abstract
AIMS The aim of this study is to determine the role of nitric oxide (NO) in neuropathic pain and the effect of embryonic neural stem cell (ENSC) transplantation on NO content in rat spinal cord neurons following spinal cord injury (SCI). MAIN METHODS Ninety adult male Sprague-Dawley rats were divided into 3 groups (n=30, each): control (laminectomy), SCI (hemisection at T12-T13 segments) and SCI+ENSC. Each group was further divided into sub-groups (n=5 each) based on the treatment substance (L-NAME, 75 mg/kg/i.p.; L-arginine, 225 mg/kg/i.p.; physiological saline, SF) and duration (2h for acute and 28 days for chronic groups). Pain was assessed by tail flick and Randall-Selitto tests. Fos immunohistochemistry and NADPH-d histochemistry were performed in segments 2 cm rostral and caudal to SCI. KEY FINDINGS Tail-flick latency time increased in both acute and chronic L-NAME groups and increased in acute and decreased in chronic L-arginine groups. The number of Fos (+) neurons decreased in acute and chronic L-NAME and decreased in acute L-arginine groups. Following ENSC, Fos (+) neurons did not change in acute L-NAME but decreased in the chronic L-NAME groups, and decreased in both acute and chronic L-arginine groups. NADPH-d (+) neurons decreased in acute L-NAME and increased in L-arginine groups with and without ENSC transplantation. SIGNIFICANCE This study confirms the role of NO in neuropathic pain and shows an improvement following ENSC transplantation in the acute phase, observed as a decrease in Fos(+) and NADPH-d (+) neurons in spinal cord segments rostral and caudal to injury.
Collapse
Affiliation(s)
- Taner Dagci
- Department of Physiology, Ege University, School of Medicine, Bornova, Izmir, Turkey
| | | | | | | |
Collapse
|
43
|
The galactosylation of N(ω)-nitro-L-arginine enhances its anti-nocifensive or anti-allodynic effects by targeting glia in healthy and neuropathic mice. Eur J Pharmacol 2011; 656:52-62. [PMID: 21296071 DOI: 10.1016/j.ejphar.2011.01.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 01/24/2011] [Accepted: 01/25/2011] [Indexed: 11/23/2022]
Abstract
This study has investigated whether the galactosyl ester prodrug of N(ω)-nitro-L-arginine (NAGAL), shows enhanced analgesic efficacy in healthy mice and in models of visceral and neuropathic pain: the writhing test and the spared nerve injury (SNI), respectively. NAGAL was compared to methyl ester pro-drug of N(ω)-nitro-l-arginine (L-NAME), a widely exploited non-specific nitric oxide synthase (NOS) inhibitor, for analgesic potential. The writhing test revealed that the ED(50) value, along with the 95% confidence limit (CL) was 3.82 (1.77-6.04) mg/kg for NAGAL and, 36.75 (20.07-68.37) mg/kg for L-NAME. Notably, NAGAL elicited a greater anti-allodynic effect than L-NAME did in neuropathic mice. Biomolecular and morphological studies revealed that spared nerve injury increased the expressions of pro-inflammatory enzymes (caspase-1) and two glial cell biomarkers: integrin alpha M (ITGAM) and glial fibrillary acidic protein (GFAP) in the spinal cord. Finally, GLUT-3, an isoform of the hexose transporters capable to bind NAGAL and inducible NOS (iNOS), were found to be over-expressed in the activated astrocytes of the spinal cord of neuropathic mice. NAGAL administration normalized expression levels of these biomarkers. NAGAL showed a greater efficacy in inhibiting visceral pain and allodynia than L-NAME possibly by a greater cell permeation through the hexose transporter which is highly over-expressed by activated glia.
Collapse
|
44
|
Involvement of spinal NR2B-containing NMDA receptors in oxaliplatin-induced mechanical allodynia in rats. Mol Pain 2011; 7:8. [PMID: 21247499 PMCID: PMC3033350 DOI: 10.1186/1744-8069-7-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 01/20/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Oxaliplatin is a platinum-based chemotherapy drug characterized by the development of acute and chronic peripheral neuropathies. The chronic neuropathy is a dose-limiting toxicity. We previously reported that repeated administration of oxaliplatin induced cold hyperalgesia in the early phase and mechanical allodynia in the late phase in rats. In the present study, we investigated the involvement of NR2B-containing N-methyl-D-aspartate (NMDA) receptors in oxaliplatin-induced mechanical allodynia in rats. RESULTS Repeated administration of oxaliplatin (4 mg/kg, i.p., twice a week) caused mechanical allodynia in the fourth week, which was reversed by intrathecal injection of MK-801 (10 nmol) and memantine (1 μmol), NMDA receptor antagonists. Similarly, selective NR2B antagonists Ro25-6981 (300 nmol, i.t.) and ifenprodil (50 mg/kg, p.o.) significantly attenuated the oxaliplatin-induced pain behavior. In addition, the expression of NR2B protein and mRNA in the rat spinal cord was increased by oxaliplatin on Day 25 (late phase) but not on Day 5 (early phase). Moreover, we examined the involvement of nitric oxide synthase (NOS) as a downstream target of NMDA receptor. L-NAME, a non-selective NOS inhibitor, and 7-nitroindazole, a neuronal NOS (nNOS) inhibitor, significantly suppressed the oxaliplatin-induced pain behavior. The intensity of NADPH diaphorase staining, a histochemical marker for NOS, in the superficial layer of spinal dorsal horn was obviously increased by oxaliplatin, and this increased intensity was reversed by intrathecal injection of Ro25-6981. CONCLUSION These results indicated that spinal NR2B-containing NMDA receptors are involved in the oxaliplatin-induced mechanical allodynia.
Collapse
|
45
|
Hervera A, Negrete R, Leánez S, Martín-Campos JM, Pol O. The spinal cord expression of neuronal and inducible nitric oxide synthases and their contribution in the maintenance of neuropathic pain in mice. PLoS One 2010; 5:e14321. [PMID: 21179208 PMCID: PMC3001461 DOI: 10.1371/journal.pone.0014321] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 11/23/2010] [Indexed: 12/26/2022] Open
Abstract
Background Nitric oxide generated by neuronal (NOS1), inducible (NOS2) or endothelial (NOS3) nitric oxide synthases contributes to pain processing, but the exact role of NOS1 and NOS2 in the maintenance of chronic peripheral neuropathic pain as well as the possible compensatory changes in their expression in the spinal cord of wild type (WT) and NOS knockout (KO) mice at 21 days after total sciatic nerve ligation remains unknown. Methodology/Principal Findings The mechanical and thermal allodynia as well as thermal hyperalgesia induced by sciatic nerve injury was evaluated in WT, NOS1-KO and NOS2-KO mice from 1 to 21 days after surgery. The mRNA and protein levels of NOS1, NOS2 and NOS3 in the spinal cord of WT and KO mice, at 21 days after surgery, were also assessed. Sciatic nerve injury led to a neuropathic syndrome in WT mice, in contrast to the abolished mechanical allodynia and thermal hyperalgesia as well as the decreased or suppressed thermal allodynia observed in NOS1-KO and NOS2-KO animals, respectively. Sciatic nerve injury also increases the spinal cord expression of NOS1 and NOS2 isoforms, but not of NOS3, in WT and NOS1-KO mice respectively. Moreover, the presence of NOS2 is required to increase the spinal cord expression of NOS1 whereas an increased NOS1 expression might avoid the up-regulation of NOS2 in the spinal cord of nerve injured WT mice. Conclusions/Significance These data suggest that the increased spinal cord expression of NOS1, regulated by NOS2, might be responsible for the maintenance of chronic peripheral neuropathic pain in mice and propose these enzymes as interesting therapeutic targets for their treatment.
Collapse
Affiliation(s)
- Arnau Hervera
- Grup de Neurofarmacologia Molecular, Institut de Recerca de l'Hospital de la Sta Creu i Sant Pau & Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Roger Negrete
- Grup de Neurofarmacologia Molecular, Institut de Recerca de l'Hospital de la Sta Creu i Sant Pau & Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sergi Leánez
- Grup de Neurofarmacologia Molecular, Institut de Recerca de l'Hospital de la Sta Creu i Sant Pau & Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jesús M. Martín-Campos
- Grup de Bioquímica, Institut de Recerca de l'Hospital de la Sta Creu i Sant Pau, Barcelona, Spain
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut de Recerca de l'Hospital de la Sta Creu i Sant Pau & Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
46
|
Wang S, Zhang L, Ma Y, Chen L, Tian Y, Mao J, Martyn JJA. Nociceptive behavior following hindpaw burn injury in young rats: response to systemic morphine. PAIN MEDICINE 2010; 12:87-98. [PMID: 21143761 DOI: 10.1111/j.1526-4637.2010.01021.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Develop a burn injury model in young age rats. BACKGROUND Management of pain after burn injury in pediatric patients is an unresolved clinical issue. METHODS A burn injury model in young rats of 3-4 weeks old was developed by briefly immersing the dorsal part of the right hindpaw in a hot water bath (85°C) for 12 seconds under pentobarbital anesthesia. RESULTS Burn injury, but not sham control, induced nociceptive behaviors (mechanical allodynia, thermal hyperalgesia) when examined on post-injury day 2, 4, and 7. In burn-injured rats, there was the upregulated expression of the NR1 subunit of the N-methyl-d-aspartate (NMDA) receptor, Akt1, Akt2, and protein kinase C γ (PKCγ), but downregulated expression of neuronal nitric oxide synthase (NOS), inducible NOS, and glycogen synthase kinase-3β, within the spinal cord dorsal horn ipsilateral to burn injury. Moreover, intraperitoneal administration of a clinically available NMDA receptor antagonist dextromethorphan (30 mg/kg, once daily × 7 days beginning on day 7 after burn injury) attenuated mechanical allodynia and thermal hyperalgesia in burn-injured rats. Different from our previous finding in adult burn-injured rats; however, burn injury in young rats of this age did not spontaneously shift the morphine antinociceptive response curve to the right within the dose range used in the study when exposed to morphine for the first time, suggesting that the development of intrinsic tolerance to morphine antinociception may be different from adult rats following burn injury. CONCLUSIONS Our data suggest that this model may be used to explore the mechanisms of burn injury-induced nociception in young rats and to differentiate the sequelae from burn injury between adult and young rats under certain experimental conditions.
Collapse
Affiliation(s)
- Shuxing Wang
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Harden RN, Gagnon CM, Graciosa J, Gould EM. Negligible analgesic tolerance seen with extended release oxymorphone: a post hoc analysis of open-label longitudinal data. PAIN MEDICINE 2010; 11:1198-208. [PMID: 20609129 DOI: 10.1111/j.1526-4637.2010.00898.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To examine the development of analgesic tolerance in patients on oxymorphone extended-release (OxymER). DESIGN Post hoc analysis of data from a previously conducted prospective 1 year multi-center open-label extension study in which patients were able to titrate as needed. PATIENTS Sample of 153 hip and knee osteoarthritis (OA) subjects on OxymER. Primary analyses were limited to study completers (n = 62) due to the large amount of missing data for the noncompleters (n = 91). OUTCOME MEASURES Main outcome measures included OxymER doses (pill counts) and pain intensity ratings using a visual analog scale at monthly visits. RESULTS There were significant dose increases from weeks 1 to 2 and 2 to 6 (P < 0.05). Doses stabilized around week 6, suggesting the completion of what we defined as "titration." Both doses and pain ratings were stable when this titration phase was excluded from the analysis (P = 0.751; P = 0.056, respectively). Only 28% of the patients had any dose changes following this titration. While there was a significantly greater dose at week 52 compared with week 10 (P = 0.010), the increase in dose became insignificant after excluding four subjects who required two dose increases (P = 0.103). CONCLUSIONS The results showed that most of the titration/dose stabilization changes occurred within the first 10 weeks. A minority (28%) of subjects required dosage increases after this (defined) titration period. Pain reports stabilized statistically after 2 weeks. The findings of this post hoc analysis suggest a lack of opioid tolerance in the majority (72%) of these OA patients who completed this study following a defined titration period on OxymER. SUMMARY This post hoc analysis of oxymorphone ER consumption in osteoarthritis pain vs pain report showed that most dose changes occurred during an initial "titration period" as defined. Following this titration few subjects increased dose and analgesia remained stable. These findings suggest a lack of longitudinal opioid tolerance in the majority of those OA subjects who completed the trial.
Collapse
Affiliation(s)
- R Norman Harden
- Center for Pain Studies, Rehabilitation Institute of Chicago, Chicago, Illinois 60611, USA.
| | | | | | | |
Collapse
|
48
|
Reactive nitroxidative species and nociceptive processing: determining the roles for nitric oxide, superoxide, and peroxynitrite in pain. Amino Acids 2010; 42:75-94. [PMID: 20552384 DOI: 10.1007/s00726-010-0633-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 05/15/2010] [Indexed: 12/12/2022]
Abstract
Pain is a multidimensional perception and is modified at distinct regions of the neuroaxis. During enhanced pain, neuroplastic changes occur in the spinal and supraspinal nociceptive modulating centers and may result in a hypersensitive state termed central sensitization, which is thought to contribute to chronic pain states. Central sensitization culminates in hyperexcitability of dorsal horn nociceptive neurons resulting in increased nociceptive transmission and pain perception. This state is associated with enhanced nociceptive signaling, spinal glutamate-mediated N-methyl-D: -aspartate receptor activation, neuroimmune activation, nitroxidative stress, and supraspinal descending facilitation. The nitroxidative species considered for their role in nociception and central sensitization include nitric oxide (NO), superoxide ([Formula: see text]), and peroxynitrite (ONOO(-)). Nitroxidative species are implicated during persistent but not normal nociceptive processing. This review examines the role of nitroxidative species in pain through a discussion of their contributions to central sensitization and the underlying mechanisms. Future directions for nitroxidative pain research are also addressed. As more selective pharmacologic agents are developed to target nitroxidative species, the exact role of nitroxidative species in pain states will be better characterized and should offer promising alternatives to available pain management options.
Collapse
|
49
|
Hervera A, Negrete R, Leánez S, Martín-Campos J, Pol O. The role of nitric oxide in the local antiallodynic and antihyperalgesic effects and expression of delta-opioid and cannabinoid-2 receptors during neuropathic pain in mice. J Pharmacol Exp Ther 2010; 334:887-96. [PMID: 20498253 DOI: 10.1124/jpet.110.167585] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Both delta-opioid receptor (DOPr) and cannabinoid-2 receptor (CB2R) agonists attenuate neuropathic pain, but the precise mechanism implicated in these effects is not completely elucidated. We investigated whether nitric oxide synthesized by neuronal (NOS1) or inducible (NOS2) nitric-oxide synthases could modulate DOPr and/or CB2R antiallodynic and antihyperalgesic effects through the peripheral nitric oxide-cGMP-protein kinase G (PKG) pathway activation and affect their expression during neuropathic pain. In wild-type (WT) mice at 21 days after chronic constriction of sciatic nerve, we evaluated the effects of [d-Pen(2),d-Pen(5)]-enkephalin (DPDPE); (2-methyl-1-propyl-1H-indol-3-yl)-1-naphthalenylmethanone (JWH-015); and a NOS1 [N-[(4S)-4-amino-5-[(2-aminoethyl)amino]pentyl]-N'-nitroguanidine tris(trifluoroacetate) salt; NANT], NOS2 [l-N(6)-(1-iminoethyl)-lysine; l-NIL], l-guanylate cyclase [1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one; ODQ], or PKG [(Rp)-8-(para-chlorophenylthio)guanosine-3',5'-cyclic monophosphorothioate; Rp-8-pCPT-cGMPs] inhibitor administered alone or combined. Expression of DOPr and CB2R mRNA in the spinal cord and dorsal root ganglia of naive and nerve-injured WT, NOS1-knockout (KO), and NOS2-KO mice, also was assessed. The subplantar administration of NANT, l-NIL, ODQ, or Rp-8-pCPT-cGMPs dose-dependently inhibited neuropathic pain and enhanced the local effects of DPDPE or JWH-015. Moreover, although the basal levels of DOPr and CB2R mRNA were similar between WT and NOS-KO animals, nerve injury only decreased (DOPr) or increased (CB2R) their expression in the dorsal root ganglia of WT and NOS2-KO mice, and not in NOS1-KO mice. Results suggest that inactivation of the nitric oxide-cGMP-PKG peripheral pathway triggered by NOS1 and NOS2 enhanced the peripheral actions of DOPr and CB2R agonists and that nitric oxide synthesized by NOS1 is implicated in the peripheral regulation of DOPr and CB2R gene transcription during neuropathic pain.
Collapse
Affiliation(s)
- Arnau Hervera
- Grup de Neurofarmacologia Molecular, Institut de Recerca de l'Hospital de la Sta Creu i Sant Pau and Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
50
|
Chacur M, Matos R, Alves A, Rodrigues A, Gutierrez V, Cury Y, Britto L. Participation of neuronal nitric oxide synthase in experimental neuropathic pain induced by sciatic nerve transection. Braz J Med Biol Res 2010; 43:367-76. [DOI: 10.1590/s0100-879x2010007500019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2009] [Accepted: 03/01/2010] [Indexed: 11/21/2022] Open
Affiliation(s)
- M. Chacur
- Universidade de São Paulo; Universidade de São Paulo
| | | | | | | | | | | | | |
Collapse
|