1
|
Synaptic Zn 2+ potentiates the effects of cocaine on striatal dopamine neurotransmission and behavior. Transl Psychiatry 2021; 11:570. [PMID: 34750356 PMCID: PMC8575899 DOI: 10.1038/s41398-021-01693-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Cocaine binds to the dopamine (DA) transporter (DAT) to regulate cocaine reward and seeking behavior. Zinc (Zn2+) also binds to the DAT, but the in vivo relevance of this interaction is unknown. We found that Zn2+ concentrations in postmortem brain (caudate) tissue from humans who died of cocaine overdose were significantly lower than in control subjects. Moreover, the level of striatal Zn2+ content in these subjects negatively correlated with plasma levels of benzoylecgonine, a cocaine metabolite indicative of recent use. In mice, repeated cocaine exposure increased synaptic Zn2+ concentrations in the caudate putamen (CPu) and nucleus accumbens (NAc). Cocaine-induced increases in Zn2+ were dependent on the Zn2+ transporter 3 (ZnT3), a neuronal Zn2+ transporter localized to synaptic vesicle membranes, as ZnT3 knockout (KO) mice were insensitive to cocaine-induced increases in striatal Zn2+. ZnT3 KO mice showed significantly lower electrically evoked DA release and greater DA clearance when exposed to cocaine compared to controls. ZnT3 KO mice also displayed significant reductions in cocaine locomotor sensitization, conditioned place preference (CPP), self-administration, and reinstatement compared to control mice and were insensitive to cocaine-induced increases in striatal DAT binding. Finally, dietary Zn2+ deficiency in mice resulted in decreased striatal Zn2+ content, cocaine locomotor sensitization, CPP, and striatal DAT binding. These results indicate that cocaine increases synaptic Zn2+ release and turnover/metabolism in the striatum, and that synaptically released Zn2+ potentiates the effects of cocaine on striatal DA neurotransmission and behavior and is required for cocaine-primed reinstatement. In sum, these findings reveal new insights into cocaine's pharmacological mechanism of action and suggest that Zn2+ may serve as an environmentally derived regulator of DA neurotransmission, cocaine pharmacodynamics, and vulnerability to cocaine use disorders.
Collapse
|
2
|
Synaptic Zinc: An Emerging Player in Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22094724. [PMID: 33946908 PMCID: PMC8125092 DOI: 10.3390/ijms22094724] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 02/03/2023] Open
Abstract
Alterations of zinc homeostasis have long been implicated in Parkinson's disease (PD). Zinc plays a complex role as both deficiency and excess of intracellular zinc levels have been incriminated in the pathophysiology of the disease. Besides its role in multiple cellular functions, Zn2+ also acts as a synaptic transmitter in the brain. In the forebrain, subset of glutamatergic neurons, namely cortical neurons projecting to the striatum, use Zn2+ as a messenger alongside glutamate. Overactivation of the cortico-striatal glutamatergic system is a key feature contributing to the development of PD symptoms and dopaminergic neurotoxicity. Here, we will cover recent evidence implicating synaptic Zn2+ in the pathophysiology of PD and discuss its potential mechanisms of actions. Emphasis will be placed on the functional interaction between Zn2+ and glutamatergic NMDA receptors, the most extensively studied synaptic target of Zn2+.
Collapse
|
3
|
McAllister BB, Dyck RH. Zinc transporter 3 (ZnT3) and vesicular zinc in central nervous system function. Neurosci Biobehav Rev 2017. [DOI: 10.1016/j.neubiorev.2017.06.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
4
|
Staphylococcal α-hemolysin is neurotoxic and causes lysis of brain cells in vivo and in vitro. Neurotoxicology 2015; 48:61-7. [PMID: 25757835 DOI: 10.1016/j.neuro.2015.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/25/2015] [Accepted: 03/02/2015] [Indexed: 01/11/2023]
Abstract
Formation of a bacterial brain abscess entails loss of brain cells and formation of pus. The mechanisms behind the cell loss are not fully understood. Staphylococcus aureus, a common cause of brain abscesses, produces various exotoxins, including α-hemolysin, which is an important factor in brain abscess formation. α-Hemolysin may cause cytolysis by forming pores in the plasma membrane of various eukaryotic cells. However, whether α-hemolysin causes lysis of brain cells is not known. Nor is it known whether α-hemolysin in the brain causes cell death through pore formation or by acting as a chemoattractant, recruiting leukocytes and causing inflammation. Here we show that α-hemolysin injected into rat brain causes cell damage and edema formation within 30 min. Cell damage was accompanied by an increase in extracellular concentrations of zinc, GABA, glutamate, and other amino acids, indicating plasma membrane damage, but leukocytic infiltration was not seen 0.5-12h after α-hemolysin injection. This was in contrast to injection of S. aureus, which triggered extensive infiltration with neutrophils within 8h. In vitro, α-hemolysin caused concentration-dependent lysis of isolated nerve endings and cultured astrocytes. We conclude that α-hemolysin contributes to the cell death inherent in staphylococcal brain abscess formation as a pore-forming neurotoxin.
Collapse
|
5
|
Hassel B, Dahlberg D, Mariussen E, Goverud IL, Antal EA, Tønjum T, Maehlen J. Brain infection with Staphylococcus aureus leads to high extracellular levels of glutamate, aspartate, γ-aminobutyric acid, and zinc. J Neurosci Res 2014; 92:1792-800. [PMID: 25043715 DOI: 10.1002/jnr.23444] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/06/2014] [Accepted: 06/01/2014] [Indexed: 11/08/2022]
Abstract
Staphylococcal brain infections may cause mental deterioration and epileptic seizures, suggesting interference with normal neurotransmission in the brain. We injected Staphylococcus aureus into rat striatum and found an initial 76% reduction in the extracellular level of glutamate as detected by microdialysis at 2 hr after staphylococcal infection. At 8 hr after staphylococcal infection, however, the extracellular level of glutamate had increased 12-fold, and at 20 hr it had increased >30-fold. The extracellular level of aspartate and γ-aminobutyric acid (GABA) also increased greatly. Extracellular Zn(2+) , which was estimated at ∼2.6 µmol/liter in the control situation, was increased by 330% 1-2.5 hr after staphylococcal infection and by 100% at 8 and 20 hr. The increase in extracellular glutamate, aspartate, and GABA appeared to reflect the degree of tissue damage. The area of tissue damage greatly exceeded the area of staphylococcal infiltration, pointing to soluble factors being responsible for cell death. However, the N-methyl-D-aspartate receptor antagonist MK-801 ameliorated neither tissue damage nor the increase in extracellular neuroactive amino acids, suggesting the presence of neurotoxic factors other than glutamate and aspartate. In vitro staphylococci incubated with glutamine and glucose formed glutamate, so bacteria could be an additional source of infection-related glutamate. We conclude that the dramatic increase in the extracellular concentration of neuroactive amino acids and zinc could interfere with neurotransmission in the surrounding brain tissue, contributing to mental deterioration and a predisposition to epileptic seizures, which are often seen in brain abscess patients.
Collapse
Affiliation(s)
- Bjørnar Hassel
- Department of Neurology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Norwegian Defense Research Establishment, Kjeller, Norway
| | | | | | | | | | | | | |
Collapse
|
6
|
Bjorklund NL, Volz TJ, Schenk JO. Differential effects of Zn2+ on the kinetics and cocaine inhibition of dopamine transport by the human and rat dopamine transporters. Eur J Pharmacol 2007; 565:17-25. [PMID: 17408612 DOI: 10.1016/j.ejphar.2007.02.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 02/08/2007] [Accepted: 02/09/2007] [Indexed: 11/17/2022]
Abstract
Zn2+ may play a major role in the modulation of neurotransmission because it modulates membrane receptors and channels. Recent literature has shown Zn2+ inhibits dopamine transport by the dopamine transporter (DAT), the main target of cocaine and some other drugs of abuse. Cocaine inhibits DAT and modulation of the DAT by Zn2+ may alter effects of cocaine on dopamine neurotransmission. This study investigates how Zn2+ changes DAT kinetics and its inhibition by cocaine. Steady-state and pre-steady-state kinetics of DAT activity were investigated using rotating disk electrode voltammetry. Values of KM and Vmax in hDAT and effects of cocaine match those in the literature. Zn2+ allosterically inhibited transport in the human DAT (hDAT) with a KI=7.9+/-0.42 microM. Removal of endogenous Zn2+ with penicillamine in hDAT increased transport values. In contrast, Zn2+ did not alter transport by rat DAT (rDAT), with KM and Vmax values of 1.2+/-0.49 microM and 15.7+/-2.57 pmol/(sx10(6) cells), respectively, and removal of Zn2+ did not increase dopamine transport values. Zn2+ allosterically reduced the inhibition by cocaine in hDAT. Results of pre-steady-state studies demonstrated that Zn2+ increases the second order binding rate constant for dopamine to hDAT (3.5 fold to 19.2x10(6) M-1 s-1 for hDAT). In rat striatal homogenates Zn2+ increased initial dopamine transport velocity and decreased cocaine inhibition providing evidence for differences in sensitivity to Zn2+ between the three different preparations. Modulation of the DAT by Zn2+ needs to be assessed further in development of cocaine antagonists.
Collapse
Affiliation(s)
- Nicole L Bjorklund
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA
| | | | | |
Collapse
|
7
|
Abstract
Synaptically released zinc is thought to play an important role in neuronal signaling by modulating excitatory and inhibitory receptors and intracellular signaling proteins. Consequently, neurons that release zinc have been implicated in synaptic plasticity underlying learning and memory as well as neuropathological processes such as epilepsy, stroke, and Alzheimer's disease. To characterize the distribution of these neurons, investigators have relied on a technique that involves the retrograde transport of zinc-selenium crystals from axonal boutons to the cell bodies of origin. However, one major problem with this method is that labeling of cell bodies is obscured by high levels of staining in synaptic boutons, particularly within forebrain structures where this staining is most intense. Here, we used a modification of the retrograde labeling method that eliminates terminal staining for zinc, thereby enabling a clear and comprehensive description of these neurons. Zincergic neurons were found in all cerebral cortical regions and were arranged in a distinct laminar pattern, restricted to layers 2/3, 5, and 6 with no labeling in layer 4. In the hippocampus, labeling was present in CA1, CA3, and the dentate gyrus but not in CA2. Labeled cell bodies were also observed in most amygdaloid nuclei, anterior olfactory nuclei, claustrum, tenia tecta, endopiriform region, lateral ventricle, lateral septum, zona incerta, superior colliculus, and periaqueductal gray. Moreover, retrograde labeling was also noted in the dorsomedial and lateral hypothalamus, regions that previously were thought to be devoid of neurons with a zincergic phenotype. Collectively these data show that zincergic neurons comprise a large population of neurons in the murine forebrain and will provide an anatomical framework for understanding the functional importance of these neurons in the mammalian brain.
Collapse
Affiliation(s)
- Craig E Brown
- Department of Psychology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | |
Collapse
|
8
|
Casanovas-Aguilar C, Miró-Bernié N, Pérez-Clausell J. Zinc-rich neurones in the rat visual cortex give rise to two laminar segregated systems of connections. Neuroscience 2002; 110:445-58. [PMID: 11906785 DOI: 10.1016/s0306-4522(01)00482-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Zinc-rich synaptic boutons in the neocortex arise from the neocortex itself. However, the precise organisation of these circuits is not known. Therefore, the laminar and areal pattern of zinc-rich cortico-cortical connections between visual areas was studied by retrograde tracing using intracerebral injections of sodium selenite. This tracer was injected in supragranular and infragranular layers in various cortical visual areas in order to precipitate zinc in the synaptic boutons, which was retrogradely transported to neuronal somata. Supragranular injections led to retrogradely labelled neurones in layer II-III, ipsilaterally and contralaterally. Neurones often appeared in groups or clusters. Infragranular injections labelled neurones in layers II-III, VI and, to a lesser extent, in layer V, both ipsilaterally and contralaterally. Neurones in layer VI formed a wide continuous band. Concerning the connections between visual (=occipital) areas, injections in occipital area 2, lateral part (Oc2L), rendered the largest number of retrogradely labelled neurones, which were located in occipital area 1 (Oc1), occipital area 2, medial part (Oc2M) and outside the visual cortex. Callosal zinc-rich projections were dense in the homotopic area but sparse in Oc1 and temporal cortex. Injections in Oc1 rendered moderate numbers of labelled neurones in occipital areas, in both hemispheres. Injections in Oc2M labelled moderate numbers of neurones in occipital areas in both hemispheres and in the frontal and cingulate cortices. These results indicate that zinc-rich cortico-cortical connections are organised into two segregated systems arising from either supragranular or infragranular neurones. In addition, in the visual cortex, zinc-rich systems appear to converge on Oc2L. Zinc-rich connections appear as an extensive, highly organised association system.
Collapse
Affiliation(s)
- C Casanovas-Aguilar
- Departament de Biologia Cel small middle dotlular, Universitat de Barcelona, Diagonal 645, ES-08071, Barcelona, Spain.
| | | | | |
Collapse
|
9
|
Valente T, Auladell C, Pérez-Clausell J. Postnatal development of zinc-rich terminal fields in the brain of the rat. Exp Neurol 2002; 174:215-29. [PMID: 11922663 DOI: 10.1006/exnr.2002.7876] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The appearance and distribution of zinc-rich terminal fields in the rat forebrain was analyzed at 12 stages of postnatal development using the selenium method. Zinc stain was detected in neonates in piriform, cingulate, and motor cortices, septal area, and hippocampal formation. In the neocortex, a laminar pattern appeared progressively following an inside-out gradient: layer VI at postnatal day 0 (P0), layer V at P1, layers Va and Vb at P5, layer II-III at P9, and layer IV at P12. In the hippocampal formation the layered pattern in the dentate molecular layer appeared at P1-P3, and in the hilus and mossy fibers the stain was observed at P5. Patches in the caudate-putamen were sharply delimited at P1-P3. At these ages, staining was observed in the amygdaloid complex. In the thalamic and hypothalamic nuclei, stain appeared at P5-P7. Thus, a general increase in vesicular zinc over different telencephalic areas was determined until P15-P21, which was followed by a slight decrease thereafter (at P41). The increased stain in zinc-rich terminal fields is consistent with the development of telencephalic circuits. The rise in zinc might be relevant for the establishment and maturation of these circuits. On the other hand, the decrease in staining for zinc at later stages might be due to methodological problems but it might also reflect pruning of supernumerary connections and programmed cell death affecting zinc-rich circuits.
Collapse
Affiliation(s)
- Tony Valente
- Departament de Biologia Cel small middle dotlular, Universitat de Barcelona, Barcelona, E-08071, Spain
| | | | | |
Collapse
|
10
|
Mengual E, Casanovas-Aguilar C, Pérez-Clausell J, Giménez-Amaya JM. Thalamic distribution of zinc-rich terminal fields and neurons of origin in the rat. Neuroscience 2001; 102:863-84. [PMID: 11182249 DOI: 10.1016/s0306-4522(00)00472-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Several cortico-cortical and limbic-related circuits are enriched in zinc, which is considered as an important modulator of glutamatergic transmission. While heavy metals have been detected in the thalamus, the specific presence of zinc has not been examined in this region. We have used two highly sensitive variations of the Timm method to study the zinc-rich innervation in the rat thalamus, which was compared to the distribution of acetylcholinesterase activity. The origin of some of these zinc-rich projections was also investigated by means of retrograde transport after intracerebral infusions of sodium selenium (Na2SeO3). The overall zinc staining in the thalamus was much lower than in the neocortex, striatum or basal forebrain; however, densely stained terminal fields were observed in the dorsal tip of the reticular thalamic nucleus, the anterodorsal and lateral dorsal thalamic nuclei and the zona incerta. In addition, moderately stained zinc-rich terminal fields were found in the rostral intralaminar nuclei, nucleus reuniens and lateral habenula. Intracerebral infusions of Na2SeO3 in the lateral dorsal nucleus resulted in retrogradely labeled neurons that were located in the postsubiculum, and also in the pre- and parasubiculum. These results are the first to establish the existence of a zinc-rich subicular-thalamic projection. Similar infusions in either the intralaminar nuclei or the zona incerta resulted in labeling of neurons in several brainstem structures related to the reticular formation. Our results provide morphological evidence for zinc modulation of glutamatergic inputs to highly selective thalamic nuclei, arising differentially from either cortical limbic areas or from brainstem ascending activation systems.
Collapse
Affiliation(s)
- E Mengual
- Departamento de Anatomía, Facultad de Medicina, Universidad de Navarra, ES-31008 Pamplona, Navarra, Spain.
| | | | | | | |
Collapse
|
11
|
Casanovas-Aguilar C, Reblet C, Pérez-Clausell J, Bueno-López JL. Zinc-rich afferents to the rat neocortex: projections to the visual cortex traced with intracerebral selenite injections. J Chem Neuroanat 1998; 15:97-109. [PMID: 9719362 DOI: 10.1016/s0891-0618(98)00035-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Infusion of sodium selenite to the occipital cortex of the rat was used for the specific tracing of zinc-rich pathways. Large numbers of labeled somata were found ipsilaterally in the visual, orbital and frontal cortices, and contralaterally in homotopic and heterotopic visual areas. Labeled neurons were also found ipsilaterally in the retrosplenial, parietal, sensory-motor, temporal and perirhinal cortex. In contrast to the cortico-cortical connections, ascending afferents to the visual cortex were not zinc-rich except for a few labeled neurons in the claustrum. Additional injections showed reciprocal zinc-rich connections between the visual cortex and the orbital and frontal cortices. The latter cortices also received ascending zinc-rich afferents from the claustrum. Selenite injections revealed the layered distribution and the morphology of these labeled neurons in the neocortex. Zinc-rich neurons were found in layers II-III, V and VI. However, none was found in layer IV. Zinc-rich somata appeared as pyramidal and inverted neurons. The contrasting chemical properties of cortical and subcortical visual afferents may account for the functional differences between these systems.
Collapse
Affiliation(s)
- C Casanovas-Aguilar
- Departament de Biologia Cel.lular Animal i Vegetal, Facultat de Biologia, Universitat de Barcelona, Spain.
| | | | | | | |
Collapse
|
12
|
Somatodendritic depolarization-activated potassium currents in rat neostriatal cholinergic interneurons are predominantly of the A type and attributable to coexpression of Kv4.2 and Kv4.1 subunits. J Neurosci 1998. [PMID: 9547221 DOI: 10.1523/jneurosci.18-09-03124.1998] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Unlike other neostriatal neurons, cholinergic interneurons exhibit spontaneous, low-frequency, repetitive firing. To gain an understanding of the K+ channels regulating this behavior, acutely isolated adult rat cholinergic interneurons were studied using whole-cell voltage-clamp and single-cell reverse transcription-PCR techniques. Cholinergic interneurons were identified by the presence of choline acetyltransferase (ChAT) mRNA. Depolarization-activated potassium currents in cholinergic interneurons were dominated by a rapidly inactivating, K+-selective A current that became active at subthreshold potentials. Depolarizing prepulses inactivated this component of the current, leaving a delayed, rectifier-like current. Micromolar concentrations of Cd2+ dramatically shifted the voltage dependence of the A current without significantly affecting the delayed rectifier. The A-channel antagonist 4-aminopyridine (4-AP) produced a voltage-dependent block (IC50, approximately 1 mM) with a prominent crossover at millimolar concentrations. On the other hand, TEA preferentially blocked the sustained current component at concentrations <10 mM. Single-cell mRNA profiling of subunits known to give rise to rapidly inactivating K+ currents revealed the coexpression of Kv4.1, Kv4.2, and Kv1.4 mRNAs but low or undetectable levels of Kv4.3 and Kv3.4 mRNAs. Kv1.1, beta1, and beta2 subunit mRNAs, but not beta3, were also commonly detected. The inactivation recovery kinetics of the A-type current were found to match those of Kv4.2 and 4.1 channels and not those of Kv1.4 or Kv1. 1 and beta1 channels. Immunocytochemical analysis confirmed the presence of Kv4.2 but not Kv1.4 subunits in the somatodendritic membrane of ChAT-immunoreactive neurons. These results argue that the depolarization-activated somatodendritic K+ currents in cholinergic interneurons are dominated by Kv4.2- and Kv4. 1-containing channels. The properties of these channels are consistent with their playing a prominent role in governing the slow, repetitive discharge of interneurons seen in vivo.
Collapse
|
13
|
Escames G, Acuña-Castroviejo D, León J, Vives F. Melatonin interaction with magnesium and zinc in the response of the striatum to sensorimotor cortical stimulation in the rat. J Pineal Res 1998; 24:123-9. [PMID: 9580111 DOI: 10.1111/j.1600-079x.1998.tb00377.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The sensorimotor cortex (SMCx) sends numerous projections to the striatum. These projections are excitatory and glutamate mediated. Glutamatergic receptors, specifically those of NMDA type-receptors, are closely related to excitotoxicity. Thus, in some circumstances, an excess of Ca2+ influx through NMDA channels alters neuronal metabolism and may become lethal for the cell. Two other divalent cations, Mg2+ and Zn2+, have inhibitory effects on NMDA receptors. Magnesium ions exert a voltage-dependent block of the NMDA calcium channel, whereas zinc ions exert a voltage-independent NMDA block. In the present work, the effects of iontophoresis of Mg2+ and Zn2+ on the striatal response to SMCx stimulation were studied. Moreover melatonin, an indoleamine with anticonvulsant properties and inhibitory effects on the NMDA receptor, was also iontophorized alone or in combination with Mg2+ and Zn2+. Single pulse electrical stimulation of SMCx produced an excitatory response in the striatum. Iontophoresis of melatonin, Mg2+ and Zn2+ produced a potent attenuation of the excitatory response of the striatum to SMCx stimulation, although the latency of the effect of melatonin was longer than those of Mg2+ and Zn2+. When these cations were simultaneously ejected with melatonin, additive inhibitory effects were recorded. These observations suggest that the inhibitory effects produced by Mg2+ and Zn2+ and melatonin are produced via different processes, and thus the inhibitory role of melatonin on the NMDA receptor activity is exclusive of a direct action on the NMDA calcium channel.
Collapse
Affiliation(s)
- G Escames
- Instituto de Biotecnología, Universidad de Granada, Spain
| | | | | | | |
Collapse
|
14
|
Yan Z, Surmeier DJ. D5 dopamine receptors enhance Zn2+-sensitive GABA(A) currents in striatal cholinergic interneurons through a PKA/PP1 cascade. Neuron 1997; 19:1115-26. [PMID: 9390524 DOI: 10.1016/s0896-6273(00)80402-x] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cholinergic interneurons have been implicated in striatally mediated associative learning. In classical conditioning paradigms, conditioned stimuli trigger a transient suppression of neuronal activity that is dependent upon an intact dopaminergic innervation. Our hypothesis was that this suppression reflected dopaminergic enhancement of sensory-linked GABAergic input. As a test, the impact of dopamine on interneuronal GABA(A) receptor function was studied by combined patch-clamp recording and single-cell reverse transcription PCR. Activation of D5 dopamine receptors reversibly enhanced a Zn2+-sensitive component of GABA(A) currents. Although dependent upon protein kinase A (PKA) activation, the modulation was blocked by protein phosphatase 1 (PP1) inhibition, suggesting it was dependent upon dephosphorylation. These results establish a novel mechanism by which intrastriatally released dopamine mediates changes in GABAergic signaling that could underlie the initial stages of associative learning.
Collapse
Affiliation(s)
- Z Yan
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee, Memphis 38163, USA
| | | |
Collapse
|