1
|
Mathews MA, Camp AJ, Murray AJ. Reviewing the Role of the Efferent Vestibular System in Motor and Vestibular Circuits. Front Physiol 2017; 8:552. [PMID: 28824449 PMCID: PMC5539236 DOI: 10.3389/fphys.2017.00552] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/17/2017] [Indexed: 12/31/2022] Open
Abstract
Efferent circuits within the nervous system carry nerve impulses from the central nervous system to sensory end organs. Vestibular efferents originate in the brainstem and terminate on hair cells and primary afferent fibers in the semicircular canals and otolith organs within the inner ear. The function of this efferent vestibular system (EVS) in vestibular and motor coordination though, has proven difficult to determine, and remains under debate. We consider current literature that implicate corollary discharge from the spinal cord through the efferent vestibular nucleus (EVN), and hint at a potential role in overall vestibular plasticity and compensation. Hypotheses range from differentiating between passive and active movements at the level of vestibular afferents, to EVS activation under specific behavioral and environmental contexts such as arousal, predation, and locomotion. In this review, we summarize current knowledge of EVS circuitry, its effects on vestibular hair cell and primary afferent activity, and discuss its potential functional roles.
Collapse
Affiliation(s)
- Miranda A Mathews
- Sensory Systems and Integration Laboratory, Bosch Institute, Discipline of Biomedical Science, University of SydneySydney, NSW, Australia
| | - Aaron J Camp
- Sensory Systems and Integration Laboratory, Bosch Institute, Discipline of Biomedical Science, University of SydneySydney, NSW, Australia
| | - Andrew J Murray
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College LondonLondon, United Kingdom
| |
Collapse
|
2
|
|
3
|
Popper P, Cristobal R, Wackym PA. Expression and distribution of μ opioid receptors in the inner ear of the rat. Neuroscience 2004; 129:225-33. [PMID: 15489044 DOI: 10.1016/j.neuroscience.2004.08.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2004] [Indexed: 10/26/2022]
Abstract
Opioid peptides have demonstrated modulatory effects on the vestibular afferent discharge and are putative vestibular efferent neuromodulators. The distribution of their receptors in the mammalian vestibular epithelia is not known. We used reverse transcriptase-polymerase chain reaction (RT-PCR), in situ hybridization, Western blots and immunohistochemistry to study the expression of mu opioid receptor (MOR) in the Scarpa's ganglia and cristae ampullares of rats. MOR transcript was only detected in the somata of the vestibular afferent neurons. MOR-like immunoreactivity was observed in the somata of vestibular afferents and in nerve terminals in the cristae ampullares epithelia both in the center and peripheral regions. Double labeling of cristae sections with the MOR1 antibody in combination with antibodies against calretinin (a marker for vestibular afferents terminating in calices) and peripherin (a marker for afferents terminating in boutons), respectively showed that MOR1 immunoreactivity was in calyx, dimorphic and bouton vestibular afferents. MOR immunoreactivity was not detected in vestibular efferent fibers identified with choline acetyltransferase immunohistochemistry. These results indicate that MOR may mediate effects of vestibular efferents on afferents.
Collapse
Affiliation(s)
- P Popper
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, USA.
| | | | | |
Collapse
|
4
|
Gioglio L, Russo G, Polimeni M, Prigioni I. Ecto-ATPase activity sites in vestibular tissues: an ultracytochemical study in frog semicircular canals. Hear Res 2003; 176:1-10. [PMID: 12583876 DOI: 10.1016/s0378-5955(02)00583-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study describes the localization and distribution of putative ecto-nucleoside-triphosphate-diphosphohydrolases in the frog semicircular canals. These enzymes provide the terminating mechanism of adenosine-5'-triphosphate (ATP) signalling. The localization of the ATP hydrolysis was mapped ultracytochemically using a one-step cerium citrate reaction. Electron-dense precipitates, indicating ecto-adenosine-triphosphatase (ecto-ATPase) activity, were found at the outer surface of plasma membranes of crista hair cells and supporting cells of the sensory epithelium, transitional cells and undifferentiated cells of the ampullar wall and dark cells constituting the secretory epithelium. Non-sensory cells of the ampulla usually exhibited reaction deposits at the level of both apical and basolateral membranes coming into contact with the endolymph and the perilymph respectively, while cells constituting the sensory epithelium showed evident differences in relation to their position. Hair cells and supporting cells of the peripheral regions exhibited clear reaction products both at the level of apical and basolateral membranes, while those of the isthmus region showed abundant reactivity only at the level of their apical membranes. Of particular interest was the observation that hair cell stereocilia exhibited an abundant ecto-ATPase activity, thus suggesting a possible colocalization of enzymatic sites with purinergic receptors and mechanotransduction channels. This strategic expression of ecto-ATPase sites could provide a rapid mechanism of ATP removal able to rapidly restore the sensitivity of transduction channels. In conclusion, the widespread distribution of ecto-ATPase sites at the level of sensory and non-sensory cells of the frog semicircular canals suggests that ATP may have a key role in controlling vestibular function.
Collapse
Affiliation(s)
- Luciana Gioglio
- Dipartimento di Medicina Sperimentale, Università di Pavia, Via Forlanini 8, I-27100 Pavia, Italy
| | | | | | | |
Collapse
|
5
|
Butlen D, Bernard C, Ferrary E. Pharmacological characterization of ATP receptors in ampulla from frog semicircular canal. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:R253-61. [PMID: 9688986 DOI: 10.1152/ajpregu.1998.275.1.r253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Phosphoinositidase C activities sensitive to purine and pyrimidine nucleotides have been identified earlier in ampulla from Rana ridibunda semicircular canal. The aim of this study was to characterize the pharmacological properties of other P2 receptors borne by this structure. A microassay was developed to measure the binding of [35S]adenosine 5'-O-(2-thiodiphosphate) ([35S]ADPbetaS) to a few ampullas microdissected from frog semicircular canals. When determined at 4 degrees C in the absence of divalent cations, [35S]ADPbetaS binding was saturable with incubation time and reversible after elimination of free radioligand. The dissociation kinetics were biphasic and comprised a major component that was rapidly reversible and a minor component that dissociated slowly. [35S]ADPbetaS binding was competitively inhibited by unlabeled ADPbetaS with an apparent dissociation constant of 0.48 +/- 0.09 microM and a Hill coefficient of 0.70 +/- 0.06, and Scatchard analysis revealed a minor class of high-affinity binding sites (RT1 = 52 +/- 11 fmol [35S]ADPbetaS bound/ampulla and Kd1 = 0.15 +/- 0.04 microM) and a major class of low-affinity binding sites (RT2 = 436 +/- 79 fmol [35S]ADPbetaS bound/ampulla and Kd2 = 2.0 +/- 0.8 microM). The pattern of stereospecificity for recognition of unlabeled structural ATP analogs was ADPbetaS >/= alpha, beta-methyleneadenosine 5'-triphosphate = ADP = adenosine 5'-O-(3-thiotriphosphate) > ATP = diadenosine tetraphosphate = AMP > 2'- and 3'-O-(4-benzoylbenzoyl)-adenosine 5'-triphosphate >/= 2-methylthioadenosine 5'-triphosphate > 2-desoxythymidine 5'-triphosphate = guanosine 5'-triphosphate = inosine-5'-triphosphate = xanthosine 5'-triphosphate = cytosine 5'-triphosphate = uridine 5'-triphosphate = uridine-5'-diphosphate, whereas cAMP and adenosine were devoid of activity. For antagonists, suramin revealed competitive inhibitor potencies, whereas reactive blue 2 and DIDS acted as pure noncompetitive inhibitors. Results suggest that the population of labeled receptors is heterogeneous and contains a low number of P2Y-like receptors and a large number of P2X-like receptors whose molecular subtypes and functions in endolymph homeostasis remain to be defined.
Collapse
Affiliation(s)
- D Butlen
- Institut National de la Santé et de la Recherche Médicale, Unité 426, Faculté de Médecine Xavier Bichat, 75870 Paris Cedex 18, France
| | | | | |
Collapse
|
6
|
Abstract
Extracellular nucleotides, particularly adenosine 5'-triphosphate (ATP), act as signaling molecules in the inner ear. Roles as neurotransmitters, neuromodulators, and as autocrine or paracrine humoral factors are evident. The diversity of the signaling pathways for nucleotides, which include a variety of ATP-gated ion channels (assembled from different subtypes of P2X-receptor subunit) and also different subtypes of G protein-coupled nucleotide receptors (P2Y receptors) supports a major physiological role for ATP in the regulation of hearing and balance. Almost invariably both P2X and P2Y receptor expression is apparent in the complex tissue structures associated with the inner-ear labyrinth. However P2X-receptor expression, commonly associated with fast neurotransmission, is apparent not only with the cochlear and vestibular primary afferent neurons, but also appears to mediate humoral signaling via ATP-gated ion channel localization to the endolymphatic surface of the cochlear sensory epithelium (organ of Corti). This is the site of the sound-transduction process and recent data, including both electrophysiological, imaging, and immunocytochemistry, has shown that the ATP-gated ion channels are colocalized here with the mechano-electrical transduction channels of the cochlear hair cells. In contrast to this direct action of extracellular ATP on the sound-transduction process, an indirect effect is apparent via P2Y-receptor expression, prevalent on the marginal cells of the stria vascularis, a tissue that generates the standing ionic and electrical gradients across the cochlear partition. The site of generation of these gradients, including the dark-cell epithelium of the vestibular labyrinth, may be under autocrine or paracrine regulation mediated by P2Y receptors sensitive to both purines (ATP) and pyrimidines such as UTP. There is also emerging evidence that the nucleoside adenosine, formed as a breakdown product of ATP by the action of ectonucleotidases and acting via P1 receptors, is also physiologically significant in the inner ear. P1-receptor expression (including A1, A2, and A3 subtypes) appear to have roles associated with stress, acting alongside P2Y receptors to enhance cochlear blood flow and to protect against the action of free radicals and to modulate the activity of membrane conductances. Given the positioning of a diverse range of purinergic-signaling pathways within the inner ear, elevations of nucleotides and nucleosides are clearly positioned to affect hearing and balance. Recent data clearly supports endogenous ATP- and adenosine-mediated changes in sensory transduction via a regulation of the electrochemical gradients in the cochlea, alterations in the active and passive mechanical properties of the cells of the sensory epithelium, effects on primary afferent neurons, and control of the blood supply. The field now awaits conclusive evidence linking a physiologically-induced modulation of extracellular nucleotide and nucleoside levels to altered inner ear function.
Collapse
Affiliation(s)
- G D Housley
- Department of Physiology, Faculty of Medicine and Health Science, University of Auckland, New Zealand
| |
Collapse
|
7
|
|
8
|
Vlajkovic SM, Thorne PR, Muñoz DJ, Housley GD. Ectonucleotidase activity in the perilymphatic compartment of the guinea pig cochlea. Hear Res 1996; 99:31-7. [PMID: 8970811 DOI: 10.1016/s0378-5955(96)00079-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
It has been clearly demonstrated that extracellular adenosine 5'-triphosphate (ATP) exerts a potent modulatory activity in the cochlea through its interaction with P2 purinoceptors. However, little is known regarding the metabolism of extracellular ATP in cochlear tissues via ectonucleotidases. This study provides evidence for the presence of ectonucleotidases in the perilymphatic compartment of the guinea pig cochlea. Using microperfusion, ATP (500 microM) was introduced into the cochlear perilymph through the basal turn scala tympani, and effluent was collected from the basal turn scala vestibuli. Samples were subsequently analysed for the presence of adenine metabolites using high performance liquid chromatography (HPLC). Cell viability was evaluated by the activity of the intracellular enzyme lactate dehydrogenase (LDH) in the perfusate. ATP was degraded to 122.8 +/- 9.9 microM (25.0 +/- 5.8%) during the passage through the cochlear perilymphatic compartment. Breakdown of ATP resulted in the formation of adenosine 5'-diphosphate (41.5 +/- 9.0 microM), adenosine 5'-monophosphate (201.3 +/- 15.5 microM), adenosine (108.6 +/- 8.3) and inosine (15.0 +/- 1.5 microM). The degradation of ATP was significantly (P < 0.001, Student's t-test) inhibited in the absence of divalent cations, Ca2+ and Mg2+ in the perfusate. In control experiments, no spontaneous degradation of ATP was observed in vitro. LDH activity was similar during ATP perfusions (2.9 +/- 0.9%) to control perfusions with artificial perilymph (4.2 +/- 1.0%) indicating well preserved cell integrity in the cochlear perilymphatic compartment. The degradation of extracellular ATP in the presence of intact tissues and its inhibition in the absence of divalent cations, a cofactor for ectonucleotidases, provides evidence for ectonucleotidase activity in the perilymphatic fluid space of the cochlea.
Collapse
Affiliation(s)
- S M Vlajkovic
- Department of Physiology, University of Auckland, New Zealand
| | | | | | | |
Collapse
|
9
|
Chan E, Yung WH, Baumann KI. Cytoplasmic Ca2+ concentrations in intact Merkel cells of an isolated, functioning rat sinus hair preparation. Exp Brain Res 1996; 108:357-66. [PMID: 8801116 DOI: 10.1007/bf00227259] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
An isolated, functioning sinus hair preparation was developed to investigate cytoplasmic Ca2+ concentrations in intact Merkel cells using microfluorimetric techniques. Intracellular Ca2+ levels were monitored by means of photon counters in small groups of Merkel cells loaded with the calcium fluorescent indicators fura-2 or fluo-3. Mechanical stimulation of Merkel cells with fine glass rods resulted in small transient increases in intracellular Ca2+ levels (by about 20%) in the group of Merkel cells around the stimulating probe. A rise in Ca2+ is presumed to be essential for the postulated synaptic transmission to the afferent nerve terminal. Depolarization with a high concentration of potassium chloride (100 mM) caused increases in intracellular Ca2+ concentrations in Merkel cells (by about 70%) only in the presence of extracellular Ca2+, indicating an influx of Ca2+ through voltage-gated channels. The Ca2+ response was abolished neither by (+)-BayK8644 nor omega-conotoxin, suggesting that the Ca2+ channels are different from the classical L- or N-type channels. Extracellular application of ATP (10 microM to 5 mM) caused dose-dependent increases in intracellular Ca2+ levels in Merkel cells of up to sevenfold from the basal level of about 100 nM. Similar responses to ATP were also measured during superfusion with Ca(2+)-free medium, suggesting intracellular stores as the main Ca2+ source. Pre-incubation of Merkel cells with the purinoceptor antagonist suramin (100 microM) for 30 min reduced the Ca2+ responses to ATP by about 50% compared with control conditions. In conclusion, the results have demonstrated that a rise in intracellular Ca2+ in Merkel cells can be evoked by mechanical stimulation, membrane depolarization and chemical stimulation by ATP. These observations strongly suggest a possible contribution of Ca2+ to the normal responsiveness of Merkel cell mechanoreceptors, in turn supporting the hypothesis that Merkel cells are involved in the mechano-electric transduction process in sinus hair type I mechanoreceptors.
Collapse
Affiliation(s)
- E Chan
- Department of Physiology, Faculty of Medicine, Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | | | | |
Collapse
|
10
|
Abstract
The outer hair cells (OHCs) are one target of noise-induced effects. To date there are few studies which examine changes in the function of OHCs induced by noise exposure. There is increasing evidence that ATP may be a neuromodulator acting on OHCs. Therefore, we examined the possibility that the response to ATP may be altered by low-level noise exposure. ATP was tested on cation currents recorded from outer hair cells (OHCs) isolated from chronic noise-exposed guinea pigs and compared to currents recorded from normal control animals. The whole-cell variant of the patch-clamp technique was used. The incidence of response to 100 microM ATP was decreased in OHCs from noise-exposed animals as compared to controls when normal internal and external solutions were employed. When K+ was substituted by N-methyl-glucamine (NMG+) in the pipette solution, there were significant differences in the magnitudes of ATP-evoked currents between cells from noise-exposed and control animals. This was observed in both normal and 20 mM Ba2+ external solutions. In addition, the response to ATP exhibited a dependency on OHC length. In short OHCs (< 65 microns) from noise-exposed animals the magnitude of the response to ATP was significantly reduced. By contrast, the response in long OHCs (> 65 microns) from noise-exposed animals was increased. Results suggest that low-level noise exposure induces changes in OHCs which affect the response of the cell to ATP.
Collapse
Affiliation(s)
- C Chen
- Kresge Hearing Research Laboratory of the South, Department of Otorhinolaryngology and Biocommunication, Louisiana State University Medical Center, New Orleans 70112, USA
| | | | | |
Collapse
|
11
|
Abstract
Ca2+ channel currents and their modulation by adenosine 5'-triphosphate (ATP) in acutely isolated guinea pig outer hair cells (OHCs) were investigated using the whole-cell patch-clamp technique. The current-voltage (I-V) relation of OHCs indicated that the Ca2+ channel opened near -30 mV, and the current reached a maximum at +10 and 0 mV in 20 mM Ca2+ and Ba2+ external solutions, respectively. BayK 8644 (BayK, 2 microM) caused a 3.5-fold increase in peak Ca2+ currents and shifted the I-V curves toward more negative potentials. These results suggest that the majority of Ca2+ channels in OHCs have L-type characteristics. The effects of ATP on Ca2+ channels of OHCs were heterogenous. ATP (100 microM) decreased Ca2+ channel currents by 31.7 +/- 5.6% at 0 mV and shifted Ca2+ tail activation curves toward more depolarized potentials in some cells (N = 6). By contrast, in others, ATP enhanced the currents by 43.5 +/- 12.5% at +10 mV (N = 6). In the presence of BayK, however, ATP-induced inhibition or enhancement of Ca2+ channel currents was attenuated. In addition, 100 microM ATP produced little effect on Ca2+ channel currents in another subpopulation of cells (N = 12). This heterogenous neuromodulation of Ca2+ channel currents by ATP may reflect a functional diversity among OHCs.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- Adenosine Triphosphate/metabolism
- Adenosine Triphosphate/pharmacology
- Adenosine Triphosphate/physiology
- Animals
- Calcium Channel Agonists/pharmacology
- Calcium Channels/drug effects
- Calcium Channels/metabolism
- Guinea Pigs
- Hair Cells, Auditory, Outer/drug effects
- Hair Cells, Auditory, Outer/metabolism
- Hair Cells, Auditory, Outer/physiology
- Organ of Corti/cytology
- Organ of Corti/drug effects
- Organ of Corti/metabolism
- Patch-Clamp Techniques
Collapse
Affiliation(s)
- C Chen
- Kresge Hearing Research Laboratory of the South, Department of Otorhinolaryngology and Biocommunication, Louisiana State University Medical Center, New Orleans 70112-2234, USA
| | | | | | | |
Collapse
|
12
|
Mockett BG, Bo X, Housley GD, Thorne PR, Burnstock G. Autoradiographic labelling of P2 purinoceptors in the guinea-pig cochlea. Hear Res 1995; 84:177-93. [PMID: 7642450 DOI: 10.1016/0378-5955(95)00024-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Two different radioligands were used to identify extracellular ATP binding sites specific to P2 purinoceptors in guinea-pig cochlear tissue. Deoxyadenosine 5'-(alpha-[35S]thio)triphosphate ([35S]dATP alpha S; 10 nM) provided a high activity probe for the P2y purinoceptor subtype on the basis of selective block by 2-methylthio-ATP (2MeSATP; 100 microM). [3H]alpha, beta-methylene-ATP (10 nM), a high affinity probe for a P2x purinoceptor subtype was selectively blocked by inclusion of the related compound beta, gamma-methylene-ATP (100 microM). Both probes labelled the organ of Corti, stria vascularis and spiral prominence regions. The P2x purinoceptor probe also bound to lateral wall tissue below the spiral prominence and insertion point of the basilar membrane within the scala tympani compartment, a region which failed to show significant binding using [35S]dATP alpha S. Frozen sections of whole cochlea permitted analysis of radioligand binding to the cell body region (spiral ganglion in Rosenthal's canal) of the primary auditory afferents and the auditory nerve itself, which lies within the central region of the modiolus of the cochlea. Both these regions exhibited 2MeSATP blockable [35S]dATP alpha S binding whereas specific [3H]alpha, beta-methylene-ATP binding was absent from spiral ganglion and minimal in the auditory nerve region. These results demonstrate a mixed P2 purinoceptor distribution in cochlear tissues and suggest that complex purine-mediated neurohumoral mechanisms may influence cochlear function at a number of sites.
Collapse
MESH Headings
- Adenosine Triphosphate/analogs & derivatives
- Adenosine Triphosphate/metabolism
- Adenosine Triphosphate/pharmacology
- Animals
- Autoradiography
- Binding, Competitive
- Cochlea/cytology
- Cochlea/drug effects
- Cochlea/metabolism
- Deoxyadenine Nucleotides/metabolism
- Deoxyadenine Nucleotides/pharmacology
- Female
- Frozen Sections
- Guinea Pigs
- Hair Cells, Auditory, Inner/cytology
- Hair Cells, Auditory, Inner/drug effects
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Outer/cytology
- Hair Cells, Auditory, Outer/drug effects
- Hair Cells, Auditory, Outer/metabolism
- Male
- Purinergic P2 Receptor Antagonists
- Radioligand Assay
- Receptors, Purinergic P2/metabolism
- Spiral Ganglion/drug effects
- Spiral Ganglion/metabolism
- Stria Vascularis/drug effects
- Stria Vascularis/metabolism
- Thionucleotides/metabolism
- Thionucleotides/pharmacology
Collapse
Affiliation(s)
- B G Mockett
- Department of Physiology, School of Medicine, University of Auckland, New Zealand
| | | | | | | | | |
Collapse
|