1
|
Widespread JNK-dependent alternative splicing induces a positive feedback loop through CELF2-mediated regulation of MKK7 during T-cell activation. Genes Dev 2016; 29:2054-66. [PMID: 26443849 PMCID: PMC4604346 DOI: 10.1101/gad.267245.115] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, Martinez et al. find a positive feedback loop in the JNK signaling pathway through the alternative splicing of MKK7, identify the RNA-binding protein CELF2 as a major regulator of MKK7 splicing, and show that ∼25% of T-cell receptor-mediated alternative splicing events are dependent on JNK signaling. This study provides insight into a novel paradigm for the reciprocal interplay of signaling and splicing. Alternative splicing is prevalent among genes encoding signaling molecules; however, the functional consequence of differential isoform expression remains largely unknown. Here we demonstrate that, in response to T-cell activation, the Jun kinase (JNK) kinase MAP kinase kinase 7 (MKK7) is alternatively spliced to favor an isoform that lacks exon 2. This isoform restores a JNK-docking site within MKK7 that is disrupted in the larger isoform. Consistently, we show that skipping of MKK7 exon 2 enhances JNK pathway activity, as indicated by c-Jun phosphorylation and up-regulation of TNF-α. Moreover, this splicing event is itself dependent on JNK signaling. Thus, MKK7 alternative splicing represents a positive feedback loop through which JNK promotes its own signaling. We further show that repression of MKK7 exon 2 is dependent on the presence of flanking sequences and the JNK-induced expression of the RNA-binding protein CELF2, which binds to these regulatory elements. Finally, we found that ∼25% of T-cell receptor-mediated alternative splicing events are dependent on JNK signaling. Strikingly, these JNK-dependent events are also significantly enriched for responsiveness to CELF2. Together, our data demonstrate a widespread role for the JNK–CELF2 axis in controlling splicing during T-cell activation, including a specific role in propagating JNK signaling.
Collapse
|
2
|
Hutchison MR. Mice with a conditional deletion of the neurotrophin receptor TrkB are dwarfed, and are similar to mice with a MAPK14 deletion. PLoS One 2013; 8:e66206. [PMID: 23776632 PMCID: PMC3679073 DOI: 10.1371/journal.pone.0066206] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 05/05/2013] [Indexed: 12/21/2022] Open
Abstract
Long bone growth results from ordered chondrocyte development within the cartilagenous growth plate. Chondrocytes are recruited from a resting pool to proliferate along the long axis of the bone, until various signals trigger differentiation and hypertrophy. We have shown previously that the neurotrophin receptor TrkB is expressed in growth plate chondrocytes, where the tyrosine kinase receptor regulates the pace of hypertrophic differentiation by modulating the activities of ERK and p38 MAP kinases. To investigate the physiological relevance of TrkB to bone growth in vivo, we generated mice with a targeted disruption of the receptor, and compared them to mice targeted for MAPK14, the gene for p38α. The TrkB mutant and p38α mutant mice showed a similar degree of dwarfism and delayed hypertrophic differentiation. To extend these findings, we showed that both the TrkB and p38α mutant mice have altered expression of Runx2 and Sox9, two key transcription factors required for skeletogenesis. The data provides in vivo evidence for the role of TrkB in bone growth, supports the role of p38 downstream of TrkB, and suggests that Runx2 and Sox9 expression is regulated by this pathway at the growth plate.
Collapse
Affiliation(s)
- Michele R Hutchison
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America.
| |
Collapse
|
3
|
TrkB receptor signalling: implications in neurodegenerative, psychiatric and proliferative disorders. Int J Mol Sci 2013; 14:10122-42. [PMID: 23670594 PMCID: PMC3676832 DOI: 10.3390/ijms140510122] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 04/27/2013] [Accepted: 04/28/2013] [Indexed: 02/06/2023] Open
Abstract
The Trk family of receptors play a wide variety of roles in physiological and disease processes in both neuronal and non-neuronal tissues. Amongst these the TrkB receptor in particular has attracted major attention due to its critical role in signalling for brain derived neurotrophic factor (BDNF), neurotrophin-3 (NT3) and neurotrophin-4 (NT4). TrkB signalling is indispensable for the survival, development and synaptic plasticity of several subtypes of neurons in the nervous system. Substantial evidence has emerged over the last decade about the involvement of aberrant TrkB signalling and its compromise in various neuropsychiatric and degenerative conditions. Unusual changes in TrkB signalling pathway have also been observed and implicated in a range of cancers. Variations in TrkB pathway have been observed in obesity and hyperphagia related disorders as well. Both BDNF and TrkB have been shown to play critical roles in the survival of retinal ganglion cells in the retina. The ability to specifically modulate TrkB signalling can be critical in various pathological scenarios associated with this pathway. In this review, we discuss the mechanisms underlying TrkB signalling, disease implications and explore plausible ameliorative or preventive approaches.
Collapse
|
4
|
Sandhya VK, Raju R, Verma R, Advani J, Sharma R, Radhakrishnan A, Nanjappa V, Narayana J, Somani BL, Mukherjee KK, Pandey A, Christopher R, Prasad TSK. A network map of BDNF/TRKB and BDNF/p75NTR signaling system. J Cell Commun Signal 2013; 7:301-7. [PMID: 23606317 DOI: 10.1007/s12079-013-0200-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 04/09/2013] [Indexed: 01/15/2023] Open
Affiliation(s)
- Varot K Sandhya
- Institute of Bioinformatics, International Tech Park, Whitefield, Bangalore, 560066, India,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Poblete-Naredo I, Guillem AM, Juárez C, Zepeda RC, Ramírez L, Caba M, Hernández-Kelly LC, Aguilera J, López-Bayghen E, Ortega A. Brain-derived neurotrophic factor and its receptors in Bergmann glia cells. Neurochem Int 2011; 59:1133-44. [PMID: 22019477 DOI: 10.1016/j.neuint.2011.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 09/27/2011] [Accepted: 10/09/2011] [Indexed: 12/13/2022]
Abstract
Brain-derived neurotrophic factor is an abundant and widely distributed neurotrophin expressed in the Central Nervous System. It is critically involved in neuronal differentiation and survival. The expression of brain-derived neurotrophic factor and that of its catalytic active cognate receptor (TrkB) has been extensively studied in neuronal cells but their expression and function in glial cells is still controversial. Despite of this fact, brain-derived neurotrophic factor is released from astrocytes upon glutamate stimulation. A suitable model to study glia/neuronal interactions, in the context of glutamatergic synapses, is the well-characterized culture of chick cerebellar Bergmann glia cells. Using, this system, we show here that BDNF and its functional receptor are present in Bergmann glia and that BDNF stimulation is linked to the activation of the phosphatidyl-inositol 3 kinase/protein kinase C/mitogen-activated protein kinase/Activator Protein-1 signaling pathway. Accordingly, reverse transcription-polymerase chain reaction (RT-PCR) experiments predicted the expression of full-length and truncated TrkB isoforms. Our results suggest that Bergmann glia cells are able to express and respond to BDNF stimulation favoring the notion of their pivotal role in neuroprotection.
Collapse
Affiliation(s)
- Irais Poblete-Naredo
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, México D.F. 07000, Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Dunham JS, Deakin JFW, Miyajima F, Payton A, Toro CT. Expression of hippocampal brain-derived neurotrophic factor and its receptors in Stanley consortium brains. J Psychiatr Res 2009; 43:1175-84. [PMID: 19376528 DOI: 10.1016/j.jpsychires.2009.03.008] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 03/12/2009] [Accepted: 03/16/2009] [Indexed: 12/29/2022]
Abstract
Several lines of evidence implicate BDNF in the pathophysiology of psychiatric illness. BDNF polymorphisms have also been associated with the risk of schizophrenia and mood disorders. We therefore investigated whether levels of (pro)BDNF and receptor proteins, TrkB and p75, are altered in hippocampus in schizophrenia and mood disorder and whether polymorphisms in each gene influenced protein expression. Formalin-fixed paraffin-embedded hippocampal sections from subjects with schizophrenia, major depressive disorder (MDD), bipolar disorder (BPD) and non-psychiatric controls were obtained from the Stanley Foundation Neuropathology Consortium. (pro)BDNF, TrkB(T1) and p75 protein densities were quantified by immunoautoradiography and DNA extracted from each subject was used to determine the effect of genotype on protein expression. In MDD, reductions in (pro)BDNF were seen in all layers of the right but not the left hippocampus with no changes in the dentate gyrus. The pattern was similar but less marked for BPD. In addition, BPD but not MDD patients, had bilateral reductions in p75 in hippocampal layers but not in dentate gyrus. No changes in TrkB(T1) density were seen in any diagnosis. These findings suggest MDD and BPD may share impairment in (pro)BDNF expression. However, BPD may involve impairments of both (pro)BDNF and p75 receptor, whereas MDD may involve impaired (pro)BDNF alone. Moreover, the lateralisation of changes may indicate a role of asymmetry in vulnerability to MDD. Hippocampal (pro)BDNF and receptor levels were also affected by genotype, suggesting that allelic variations are important in the hippocampal abnormalities seen in these psychiatric disorders.
Collapse
Affiliation(s)
- J S Dunham
- Stanley Brain Research Laboratory, Neuroscience and Psychiatry Unit, G700, Stopford Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | | | | | | |
Collapse
|
7
|
Brodeur GM, Minturn JE, Ho R, Simpson AM, Iyer R, Varela CR, Light JE, Kolla V, Evans AE. Trk receptor expression and inhibition in neuroblastomas. Clin Cancer Res 2009; 15:3244-50. [PMID: 19417027 DOI: 10.1158/1078-0432.ccr-08-1815] [Citation(s) in RCA: 220] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neuroblastoma, the most common and deadly solid tumor in children, exhibits heterogeneous clinical behavior, from spontaneous regression to relentless progression. Current evidence suggests that the TRK family of neurotrophin receptors plays a critical role in these diverse behaviors. Neuroblastomas expressing TrkA are biologically favorable and prone to spontaneous regression or differentiation, depending on the absence or presence of its ligand (NGF) in the microenvironment. In contrast, TrkB-expressing tumors frequently have MYCN amplification and are very aggressive and often fatal tumors. These tumors also express the TrkB ligand (BDNF), resulting in an autocrine or paracrine survival pathway. Exposure to BDNF promotes survival, drug resistance, and angiogenesis of TrkB-expressing tumors. Here we review the role of Trks in normal development, the different functions of Trk isoforms, and the major Trk signaling pathways. We also review the roles these receptors play in the heterogeneous biological and clinical behavior of neuroblastomas, and the activation of Trk receptors in other cancers. Finally we address the progress that has been made in developing targeted therapy with Trk-selective inhibitors to treat neuroblastomas and other tumors with activated Trk expression.
Collapse
Affiliation(s)
- Garrett M Brodeur
- Division of Oncology, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4318, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Angelucci F, Ricci V, Spalletta G, Caltagirone C, Mathé AA, Bria P. Effects of psychostimulants on neurotrophins implications for psychostimulant-induced neurotoxicity. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 88:1-24. [PMID: 19897072 DOI: 10.1016/s0074-7742(09)88001-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
It is well documented that psychostimulants may alter neuronal function and neurotransmission in the brain. Although the mechanism of psychostimulants is still unknown, it is known that these substances increase extracellular level of several neurotransmitters including dopamine (DA), serotonin, and norepinephrine by competing with monoamine transporters and can induce physical tolerance and dependence. In addition to this, recent findings also suggest that psychostimulants may damage brain neurons through mechanisms that are still under investigation. In the recent years, it has been demonstrated that almost all psychostimulants are able to affect a class of proteins, called neurotrophins, in the peripheral and central nervous system (CNS). Neurotrophins, such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), have relevant action on neurons involved in psychostimulant action, such as DA and serotonergic neurons, and can play dual roles: first, in neuronal survival and death, and, second, in activity-dependent plasticity. In this review, we will focalize on the effects of psychostimulants on this class of proteins, which may be implicated, at least in part, in the mechanism of the psychostimulant-induced neurotoxicity. Moreover, since altered neurotrophins may participate in the pathogenesis of psychiatric disorders and psychiatric disorders are common in drug users, one plausible hypothesis is that psychostimulants can cause psychosis through interfering with neurotrophins synthesis and utilization by CNS neurons.
Collapse
Affiliation(s)
- Francesco Angelucci
- Department of Clinical and Behavioural Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | | | | | | | | | | |
Collapse
|
9
|
Weickert CS, Ligons DL, Romanczyk T, Ungaro G, Hyde TM, Herman MM, Weinberger DR, Kleinman JE. Reductions in neurotrophin receptor mRNAs in the prefrontal cortex of patients with schizophrenia. Mol Psychiatry 2005; 10:637-50. [PMID: 15940304 DOI: 10.1038/sj.mp.4001678] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Patients with schizophrenia have reduced neurotrophin levels in their dorsolateral prefrontal cortex (DLPFC) compared to normal unaffected individuals. The tyrosine kinase-containing receptors, trkB and trkC, mediate the growth-promoting effects of neurotrophins and respond to changes in growth factor availability. We hypothesized that trkB and/or trkC expression would be altered in the DLPFC of patients with schizophrenia. We measured mRNA encoding the tyrosine kinase domain (TK+)-containing form of trkB and measured pan trkC mRNA in schizophrenics (N=14) and controls (N=15) using in situ hybridization. TrkB and trkC mRNAs were detected in large and small neurons in multiple cortical layers of the human DLPFC. We found significantly diminished expression of trkB(TK+) mRNA in large neurons in multiple cortical layers of patients as compared to controls, while small neurons also showed reductions in trkB(TK+) mRNA that did not reach statistical significance. In normals, strong positive correlations were found between trkB(TK+) mRNA levels and brain-derived neurotrophic factor (BDNF) mRNA levels among various neurons, while no correlation between BDNF and trkB(TK+) was found in patients with schizophrenia. TrkC mRNA was also reduced in the DLPFC of schizophrenics in large neurons in layers II, III, V and VI and in small neurons in layer IV. Since neurons in the DLPFC integrate and communicate signals to various cortical and subcortical regions, these reductions in growth factor receptors may compromise the function and plasticity of the DLPFC in schizophrenia.
Collapse
Affiliation(s)
- C S Weickert
- Clinical Brain Disorders Branch, National Institute of Mental Health, Division of Intramural Research Programs, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Pezet S, Malcangio M. Brain-derived neurotrophic factor as a drug target for CNS disorders. Expert Opin Ther Targets 2005; 8:391-9. [PMID: 15469390 DOI: 10.1517/14728222.8.5.391] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) belongs to the neurotrophin family of trophic factors. BDNF is widely and abundantly expressed in the CNS and is available to some peripheral nervous system neurons that uptake the neurotrophin produced by peripheral tissues. BDNF promotes survival and differentiation of certain neuronal populations during development. In adulthood, BDNF can modulate neuronal synaptic strength and has been implicated in hippocampal mechanisms of learning and memory and spinal mechanisms for pain. Several CNS disorders are associated with a decrease in trophic support. As BDNF and its high affinity receptor are abundant throughout the whole CNS, and BDNF is a potent neuroprotective agent, this trophic factor is a good candidate for therapeutic treatment of some of CNS disorders. This review aims to correlate the features of some CNS disorders (Parkinson's disease, Alzheimer's disease, depression, epilepsy and chronic pain) to changes in BDNF expression in the brain. The cellular and molecular mechanism by which BDNF might be a therapeutic strategy are critically examined.
Collapse
Affiliation(s)
- Sophie Pezet
- Novartis Institute for Medical Science, London, UK.
| | | |
Collapse
|
11
|
Quartu M, Serra MP, Manca A, Follesa P, Ambu R, Del Fiacco M. High affinity neurotrophin receptors in the human pre-term newborn, infant, and adult cerebellum. Int J Dev Neurosci 2003; 21:309-20. [PMID: 12927579 DOI: 10.1016/s0736-5748(03)00086-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The immunohistochemical occurrence of the high affinity neurotrophin (NT) receptors trkA, trkB, and trkC is shown in the pre-term newborn, infant, and adult human post-mortem cerebellum. Immunoreactive neuronal perikarya and processes were observed in all specimens examined, where they appeared unevenly distributed in the cerebellar cortical layers and deep nuclei, and showed regional differences among cerebellar lobules and folia. The trk receptor-antibodies, tested by Western blot on human cerebellum homogenates, revealed multiple immunoreactive bands for trkA and single bands for trkB and trkC. The results obtained show the tissue localization of the trk receptor-like immunoreactivity in the human cerebellum from prenatal to adult age. The analysis for codistribution of the receptors with the relevant ligand and among the receptors in discrete cortical and deep nuclei tissue fields shows a wide variety of conditions, from a good similarity in terms of type and density of labeled structures, to a lack of correspondence, and suggests the possibility of colocalization of trk receptors with the relevant neurotrophin and among them in the cerebellar cortex. These results sustain the concept that the neurotrophin trophic system participates in the development, differentiation, and maintenance of the human cerebellar connectivity and support the possibility of a multifactorial trophic support for the neurotrophins through target-derived and local mechanisms.
Collapse
Affiliation(s)
- Marina Quartu
- Department of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy
| | | | | | | | | | | |
Collapse
|
12
|
Tucker K, Fadool DA. Neurotrophin modulation of voltage-gated potassium channels in rat through TrkB receptors is time and sensory experience dependent. J Physiol 2002; 542:413-29. [PMID: 12122142 PMCID: PMC2290412 DOI: 10.1113/jphysiol.2002.017376] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The whole-cell configuration of the patch-clamp technique, immunoprecipitation experiments and unilateral naris occlusions were used to investigate whether the voltage-gated potassium channel Kv1.3 was a substrate for neurotrophin-induced tyrosine phosphorylation and subsequent functional modulation of current properties in cultured rat olfactory bulb (OB) neurons. Membrane proteins of the OB included all three Trk receptor kinases, but the truncated form of the receptor, lacking an intact kinase domain, was the predominant form of the protein for TrkA and TrkC, while TrkB was predominantly found as the full-length receptor. Acute (15 min) stimulation of OB neurons with bath application of 50 ng ml(-1) brain-derived neurotrophic factor (BDNF), which is a selective ligand for TrkB, caused suppression of the whole-cell outward current and no changes in the kinetics of inactivation or deactivation. Acute stimulation with either nerve growth factor or neurotrophin-3 failed to evoke any changes in Kv1.3 function in the OB neurons. Chronic exposure to BDNF (days) caused an increase in the magnitude of Kv1.3 current and speeding of the inactivation and deactivation of the channel. Acute BDNF-induced activation of TrkB receptors significantly increased tyrosine phosphorylation of Kv1.3 in the OB, as shown using a combined immunoprecipitation and Western blot analysis. With unilateral naris occlusion, the acute BDNF-induced tyrosine phosphorylation of Kv1.3 was increased in neurons lacking odour sensory experience. In summary, the duration of neurotrophin exposure and the sensory-dependent state of a neuron can influence the degree of phosphorylation of a voltage-gated ion channel and its concomitant functional modulation by neurotrophins.
Collapse
Affiliation(s)
- K Tucker
- Florida State University, Department of Biological Science, Program in Neuroscience and Molecular Biophysics, Biomedical Research Facility, Tallahassee, FL 32306, USA
| | | |
Collapse
|
13
|
Naylor RL, Robertson AGS, Allen SJ, Sessions RB, Clarke AR, Mason GGF, Burston JJ, Tyler SJ, Wilcock GK, Dawbarn D. A discrete domain of the human TrkB receptor defines the binding sites for BDNF and NT-4. Biochem Biophys Res Commun 2002; 291:501-7. [PMID: 11855816 DOI: 10.1006/bbrc.2002.6468] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
TrkB is a member of the Trk family of tyrosine kinase receptors. In vivo, the extracellular region of TrkB is known to bind, with high affinity, the neurotrophin protein brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT-4). We describe the expression and purification of the second Ig-like domain of human TrkB (TrkBIg(2)) and show, using surface plasmon resonance, that this domain is sufficient to bind BDNF and NT-4 with subnanomolar affinity. BDNF and NT-4 may have therapeutic implications for a variety of neurodegenerative diseases. The specificity of binding of the neurotrophins to their receptor TrkB is therefore of interest. We examine the specificity of TrkBIg(2) for all the neurotrophins, and use our molecular model of the BDNF-TrkBIg(2) complex to examine the residues involved in binding. It is hoped that the understanding of specific interactions will allow design of small molecule neurotrophin mimetics.
Collapse
Affiliation(s)
- Ruth L Naylor
- University Research Centre for Neuroendocrinology (Care of the Elderly), Bristol Royal Infirmary, Bristol, BS2 8HW, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Stoilov P, Castren E, Stamm S. Analysis of the human TrkB gene genomic organization reveals novel TrkB isoforms, unusual gene length, and splicing mechanism. Biochem Biophys Res Commun 2002; 290:1054-65. [PMID: 11798182 DOI: 10.1006/bbrc.2001.6301] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We determined the gene structure of the human TrkB gene. The gene is unusually large and spans at least 590 kbp. It contains 24 exons. Using alternative promoters, splicing, and polyadenylation sites, the gene can create at least 100 isoforms, that can encode 10 proteins. RT-PCR and Northern blot analysis reveals that only three major protein isoforms are generated by the gene: the full length receptor, an isoform lacking the tyrosine kinase domain, and a novel isoform lacking the tyrosine kinase domain but containing a Shc binding site. This novel isoform, TrkB-T-Shc is generated by the use of a new alternative exon 19. It is expressed only in brain. TrkB-T-Shc protein is located in the plasma membrane. Coimmunoprecipitation experiments show that TrkB-T-Shc is not phosphorylated by the full length receptor, indicating that it could be a negative regulator of TrkB signaling in the brain.
Collapse
Affiliation(s)
- Peter Stoilov
- Friedrich-Alexander-University Erlangen, Institute for Biochemistry, Fahrstrasse 17, Erlangen, 91054, Germany
| | | | | |
Collapse
|
15
|
Romanczyk TB, Weickert CS, Webster MJ, Herman MM, Akil M, Kleinman JE. Alterations in trkB mRNA in the human prefrontal cortex throughout the lifespan. Eur J Neurosci 2002; 15:269-80. [PMID: 11849294 DOI: 10.1046/j.0953-816x.2001.01858.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Signalling through tyrosine kinase receptor B (trkB) influences neuronal survival, differentiation and synaptogenesis. trkB exists in a full-length form (trkB(TK+)), which contains a catalytic tyrosine kinase (TK) domain, and a truncated form (trkB(TK-)), which lacks this domain. In the rodent brain, expression of trkB(TK+) decreases and trkBTK- increases during postnatal life. We hypothesized that both forms of trkB receptor mRNA would be present in the human neocortex and that the developmental profile of trkB gene expression in human may be distinct from that in rodent. We detected both trkB(TK+) and trkB(TK-) mRNA in RNA extracted from multiple human brain regions by Northern blot. Using in situ hybridization, we found trkB(TK+) mRNA in all cortical layers, with highest expression in layer IV and intermediate-to-high expression in layers III and V of the human dorsolateral prefrontal cortex. trkB(TK+) mRNA was present in neurons with both pyramidal and nonpyramidal shapes in the dorsolateral prefrontal cortex. trkB(TK+) mRNA levels were significantly increased in layer III in young adults as compared with infants and the elderly. In the elderly, trkB(TK+) mRNA levels were reduced markedly in all cortical layers. Unlike the mRNA encoding the full-length form of trkB, trkB(TK-) mRNA was distributed homogeneously across the grey matter, and trkB(TK-) mRNA levels increased only slightly during postnatal life. The results suggest that neurons in the human dorsolateral prefrontal cortex are responsive to neurotrophins throughout postnatal life and that this responsiveness may be modulated during the human lifespan.
Collapse
Affiliation(s)
- T B Romanczyk
- Clinical Brain Disorders Branch, IRP, NIMH, NIH, Building 10/4 N312, MSC 1385, Bethesda, MD 20892-1385, USA
| | | | | | | | | | | |
Collapse
|
16
|
Robertson AG, Banfield MJ, Allen SJ, Dando JA, Mason GG, Tyler SJ, Bennett GS, Brain SD, Clarke AR, Naylor RL, Wilcock GK, Brady RL, Dawbarn D. Identification and structure of the nerve growth factor binding site on TrkA. Biochem Biophys Res Commun 2001; 282:131-41. [PMID: 11263982 DOI: 10.1006/bbrc.2001.4462] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nerve growth factor (NGF) is involved in the development and maintenance of the nervous system and has been implicated as a possible therapeutic target molecule in a number of neurodegenerative diseases, especially Alzheimer's disease. NGF binds with high affinity to the extracellular region of a tyrosine kinase receptor, TrkA, which comprises three leucine-rich motifs (LRMs), flanked by two cysteine-rich clusters, followed by two immunoglobulin-like (Ig-like) domains. We have expressed the second Ig-like domain as a recombinant protein in E. coli and demonstrate that NGF binds to this domain with similar affinity to the native receptor. This domain (TrkAIg(2)) has the ability to sequester NGF in vitro, preventing NGF-induced neurite outgrowth, and in vivo, inhibiting NGF-induced plasma extravasation. We also present the three-dimensional structure of the TrkAIg(2) domain in a new crystal form, refined to 2.0 A resolution.
Collapse
Affiliation(s)
- A G Robertson
- Molecular Neurobiology Unit, URCN, Bristol, BS2 8HW, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Murer MG, Yan Q, Raisman-Vozari R. Brain-derived neurotrophic factor in the control human brain, and in Alzheimer's disease and Parkinson's disease. Prog Neurobiol 2001; 63:71-124. [PMID: 11040419 DOI: 10.1016/s0301-0082(00)00014-9] [Citation(s) in RCA: 642] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a small dimeric protein, structurally related to nerve growth factor, which is abundantly and widely expressed in the adult mammalian brain. BDNF has been found to promote survival of all major neuronal types affected in Alzheimer's disease and Parkinson's disease, like hippocampal and neocortical neurons, cholinergic septal and basal forebrain neurons, and nigral dopaminergic neurons. In this article, we summarize recent work on the molecular and cellular biology of BDNF, including current ideas about its intracellular trafficking, regulated synthesis and release, and actions at the synaptic level, which have considerably expanded our conception of BDNF actions in the central nervous system. But our primary aim is to review the literature regarding BDNF distribution in the human brain, and the modifications of BDNF expression which occur in the brain of individuals with Alzheimer's disease and Parkinson's disease. Our knowledge concerning BDNF actions on the neuronal populations affected in these pathological states is also reviewed, with an aim at understanding its pathogenic and pathophysiological relevance.
Collapse
Affiliation(s)
- M G Murer
- Departamento de Fisiologia, Facultad de Medicina, Universidad de Buenos Aires, Paraguay.
| | | | | |
Collapse
|
18
|
H�rsch D, Kahn CR. Region-specific mRNA expression of phosphatidylinositol 3-kinase regulatory isoforms in the central nervous system of C57BL/6J mice. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19991206)415:1<105::aid-cne8>3.0.co;2-h] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Allen SJ, Wilcock GK, Dawbarn D. Profound and selective loss of catalytic TrkB immunoreactivity in Alzheimer's disease. Biochem Biophys Res Commun 1999; 264:648-51. [PMID: 10543986 DOI: 10.1006/bbrc.1999.1561] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is known to have trophic effects on various neurons, throughout the brain and spinal cord, via its high-affinity tyrosine kinase receptor TrkB. It has been reported that the mRNA for this neurotrophin is reduced in Alzheimer's disease (AD) brain. We have examined, by Western blotting, the catalytic (p145) and noncatalytic or truncated (p95) forms of TrkB and find that, in both the temporal and frontal cortex, there is a selective loss of immunoreactive-positive staining for the catalytic or kinase form compared with the truncated form. This may have important consequences for the neurotrophic support of vulnerable neurons in AD.
Collapse
Affiliation(s)
- S J Allen
- Molecular Neurobiology Unit, Department of Medicine (Care of the Elderly), University of Bristol, Bristol Royal Infirmary, Bristol, BS2 8HW, United Kingdom.
| | | | | |
Collapse
|
20
|
Besser M, Wank R. Cutting Edge: Clonally Restricted Production of the Neurotrophins Brain-Derived Neurotrophic Factor and Neurotrophin-3 mRNA by Human Immune Cells and Th1/Th2-Polarized Expression of Their Receptors. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.11.6303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Neurotrophins, such as neurotrophin-3 (NT-3) and brain-derived neurotrophic factor (BDNF), are potent regulators of neuronal functions. Here we show that human immune cells also produce NT-3 mRNA, secrete BDNF, and express their specific receptors trkB and trkC. The truncated trkB receptor, usually expressed in sensory neurons of the central nervous system, was also constitutively expressed in unstimulated Th cells. Full-length trkB was detectable in stimulated PBMC, B cell lines, and Th1, but not in Th2 and Th0 cell clones. Clonally restricted expression was also observed for trkC, until now not detected on blood cells. The Th1 cytokine IL-2 stimulated production of trkB mRNA but not of trkC, whereas the Th2 cytokine IL-4 enhanced NT-3 but not BDNF mRNA expression. Microbial Ags, which influence the Th1/Th2 balance, could therefore modulate the neurotrophic system and thereby affect neuronal synaptic activity of the central nervous system.
Collapse
Affiliation(s)
- Michal Besser
- Institute of Immunology, University of Munich, Munich, Germany
| | - Rudolf Wank
- Institute of Immunology, University of Munich, Munich, Germany
| |
Collapse
|
21
|
Salehi A, Verhaagen J, Swaab DF. Neurotrophin receptors in Alzheimer's disease. PROGRESS IN BRAIN RESEARCH 1999; 117:71-89. [PMID: 9932402 DOI: 10.1016/s0079-6123(08)64009-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- A Salehi
- Netherlands Institute for Brain Research, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
22
|
Kobayashi Y, Amaral DG. Chemical neuroanatomy of the hippocampal formation and the perirhinal and parahippocampal cortices. HANDBOOK OF CHEMICAL NEUROANATOMY 1999. [DOI: 10.1016/s0924-8196(99)80026-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Benisty S, Boissiere F, Faucheux B, Agid Y, Hirsch EC. trkB messenger RNA expression in normal human brain and in the substantia nigra of parkinsonian patients: an in situ hybridization study. Neuroscience 1998; 86:813-26. [PMID: 9692719 DOI: 10.1016/s0306-4522(98)00126-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
trkB is a high-affinity receptor for brain-derived neurotrophic factor, a neurotrophin acting on numerous cells, including dopaminergic neurons. Yet, little is known of its expression in the human brain. We report an in situ hybridization analysis of trkB messenger RNA, encoding the catalytic form of the receptor, in the human brain post mortem. Its expression was found to be widespread but heterogeneous among all the cerebral structures studied, the highest level being found in the cerebral cortex and the cerebellum. A strong but less intense staining was observed in the striatum, nucleus basalis of Meynert, hippocampus, tegmental pedonculopontinus nucleus and substantia nigra pars compacta. Combined immunohistochemistry for tyrosine hydroxylase and in situ hybridization for trkB messenger RNA showed that within the substantia nigra pars compacta a major proportion of dopaminergic neurons expressed trkB messenger RNA. Furthermore, we compared trkB messenger RNA expression in the mesencephalon of six control subjects and five patients with Parkinson's disease, a neurodegenerative disorder characterized by a severe loss of dopaminergic neurons. Despite the fact that the number of trkB messenger RNA-containing neurons was dramatically reduced in the substantia nigra pars compacta and ventral tegmental area of patients with Parkinson's disease, the level of trkB messenger RNA was unchanged in the remaining neurons in diseased brains. These results suggests that trkB is not involved in the process of neuronal death in Parkinson's disease. Furthermore, expression of brain-derived neurotrophic factor high-affinity receptor in patients could allow this neurotrophin to be used to prevent degeneration of surviving neurons at early stages of the disease.
Collapse
Affiliation(s)
- S Benisty
- INSERM U 289, Hôpital de la Salpêtrière, Paris, France
| | | | | | | | | |
Collapse
|
24
|
Holden PH, Asopa V, Robertson AG, Clarke AR, Tyler S, Bennett GS, Brain SD, Wilcock GK, Allen SJ, Smith SK, Dawbarn D. Immunoglobulin-like domains define the nerve growth factor binding site of the TrkA receptor. Nat Biotechnol 1997; 15:668-72. [PMID: 9219271 DOI: 10.1038/nbt0797-668] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nerve growth factor (NGF) is involved in the development and maintenance of the nervous system. NGF binds with high affinity to the extracellular region of the tyrosine kinase receptor TrkA. This domain comprises leucine and cysteine rich motifs, followed by two immunoglobulin like (Ig-like) domains. We describe the expression and purification of recombinant Ig-like domains. Fluorescence and circular dichroism spectroscopy show that the protein is folded into a compact globular structure and contains mainly beta-sheet secondary structure. Recombinant protein binds to NGF and can inhibit NGF bioactivity both in vitro and in vivo.
Collapse
Affiliation(s)
- P H Holden
- Department of Medicine (Care of the Elderly), Bristol Royal Infirmary, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ochi K, Saito I, Hanada K, Maeda T. Expression of TrkB-like immunoreactivity in non-neural cells of rat periodontal ligament. Arch Oral Biol 1997; 42:455-64. [PMID: 9382710 DOI: 10.1016/s0003-9969(97)00030-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Trk family, a group of high-affinity neurotrophin receptors, is divided into three subtypes, TrkA, TrkB and TrkC. These were originally found in neural elements, and are involved in neural development, maintenance and survival. Recent studies have shown that non-neural cells in vitro also express mRNA encoding some neurotrophin receptors. In our preliminary study, TrkB-like immunoreactivity (LI) was found in the various non-neural cells in the rat periodontal ligament. The present study was undertaken to clarify which cell types express Trk-LI, in particular two types of TrkB-LI, in the periodontal ligament of mature rats, using an immunocytochemical technique with polyclonal antibodies. Intense full-length TrkB-LI was clearly recognized in non-neural cells such as fibroblasts, osteoclasts, odontoclasts and cementoblasts as well as in neural elements. Relatively large cells with many cytoplasmic processes were also frequently immunopositive for full-length TrkB. Immunocytochemistry for TrkB[TK-], a truncated type, also demonstrated a similar immunostaining pattern to that of full-length TrkB in non-neural periodontal cells, and intense positive reactions in endothelial cells. Some non-neural cells were positive for TrkA and TrkC. These findings suggest that neurotrophic factors, the ligands of the Trk family, have certain effects on the proliferation and/or differentiation of non-neural cells, as well as on their neurotrophic functions.
Collapse
Affiliation(s)
- K Ochi
- Department of Orthodontics, Niigata University School of Dentistry, Japan
| | | | | | | |
Collapse
|
26
|
Salehi A, Verhaagen J, Dijkhuizen PA, Swaab DF. Co-localization of high-affinity neurotrophin receptors in nucleus basalis of Meynert neurons and their differential reduction in Alzheimer's disease. Neuroscience 1996; 75:373-87. [PMID: 8931004 DOI: 10.1016/0306-4522(96)00273-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
It has been suggested that degeneration of neurons in Alzheimer's disease is the result of diminished trophic support. However, so far no evidence has been forwarded that neuronal degeneration in Alzheimer's disease is causally related to insufficient production of neurotrophins. The present study deals with (i) the expression and co-localization of tyrosine kinase receptors (trks) in the human nucleus basalis of Meynert and (ii) alterations of these receptors in Alzheimer's disease in the nucleus basalis of Meynert, an area severely affected in Alzheimer's disease. The expression of trkA, trkB and trkC in the nucleus basalis of Meynert of control and Alzheimer's disease brains was studied using three polyclonal antibodies specifically recognizing the extracellular domain of trkA, trkB and trkC. Brain material of eight controls and seven Alzheimer's disease patients was obtained at autopsy, embedded in paraffin and stained immunocytochemically. Using an image analysis system, we determined the proportion of trk neurons expressing the different trk receptors in controls and Alzheimer's disease patients. In control brains, trkA, trkB and trkC were differentially expressed in numerous nucleus basalis of Meynert neurons. The highest proportion of neurons was found to express trkB (75%), followed by trkC (58%) and trkA (54%). Furthermore, using consecutive sections, a clear co-localization of trk receptors was observed in the same neurons. The highest degree of co-localization was observed between trkA and trkB. In Alzheimer's disease patients, the number of immunoreactive neurons and the staining intensity of individual neurons was reduced dramatically. Reduction in the proportion of neurons expressing trkA was 69%, in trkB 47% and in trkC 49%, which indicated a differential reduction in the amount of trk receptors in Alzheimer's disease. These observations indicate that nucleus basalis of Meynert neurons can be supported by more than one neurotrophin and that the degeneration of these neurons in Alzheimer's disease is associated with a decreased expression of trk receptors, suggesting a decreased neurotrophin responsiveness of nucleus basalis of Meynert neurons in Alzheimer's disease.
Collapse
Affiliation(s)
- A Salehi
- Graduate School of Neurosciences Amsterdam, Netherlands Institute for Brain Research, The Netherlands
| | | | | | | |
Collapse
|
27
|
Chabot JG, Kar S, Quirion R. Autoradiographical and immunohistochemical analysis of receptor localization in the central nervous system. THE HISTOCHEMICAL JOURNAL 1996; 28:729-45. [PMID: 8968726 DOI: 10.1007/bf02272147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Quantitative receptor autoradiographic methods have been widely used over the past two decades. Some of the advantages and limitations of these techniques are reviewed here. Comparison with immunohistochemical and in situ hybridization methods is also highlighted, as well as the use of these approaches to study receptor gene over-expression in cell lines. Together, data obtained using these various methodologies can provide unique information on the potential physiological roles of a given receptor protein and/or binding sites in various tissues.
Collapse
Affiliation(s)
- J G Chabot
- Douglas Hospital Research Centre, Department of Psychiatry, McGill University, Quebec, Canada
| | | | | |
Collapse
|
28
|
Barnea A, Aguila-Mansilla N, Chute HT, Welcher AA. Comparison of neurotrophin regulation of human and rat neuropeptide Y (NPY) neurons: induction of NPY production in aggregate cultures derived from rat but not from human fetal brains. Brain Res 1996; 732:52-60. [PMID: 8891268 DOI: 10.1016/0006-8993(96)00486-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Previous studies established that brain-derived neurotrophic factor (BDNF) induces neuropeptide Y (NPY) production and accumulation of NPY-mRNA in cultures of rat fetal brain tissues. In this study, we addressed the question: Are cultured human NPY neurons regulated by BDNF and/or by another member of the neurotrophin (NT) family of growth factors? Using aggregate cultures derived from human fetal cortical hemispheres, we assessed the effect of BDNF on NPY production varying the following experimental conditions: fetal and culture age; medium composition (with and without serum), dose and duration of exposure to BDNF, and neurotrophin species tested (BDNF, NT-4/5, NT-3 or NGF). Under none of these conditions did BDNF, NT-4/5, NT-3 or NGF induce an increase in NPY production. This was in contrast to forskolin + phorbol 12 myristate 13-acetate (PMA) which were highly effective in inducing NPY production, verifying that expression of NPY is a regulated process in these cultures. None of these neurotrophins enhanced the response to forskolin + PMA. By comparison, using aggregate cultures derived from rat fetal cortices, BDNF and NT-4/5 were equipotent in inducing NPY production but NT-3 and NGF were essentially ineffective. Moreover, the effects of BDNF or NT-4/5 and forskolin + PMA on NPY production were additive, indicating the involvement of distinct intracellular signalling pathways. Western blot analyses of human- and rat-derived aggregates indicated the presence of full-length Trk receptors which are tyrosine-phosphorylated in response to either BDNF, NT-4/5 or NT-3. Primary cultures of astrocytes (rat as well as human) were devoid of a functional TrkB receptor, strongly suggesting a neuronal expression of TrkB in the aggregates. Thus, a functional TrkB receptor is expressed by both the human and rat aggregates, but only the rat aggregates responded to BDNF or NT-4/5. These results are consistent with a difference in a post TrkB-receptor event(s) mediating BDNF action in the cultured human and rat fetal NPY neurons.
Collapse
Affiliation(s)
- A Barnea
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center at Dallas 75235-9032, USA.
| | | | | | | |
Collapse
|
29
|
Yamamoto M, Sobue G, Yamamoto K, Terao S, Mitsuma T. Expression of mRNAs for neurotrophic factors (NGF, BDNF, NT-3, and GDNF) and their receptors (p75NGFR, trkA, trkB, and trkC) in the adult human peripheral nervous system and nonneural tissues. Neurochem Res 1996; 21:929-38. [PMID: 8895847 DOI: 10.1007/bf02532343] [Citation(s) in RCA: 207] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The steady-state mRNA levels of the four neurotrophic factors of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and glial cell line-derived neurotrophic factor (GDNF) and their receptors (p75NGFR, trkA, trkB and trkC) in the adult human peripheral nervous system (PNS) as well as nonneural tissues were examined using quantitative reverse transcription-polymerase chain reaction (RT-PCR). NGF and BDNF mRNA levels were high in the heart and spleen as well as in the dorsal root ganglia (DRG) and spinal cord, showing similar spatial expression patterns, while NT-3 mRNA levels were more pronounced in the liver and spleen. In contrast to these neurotrophins, GDNF mRNA expression occurred at the highest levels in the muscle, and it was also comparatively high in the spinal cord. p75NGFR mRNA was expressed extensively throughout the PNS tissues and in the spleen. The spatial expression patterns differed among trkA, and trkB and trkC mRNAs. trkA mRNA was greatly expressed in the DRG, sympathetic ganglia and spleen, while the trkB and trkC mRNA levels were high in the DRG, spinal cord and brain. The levels of trkB and trkC mRNAs with tyrosine kinase domain, compared to those with extracellular domain, were relatively high in the DRG, whereas they were low in the spinal cord and brain. The spatial patterns of the distributions of neurotrophic factors and their receptors mRNA levels in the adult human PNS and nonneural tissues are largely similar to those reported in other mammals, but these findings provide further, more specific, understanding relevant to the therapeutic approach to human diseases.
Collapse
Affiliation(s)
- M Yamamoto
- Department of Neurology, Nagoya University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
30
|
Abstract
The prenatal development of the neurons immunoreactive for high-affinity tropomycin-related kinase (trk) receptor (pan trk which recognizes trkA, trkB, and trkC) and low-affinity p75 neurotrophin receptor (p75NTR) was examined in the human brain from embryonic weeks 10 to 34 of gestation. In the embryonic week 10 specimen in which only brainstem regions were available for evaluation, trk immunoreactivity (trk-ir) was observed in the ventral cochlear, solitary, raphe, spinal trigeminal, and hypoglossal nuclei, as well as the vestibular complex and medullary reticular formation. At this time point of gestation, p75ntr-immunoreactive (p75NTR-ir) staining was observed within these same regions plus the inferior olivary and ambiguus nuclei. At embryonic week 14, trk-ir neurons were seen within the subplate zone of the entorhinal cortex, basal forebrain, caudate nucleus, putamen, external segment of the globus pallidus, specific thalamic nuclei, lateral mammillary nucleus, habenula nucleus, select brainstem nuclei, and the dentate nucleus of cerebellum. At this gestational time point, p75NTR-ir neurons were observed in each of these structures, with the exception of the caudate nucleus, specific thalamic nuclei, lateral mammillary nucleus, and habenula nucleus. Additionally, p75NTR-ir neurons were observed within the corpus callosum. The staining pattern for both trk and p75NTR remained unchanged at embryonic weeks 15 to 16 except for the addition of trk-ir and p75NTR-ir within the cortical subplate zone, hippocampus, and subthalamic nucleus. By embryonic week 18, trk-ir neurons were widely expressed within mostly all thalamic nuclei. In contrast, trk-ir was no longer seen within the hypoglossal, cuneate, and gracile nuclei at this time point. This staining pattern for trk and p75NTR remained virtually unchanged from embryonic weeks 19 to 20 and embryonic weeks 16 to 20, respectively. From embryonic weeks 22 to 34, the distribution of both trk-ir and p75NTR-ir neurons changed gradually. During this period, neurons in most thalamic and some brainstem nuclei became progressively immunonegative for trk, whereas neurons in the neocortical subplate zone, corpus callosum, and hilar region of dentate gyrus gradually lost immunoreactivity for p75NTR. These data demonstrate an important and complex role for both the high-(trk) and low- (p75) affinity neurotrophin receptors during the development of multiple neuronal systems in the human brain.
Collapse
Affiliation(s)
- E Y Chen
- Research Center for Brain Repair, Rush Presbyterian Medical Center, Chicago, Illinois 60612, USA
| | | | | |
Collapse
|
31
|
Abstract
Neuron survival and axonal regeneration become severely limited during early postnatal development. In conjunction with our recent organotypic analysis of regeneration in the auditory midbrain, we wished to determine whether neurotrophins could serve as a trophic substance during the postnatal period. Therefore, the current study examines the development of three neurotrophin receptor tyrosine kinases (TrkA, TrkB, and TrkC) in the gerbil auditory brainstem. Immunoreactivity to TrkA, the nerve growth-factor receptor, was observed in nonneuronal cells during the first two postnatal weeks. In the cochlear nucleus of mature animals, however, there was a TrkA-positive neuronal subpopulation. In contrast, immunoreactivity to TrkB and TrkC (the receptors for brain-derived neurotrophic factor and neurotrophin-3, respectively) displayed a widespread distribution in the auditory brainstem. At postnatal day 0, TrkB and TrkC staining was virtually absent from auditory nuclei, although immunopositive neurons were present in the mesencephalic trigeminal nucleus. By postnatal day 7, TrkB- and TrkC-positive neurons were present in most brainstem auditory nuclei. At postnatal day 15, TrkB immunoreactivity was observed throughout the inferior colliculus (IC), the cochlear nucleus, the medial and lateral nuclei of the trapezoid body, and the lateral superior olive, whereas TrkC labeled only a subpopulation of neurons within the central nucleus of the IC. The TrkB immunoreactivity was present on both neuronal somata and dendrites, whereas TrkC was generally restricted to cell bodies. At postnatal day 30, TrkB immunostaining was observed on most neurons of the IC. The medial and lateral nuclei of the trapezoid body displayed extremely strong TrkB staining, followed by the cochlear nucleus. In contrast, the TrkC immunostaining was decreased dramatically by postnatal day 21. Observations at the ultrastructural level confirmed a neuronal localization of TrkB and TrkC. Immunostaining for both receptors was restricted largely to the postsynaptic density of synaptic profiles in both dendrites and somata. In summary, this study illustrates a differential pattern of immunoreactivity between three neurotrophin receptors during development. The general increase of TrkB expression is well correlated with the onset of sound-evoked activity in this system, and its synaptic localization suggests that it may be involved in the modulation or maintenance of postsynaptic physiology.
Collapse
Affiliation(s)
- A Hafidi
- Center for Neural Science, New York University, New York 10003, USA
| | | | | |
Collapse
|
32
|
Armanini MP, McMahon SB, Sutherland J, Shelton DL, Phillips HS. Truncated and catalytic isoforms of trkB are co-expressed in neurons of rat and mouse CNS. Eur J Neurosci 1995; 7:1403-9. [PMID: 7582115 DOI: 10.1111/j.1460-9568.1995.tb01132.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Localization of mRNA encoding trkB indicates that two truncated isoforms of trkB, T1trkB and T2trkB, are differentially distributed in the rodent nervous system, and that each of these transcripts is co-expressed with catalytic trkB (TK+trkB) in adult motor neurons. In contrast to the prominent expression of T1trkB by non-neuronal cells, T2trkB expression appeared to be restricted to neurons and demonstrated significant overlap with the pattern of TK+trkB distribution. In developing spinal cord ventral horn, an age-related increase in hybridization was observed for truncated isoforms. These findings suggest that truncated trkB may modulate neuronal responses to neurotrophins which act via trkB.
Collapse
Affiliation(s)
- M P Armanini
- Department of Neuroscience, Genentech Inc., CA 94080, USA
| | | | | | | | | |
Collapse
|
33
|
Nakagawara A, Liu XG, Ikegaki N, White PS, Yamashiro DJ, Nycum LM, Biegel JA, Brodeur GM. Cloning and chromosomal localization of the human TRK-B tyrosine kinase receptor gene (NTRK2). Genomics 1995; 25:538-46. [PMID: 7789988 DOI: 10.1016/0888-7543(95)80055-q] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
There is increasing evidence that neutrophins and their receptors play an important role in regulating development of both the central and the peripheral nervous systems. Human TRK-A (NTRK1) and TRK-C (NTRK3) have been cloned and sequenced, but only a truncated form of human TRK-B has been published. Therefore, we isolated complementary DNAs spanning the entire coding region of both human full-length and truncated forms of TRK-B from human brain cDNA libraries. Human full-length TRK-B codes for a protein of 822 amino acid residues. The putative mature peptide sequence is 49% homologous to human TRK-A and 55% to full-length human TRK-C, with 40% amino acid identify among TRK-A, -B, and -C. Nine of 13 cysteine residues, 4 of 12N-glycosylation sites in the extracellular domain, and 10 of 13 tyrosine residues in the intracellular domain are conserved among human TRK-A, -B, and -C. There is a cluster of 10 serine residues in the juxtamembrane region of TRK-B that is absent in TRK-A. Two major sizes of TRK-B transcripts were expressed in human brain. Northern blot analysis using probes specific for the extracellular or the tyrosine kinase domain revealed that the 9.5-kb band encodes the full-length TRK-B mRNA and the 8.0-kb band encodes the truncated form of TRK-B mRNA. By fluorescence in situ hybridization and somatic cell hybrid mapping, the human TRK-B gene was localized to chromosome 9q22.1.
Collapse
Affiliation(s)
- A Nakagawara
- Division of Oncology, Children's Hospital of Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|