1
|
Almassri LS, Ohl AP, Iafrate MC, Wade AD, Tokar NJ, Mafi AM, Beebe NL, Young JW, Mellott JG. Age-related upregulation of perineuronal nets on inferior collicular cells that project to the cochlear nucleus. Front Aging Neurosci 2023; 15:1271008. [PMID: 38053844 PMCID: PMC10694216 DOI: 10.3389/fnagi.2023.1271008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/26/2023] [Indexed: 12/07/2023] Open
Abstract
Introduction Disruptions to the balance of excitation and inhibition in the inferior colliculus (IC) occur during aging and underlie various aspects of hearing loss. Specifically, the age-related alteration to GABAergic neurotransmission in the IC likely contributes to the poorer temporal precision characteristic of presbycusis. Perineuronal nets (PNs), a specialized form of the extracellular matrix, maintain excitatory/inhibitory synaptic environments and reduce structural plasticity. We sought to determine whether PNs increasingly surround cell populations in the aged IC that comprise excitatory descending projections to the cochlear nucleus. Method We combined Wisteria floribunda agglutinin (WFA) staining for PNs with retrograde tract-tracing in three age groups of Fischer Brown Norway (FBN) rats. Results The data demonstrate that the percentage of IC-CN cells with a PN doubles from ~10% at young age to ~20% at old age. This was true in both lemniscal and non-lemniscal IC. Discussion Furthermore, the increase of PNs occurred on IC cells that make both ipsilateral and contralateral descending projections to the CN. These results indicate that reduced structural plasticity in the elderly IC-CN pathway, affecting excitatory/inhibitory balance and, potentially, may lead to reduced temporal precision associated with presbycusis.
Collapse
Affiliation(s)
- Laila S. Almassri
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Andrew P. Ohl
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Milena C. Iafrate
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Aidan D. Wade
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Nick J. Tokar
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Amir M. Mafi
- The Ohio State College of Medicine, The Ohio State, Columbus, OH, United States
| | - Nichole L. Beebe
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Jesse W. Young
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Jeffrey G. Mellott
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| |
Collapse
|
2
|
Mafi AM, Tokar N, Russ MG, Barat O, Mellott JG. Age-related ultrastructural changes in the lateral cortex of the inferior colliculus. Neurobiol Aging 2022; 120:43-59. [PMID: 36116395 PMCID: PMC10276896 DOI: 10.1016/j.neurobiolaging.2022.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 10/15/2022]
Abstract
Temporal precision, a key component of sound and speech processing in the inferior colliculus (IC), depends on a balance of inhibition and excitation, and this balance degrades during aging. The cause of disrupted excitatory-inhibitory balance in aging is unknown, however changes at the synapse are a likely candidate. We sought to determine whether synaptic changes occur in the lateral cortex of the IC (IClc), a multimodal nucleus that processes lemniscal, intrinsic, somatosensory, and descending auditory input. Using electron microscopic techniques across young, middle age and old Fisher Brown Norway rats, our results demonstrate minimal loss of synapses in middle age, but significant (∼28%) loss during old age. However, in middle age, targeting of GABAergic dendrites by GABAergic synapses is increased and the active zones of excitatory synapses (that predominantly target GABA-negative dendrites) are lengthened. These synaptic changes likely result in a net increase of excitation in the IClc during middle age. Thus, disruption of excitatory-inhibitory balance in the aging IClc may be due to synaptic changes that begin in middle age.
Collapse
Affiliation(s)
- Amir M Mafi
- The Ohio State College of Medicine, The Ohio State, Columbus, OH, USA
| | - Nick Tokar
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Matthew G Russ
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Oren Barat
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Jeffrey G Mellott
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA.
| |
Collapse
|
3
|
Mafi AM, Russ MG, Hofer LN, Pham VQ, Young JW, Mellott JG. Inferior collicular cells that project to the auditory thalamus are increasingly surrounded by perineuronal nets with age. Neurobiol Aging 2021; 105:1-15. [PMID: 34004491 PMCID: PMC8338758 DOI: 10.1016/j.neurobiolaging.2021.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/30/2021] [Accepted: 04/03/2021] [Indexed: 12/20/2022]
Abstract
The age-related loss of GABA in the inferior colliculus (IC) likely plays a role in the development of age-related hearing loss. Perineuronal nets (PNs), specialized aggregates of extracellular matrix, increase with age in the IC. PNs, associated with GABAergic neurotransmission, can stabilize synapses and inhibit structural plasticity. We sought to determine whether PN expression increased on GABAergic and non-GABAergic IC cells that project to the medial geniculate body (MG). We used retrograde tract-tracing in combination with immunohistochemistry for glutamic acid decarboxylase and Wisteria floribunda agglutinin across three age groups of Fischer Brown Norway rats. Results demonstrate that PNs increase with age on lemniscal and non-lemniscal IC-MG cells, however two key differences exist. First, PNs increased on non-lemniscal IC-MG cells during middle-age, but not until old age on lemniscal IC-MG cells. Second, increases of PNs on lemniscal IC-MG cells occurred on non-GABAergic cells rather than on GABAergic cells. These results suggest that synaptic stabilization and reduced plasticity likely occur at different ages on a subset of the IC-MG pathway.
Collapse
Affiliation(s)
- Amir M Mafi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH USA
| | - Matthew G Russ
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH USA
| | - Lindsay N Hofer
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH USA
| | - Vincent Q Pham
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH USA
| | - Jesse W Young
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH USA
| | - Jeffrey G Mellott
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH USA.
| |
Collapse
|
4
|
Anderson S, Karawani H. Objective evidence of temporal processing deficits in older adults. Hear Res 2020; 397:108053. [PMID: 32863099 PMCID: PMC7669636 DOI: 10.1016/j.heares.2020.108053] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 07/15/2020] [Accepted: 07/28/2020] [Indexed: 12/17/2022]
Abstract
The older listener's ability to understand speech in challenging environments may be affected by impaired temporal processing. This review summarizes objective evidence of degraded temporal processing from studies that have used the auditory brainstem response, auditory steady-state response, the envelope- or frequency-following response, cortical auditory-evoked potentials, and neural tracking of continuous speech. Studies have revealed delayed latencies and reduced amplitudes/phase locking in subcortical responses in older vs. younger listeners, in contrast to enhanced amplitudes of cortical responses in older listeners. Reconstruction accuracy of responses to continuous speech (e.g., cortical envelope tracking) shows over-representation in older listeners. Hearing loss is a factor in many of these studies, even though the listeners would be considered to have clinically normal hearing thresholds. Overall, the ability to draw definitive conclusions regarding these studies is limited by the use of multiple stimulus conditions, small sample sizes, and lack of replication. Nevertheless, these objective measures suggest a need to incorporate new clinical measures to provide a more comprehensive assessment of the listener's speech understanding ability, but more work is needed to determine the most efficacious measure for clinical use.
Collapse
Affiliation(s)
- Samira Anderson
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD 20742, United States.
| | - Hanin Karawani
- Department of Communication Sciences and Disorders, University of Haifa, Haifa, Israel.
| |
Collapse
|
5
|
Kobrina A, Schrode KM, Screven LA, Javaid H, Weinberg MM, Brown G, Board R, Villavisanis DF, Dent ML, Lauer AM. Linking anatomical and physiological markers of auditory system degeneration with behavioral hearing assessments in a mouse (Mus musculus) model of age-related hearing loss. Neurobiol Aging 2020; 96:87-103. [PMID: 32950782 DOI: 10.1016/j.neurobiolaging.2020.08.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 08/03/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022]
Abstract
Age-related hearing loss is a very common sensory disability, affecting one in three older adults. Establishing a link between anatomical, physiological, and behavioral markers of presbycusis in a mouse model can improve the understanding of this disorder in humans. We measured age-related hearing loss for a variety of acoustic signals in quiet and noisy environments using an operant conditioning procedure and investigated the status of peripheral structures in CBA/CaJ mice. Mice showed the greatest degree of hearing loss in the last third of their lifespan, with higher thresholds in noisy than in quiet conditions. Changes in auditory brainstem response thresholds and waveform morphology preceded behavioral hearing loss onset. Loss of hair cells, auditory nerve fibers, and signs of stria vascularis degeneration were observed in old mice. The present work underscores the difficulty in ascribing the primary cause of age-related hearing loss to any particular type of cellular degeneration. Revealing these complex structure-function relationships is critical for establishing successful intervention strategies to restore hearing or prevent presbycusis.
Collapse
Affiliation(s)
| | - Katrina M Schrode
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, USA
| | - Laurel A Screven
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, USA
| | - Hamad Javaid
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, USA
| | - Madison M Weinberg
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, USA
| | - Garrett Brown
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, USA
| | - Ryleigh Board
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, USA
| | - Dillan F Villavisanis
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, USA
| | - Micheal L Dent
- Department of Psychology, University at Buffalo SUNY, Buffalo, NY, USA
| | - Amanda M Lauer
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
6
|
Mafi AM, Hofer LN, Russ MG, Young JW, Mellott JG. The Density of Perineuronal Nets Increases With Age in the Inferior Colliculus in the Fischer Brown Norway Rat. Front Aging Neurosci 2020; 12:27. [PMID: 32116654 PMCID: PMC7026493 DOI: 10.3389/fnagi.2020.00027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/24/2020] [Indexed: 12/20/2022] Open
Abstract
Age-related hearing loss, one of the most frequently diagnosed disabilities in industrialized countries, may result from declining levels of GABA in the aging inferior colliculus (IC). However, the mechanisms of aging and subsequent disruptions of temporal processing in elderly hearing abilities are still being investigated. Perineuronal nets (PNs) are a specialized form of the extracellular matrix and have been linked to GABAergic neurotransmission and to the regulation of structural and synaptic plasticity. We sought to determine whether the density of PNs in the IC changes with age. We combined Wisteria floribunda agglutinin (WFA) staining with immunohistochemistry to glutamic acid decarboxylase in three age groups of Fischer Brown Norway (FBN) rats. The density of PNs on GABAergic and non-GABAergic cells in the three major subdivisions of the IC was quantified. Results first demonstrate that the density of PNs in the FBN IC increase with age. The greatest increases of PN density from young to old age occurred in the central IC (67% increase) and dorsal IC (117% increase). Second, in the young IC, PNs surround non-GABAergic and GABAergic cells with the majority of PNs surrounding the former. The increase of PNs with age in the IC occurred on both non-GABAergic and GABAergic populations. The average density of PN-surrounded non-GABAergic cells increased from 84.9 PNs/mm2 in the young to 134.2 PNs/mm2 in the old. While the density of PN-surrounded GABAergic cells increased from 26 PNs/mm2 in the young to 40.6 PNs/mm2 in the old. The causality is unclear, but increases in PN density in old age may play a role in altered auditory processing in the elderly, or may lead to further changes in IC plasticity.
Collapse
Affiliation(s)
- Amir M Mafi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Lindsay N Hofer
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Matthew G Russ
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Jesse W Young
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Jeffrey G Mellott
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| |
Collapse
|
7
|
Ibrahim BA, Llano DA. Aging and Central Auditory Disinhibition: Is It a Reflection of Homeostatic Downregulation or Metabolic Vulnerability? Brain Sci 2019; 9:brainsci9120351. [PMID: 31805729 PMCID: PMC6955996 DOI: 10.3390/brainsci9120351] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/25/2019] [Accepted: 11/30/2019] [Indexed: 01/08/2023] Open
Abstract
Aging-related changes have been identified at virtually every level of the central auditory system. One of the most common findings across these nuclei is a loss of synaptic inhibition with aging, which has been proposed to be at the heart of several aging-related changes in auditory cognition, including diminished speech perception in complex environments and the presence of tinnitus. Some authors have speculated that downregulation of synaptic inhibition is a consequence of peripheral deafferentation and therefore is a homeostatic mechanism to restore excitatory/inhibitory balance. As such, disinhibition would represent a form of maladaptive plasticity. However, clinical data suggest that deafferentation-related disinhibition tends to occur primarily in the aged brain. Therefore, aging-related disinhibition may, in part, be related to the high metabolic demands of inhibitory neurons relative to their excitatory counterparts. These findings suggest that both deafferentation-related maladaptive plastic changes and aging-related metabolic factors combine to produce changes in central auditory function. Here, we explore the arguments that downregulation of inhibition may be due to homeostatic responses to diminished afferent input vs. metabolic vulnerability of inhibitory neurons in the aged brain. Understanding the relative importance of these mechanisms will be critical for the development of treatments for the underlying causes of aging-related central disinhibition.
Collapse
Affiliation(s)
- Baher A. Ibrahim
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Daniel A. Llano
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Correspondence:
| |
Collapse
|
8
|
Robinson LC, Barat O, Mellott JG. GABAergic and glutamatergic cells in the inferior colliculus dynamically express the GABA AR γ 1 subunit during aging. Neurobiol Aging 2019; 80:99-110. [PMID: 31112831 DOI: 10.1016/j.neurobiolaging.2019.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/25/2019] [Accepted: 04/05/2019] [Indexed: 01/20/2023]
Abstract
Age-related hearing loss may result, in part, from declining levels of γ-amino butyric acid (GABA) in the aging inferior colliculus (IC). An upregulation of the GABAAR γ1 subunit, which has been shown to increase sensitivity to GABA, occurs in the aging IC. We sought to determine whether the upregulation of the GABAAR γ1 subunit was specific to GABAergic or glutamatergic IC cells. We used immunohistochemistry for glutamic acid decarboxylase and the GABAAR γ1 subunit at 4 age groups in the IC of Fisher Brown Norway rats. The percentage of somas that expressed the γ1 subunit and the number of subunits on each soma were quantified. Our results show that GABAergic and glutamatergic IC cells increasingly expressed the γ1 subunit from young age until expression peaked during middle age. At old age (∼77% of life span), the number of GABAAR γ1 subunits per cell sharply decreased for both cell types. These results, along with previous studies, suggest inhibitory and excitatory IC circuits may express the GABAAR γ1 subunit in response to the age-related decline of available GABA.
Collapse
Affiliation(s)
- Lauren C Robinson
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Oren Barat
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA; Department of Biology, Kent State University, Kent, OH, USA
| | - Jeffrey G Mellott
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA.
| |
Collapse
|
9
|
Cai R, Montgomery SC, Graves KA, Caspary DM, Cox BC. The FBN rat model of aging: investigation of ABR waveforms and ribbon synapse changes. Neurobiol Aging 2018; 62:53-63. [PMID: 29107847 PMCID: PMC5743589 DOI: 10.1016/j.neurobiolaging.2017.09.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/22/2017] [Accepted: 09/30/2017] [Indexed: 01/25/2023]
Abstract
Age-related hearing loss is experienced by one-third of individuals aged 65 years and older and can be socially debilitating. Historically, there has been poor correlation between age-related threshold changes, loss of speech understanding, and loss of cochlear hair cells. We examined changes in ribbon synapse number at four different ages in Fisher Brown Norway rats, an extensively studied rat model of aging. In contrast to previous work in mice/Wistar rats, we found minimal ribbon synapse loss before 20 months, with significant differences in 24- and 28-month-old rats at 4 kHz. Significant outer HC loss was observed at 24 and 28 months in low- to mid-frequency regions. Age-related reductions in auditory brainstem response wave I amplitude and increases in threshold were strongly correlated with ribbon synapse loss. Wave V/I ratios increased across age for click, 2, 4, and 24 kHz. Together, we find that ribbon synapses in the Fisher Brown Norway rat cochlea show resistance to aging until ∼60% of their life span, suggesting species/strain differences may underpin decreased peripheral input into the aging central processor.
Collapse
Affiliation(s)
- Rui Cai
- Division of Otolaryngology, Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Scott C Montgomery
- Division of Otolaryngology, Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA; Division of Otolaryngology, Department of Surgery, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Kaley A Graves
- Division of Otolaryngology, Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Donald M Caspary
- Division of Otolaryngology, Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA; Division of Otolaryngology, Department of Surgery, Southern Illinois University School of Medicine, Springfield, IL, USA.
| | - Brandon C Cox
- Division of Otolaryngology, Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA; Division of Otolaryngology, Department of Surgery, Southern Illinois University School of Medicine, Springfield, IL, USA.
| |
Collapse
|
10
|
Sottile SY, Ling L, Cox BC, Caspary DM. Impact of ageing on postsynaptic neuronal nicotinic neurotransmission in auditory thalamus. J Physiol 2017; 595:5375-5385. [PMID: 28585699 PMCID: PMC5538226 DOI: 10.1113/jp274467] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/24/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Neuronal nicotinic acetylcholine receptors (nAChRs) play a fundamental role in the attentional circuitry throughout the mammalian CNS. In the present study, we report a novel finding that ageing negatively impacts nAChR efficacy in auditory thalamus, and this is probably the result of a loss of nAChR density (Bmax ) and changes in the subunit composition of nAChRs. Our data support the hypothesis that age-related maladaptive changes involving nAChRs within thalamocortical circuits partially underpin the difficulty that elderly adults experience with respect to attending to speech and other salient acoustic signals. ABSTRACT The flow of auditory information through the medial geniculate body (MGB) is regulated, in part, by cholinergic projections from the pontomesencephalic tegmentum. The functional significance of these projections is not fully established, although they have been strongly implicated in the allocation of auditory attention. Using in vitro slice recordings, we have analysed postsynaptic function and pharmacology of neuronal nicotinic ACh receptors (nAChRs) in young adult and the aged rat MGB. We find that ACh produces significant excitatory postsynaptic actions on young MGB neurons, probably mediated by β2-containing heteromeric nAChRs. Radioligand binding studies show a significant age-related loss of heteromeric nAChR receptor number, which supports patch clamp data showing an age-related loss in ACh efficacy in evoking postsynaptic responses. Use of the β2-selective nAChR antagonist, dihydro-β-erythroidine, suggests that loss of cholinergic efficacy may also be the result of an age-related subunit switch from high affinity β2-containing nAChRs to low affinity β4-containing nAChRs, in addition to the loss of total nAChR number. This age-related nAChR dysfunction may partially underpin the attentional deficits that contribute to the loss of speech understanding in the elderly.
Collapse
Affiliation(s)
| | | | - Brandon C. Cox
- Department of Pharmacology
- Department of Surgery, Division of OtolaryngologySouthern Illinois University School of MedicineSpringfieldILUSA
| | - Donald M. Caspary
- Department of Pharmacology
- Department of Surgery, Division of OtolaryngologySouthern Illinois University School of MedicineSpringfieldILUSA
| |
Collapse
|
11
|
Godfrey DA, Chen K, O'Toole TR, Mustapha AI. Amino acid and acetylcholine chemistry in the central auditory system of young, middle-aged and old rats. Hear Res 2017; 350:173-188. [DOI: 10.1016/j.heares.2017.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 04/24/2017] [Accepted: 05/03/2017] [Indexed: 02/04/2023]
|
12
|
Gröschel M, Hubert N, Müller S, Ernst A, Basta D. Age-dependent changes of calcium related activity in the central auditory pathway. Exp Gerontol 2014; 58:235-43. [DOI: 10.1016/j.exger.2014.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/31/2014] [Accepted: 08/28/2014] [Indexed: 10/24/2022]
|
13
|
Gold JR, Bajo VM. Insult-induced adaptive plasticity of the auditory system. Front Neurosci 2014; 8:110. [PMID: 24904256 PMCID: PMC4033160 DOI: 10.3389/fnins.2014.00110] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/28/2014] [Indexed: 01/10/2023] Open
Abstract
The brain displays a remarkable capacity for both widespread and region-specific modifications in response to environmental challenges, with adaptive processes bringing about the reweighing of connections in neural networks putatively required for optimizing performance and behavior. As an avenue for investigation, studies centered around changes in the mammalian auditory system, extending from the brainstem to the cortex, have revealed a plethora of mechanisms that operate in the context of sensory disruption after insult, be it lesion-, noise trauma, drug-, or age-related. Of particular interest in recent work are those aspects of auditory processing which, after sensory disruption, change at multiple—if not all—levels of the auditory hierarchy. These include changes in excitatory, inhibitory and neuromodulatory networks, consistent with theories of homeostatic plasticity; functional alterations in gene expression and in protein levels; as well as broader network processing effects with cognitive and behavioral implications. Nevertheless, there abounds substantial debate regarding which of these processes may only be sequelae of the original insult, and which may, in fact, be maladaptively compelling further degradation of the organism's competence to cope with its disrupted sensory context. In this review, we aim to examine how the mammalian auditory system responds in the wake of particular insults, and to disambiguate how the changes that develop might underlie a correlated class of phantom disorders, including tinnitus and hyperacusis, which putatively are brought about through maladaptive neuroplastic disruptions to auditory networks governing the spatial and temporal processing of acoustic sensory information.
Collapse
Affiliation(s)
- Joshua R Gold
- Department of Physiology, Anatomy and Genetics, University of Oxford Oxford, UK
| | - Victoria M Bajo
- Department of Physiology, Anatomy and Genetics, University of Oxford Oxford, UK
| |
Collapse
|
14
|
Sharma S, Nag TC, Thakar A, Bhardwaj DN, Roy TS. The aging human cochlear nucleus: Changes in the glial fibrillary acidic protein, intracellular calcium regulatory proteins, GABA neurotransmitter and cholinergic receptor. J Chem Neuroanat 2014; 56:1-12. [DOI: 10.1016/j.jchemneu.2013.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 12/19/2013] [Accepted: 12/19/2013] [Indexed: 01/23/2023]
|
15
|
Xie R, Manis PB. Glycinergic synaptic transmission in the cochlear nucleus of mice with normal hearing and age-related hearing loss. J Neurophysiol 2013; 110:1848-59. [PMID: 23904491 DOI: 10.1152/jn.00151.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The principal inhibitory neurotransmitter in the mammalian cochlear nucleus (CN) is glycine. During age-related hearing loss (AHL), glycinergic inhibition becomes weaker in CN. However, it is unclear what aspects of glycinergic transmission are responsible for weaker inhibition with AHL. We examined glycinergic transmission onto bushy cells of the anteroventral CN in normal-hearing CBA/CaJ mice and in DBA/2J mice, a strain that exhibits an early onset AHL. Glycinergic synaptic transmission was examined in brain slices of mice at 10-15 postnatal days old, 20-35 days old, and at 6-7 mo old. Spontaneous inhibitory postsynaptic current (sIPSC) event frequency and amplitude were the same among all three ages in both strains of mice. However, the amplitudes of IPSCs evoked (eIPSC) from stimulating the dorsal CN were smaller, and the failure rate was higher, with increasing age due to decreased quantal content in both mouse strains, independent of hearing status. The coefficient of variation of the eIPSC amplitude also increased with age. The decay time constant (τ) of sIPSCs and eIPSCs were constant in CBA/CaJ mice at all ages, but were significantly slower in DBA/2J mice at postnatal days 20-35, following the onset of AHL, and not at earlier or later ages. Our results suggest that glycinergic inhibition at the synapses onto bushy cells becomes weaker and less reliable with age through changes in release. However, the hearing loss in DBA/2J mice is accompanied by a transiently enhanced inhibition, which could disrupt the balance of excitation and inhibition.
Collapse
Affiliation(s)
- Ruili Xie
- Department of Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and
| | | |
Collapse
|
16
|
Abstract
Age-related deficits in detecting and understanding speech, which can lead to social withdrawal and isolation, have been linked to changes in the central auditory system. Many of these central age-related changes involve altered mechanisms of inhibitory neurotransmission, essential for accurate and reliable auditory processing. In sensory thalamus, GABA mediates fast (phasic) inhibition via synaptic GABA(A) receptors (GABA(A)Rs) and long-lasting (tonic) inhibition via high-affinity (extrasynaptic) GABA(A)Rs, which provide a majority of the overall inhibitory tone in sensory thalamus. Due to a delicate balance between excitation and inhibition, alteration of normal thalamic inhibitory function with age and a reduction of tonic GABA(A)R-mediated inhibition may disrupt normal adult auditory processing, sensory gating, thalamocortical rhythmicity, and slow-wave sleep. The present study examines age-related homeostatic plasticity of GABA(A)R function in auditory thalamus or the medial geniculate body (MGB). Using thalamic slices from young adult (3-8 months) and aged (28-32 months) rats, these studies found a 45.5% reduction in GABA(A)R density and a 50.4% reduction in GABA(A)R-mediated tonic whole cell Cl(-) currents in the aged MGB. Synaptic GABA(A)R-mediated inhibition appeared differentially affected in aged lemniscal and nonlemniscal MGB. Except for resting membrane potential, basic properties were unaltered with age, including neuronal Cl(-) homeostasis determined using the gramicidin perforated patch-clamp method. Results demonstrate selective significant age-dependent deficits in the tonic inhibitory tone within the MGB. These data suggest that selective GABA(A)R subtype agonists or modulators might be used to augment MGB inhibitory neurotransmission, improving speech understanding, sensory gating, and slow-wave sleep for a subset of elderly individuals.
Collapse
|
17
|
Caspary DM, Hughes LF, Ling LL. Age-related GABAA receptor changes in rat auditory cortex. Neurobiol Aging 2012; 34:1486-96. [PMID: 23257264 DOI: 10.1016/j.neurobiolaging.2012.11.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 11/13/2012] [Accepted: 11/16/2012] [Indexed: 01/06/2023]
Abstract
Auditory cortex (AI) shows age-related decreases in pre-synaptic markers for gamma-aminobutyric acid (GABA) and degraded AI neuronal response properties. Previous studies find age-related increases in spontaneous and driven activity, decreased spectral and directional sensitivity, and impaired novelty detection. The present study examined expression of GABA(A) receptor (GABA(A)R) subunit message, protein, and quantitative GABA(A)R binding in young, middle-aged, and aged rat AI, with comparisons with adjoining parietal cortex. Significant loss of GABA(A)R α(1) subunit message across AI layers was observed in middle-aged and aged rats and α(1) subunit protein levels declined in layers II and III. Age-related increases in GABA(A)R α(3) subunit message and protein levels were observed in certain AI layers. GABA(A)R subunits, including β(1), β(2), γ(1), γ(2s), and γ(2L), primarily, but not exclusively, showed age-related declines at the message and protein levels. The ability of GABA to modulate [(3)H]t-butylbicycloorthobenzoate binding in the chloride channel showed age-related decreases in peak binding and changes in desensitization kinetics. Collectively, age-related changes in GABA(A)R subunit composition would alter the magnitude and temporal properties of inhibitory synaptic transmission and could underpin observed age-related functional changes seen in the elderly.
Collapse
Affiliation(s)
- Donald M Caspary
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA.
| | | | | |
Collapse
|
18
|
Age-related changes in the acoustic startle reflex in Fischer 344 and Long Evans rats. Exp Gerontol 2012; 47:966-73. [DOI: 10.1016/j.exger.2012.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 07/20/2012] [Accepted: 09/05/2012] [Indexed: 11/22/2022]
|
19
|
Richardson BD, Brozoski TJ, Ling LL, Caspary DM. Targeting inhibitory neurotransmission in tinnitus. Brain Res 2012; 1485:77-87. [PMID: 22405692 DOI: 10.1016/j.brainres.2012.02.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 02/06/2012] [Accepted: 02/06/2012] [Indexed: 02/07/2023]
Abstract
Tinnitus perception depends on the presence of its neural correlates within the auditory neuraxis and associated structures. Targeting specific circuits and receptors within the central nervous system in an effort to relieve the perception of tinnitus and its impact on one's emotional and mental state has become a focus of tinnitus research. One approach is to upregulate endogenous inhibitory neurotransmitter levels (e.g., glycine and GABA) and selectively target inhibitory receptors in key circuits to normalize tinnitus pathophysiology. Thus, the basic functional and molecular properties of two major ligand-gated inhibitory receptor systems, the GABA(A) receptor (GABA(A)R) and glycine receptor (GlyR) are described. Also reviewed is the rationale for targeting inhibition, which stems from reported tinnitus-related homeostatic plasticity of inhibitory neurotransmitter systems and associated enhanced neuronal excitability throughout most central auditory structures. However, the putative role of the medial geniculate body (MGB) in tinnitus has not been previously addressed, specifically in terms of its inhibitory afferents from inferior colliculus and thalamic reticular nucleus and its GABA(A)R functional heterogeneity. This heterogeneous population of GABA(A)Rs, which may be altered in tinnitus pathology, and its key anatomical position in the auditory CNS make the MGB a compelling structure for tinnitus research. Finally, some selective compounds, which enhance tonic inhibition, have successfully ameliorated tinnitus in animal studies, suggesting that the MGB and, to a lesser degree, the auditory cortex may be their primary locus of action. These pharmacological interventions are examined in terms of their mechanism of action and why these agents may be effective in tinnitus treatment. This article is part of a Special Issue entitled: Tinnitus Neuroscience.
Collapse
Affiliation(s)
- Ben D Richardson
- Department of Pharmacology, Southern Illinois University School of Medicine, 801 N Rutledge St, Rm. 3234, PO Box 19629, Springfield, IL 62794, USA.
| | | | | | | |
Collapse
|
20
|
Gourévitch B, Edeline JM. Age-related changes in the guinea pig auditory cortex: relationship with brainstem changes and comparison with tone-induced hearing loss. Eur J Neurosci 2011; 34:1953-65. [DOI: 10.1111/j.1460-9568.2011.07905.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Wang H, Brozoski TJ, Caspary DM. Inhibitory neurotransmission in animal models of tinnitus: maladaptive plasticity. Hear Res 2011; 279:111-7. [PMID: 21527325 DOI: 10.1016/j.heares.2011.04.004] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 03/15/2011] [Accepted: 04/03/2011] [Indexed: 11/17/2022]
Abstract
Tinnitus is a phantom auditory sensation experienced by up to 14% of the United States population with a smaller percentage experiencing decreased quality of life. A compelling hypothesis is that tinnitus results from a maladaptive plastic net down-regulation of inhibitory amino acid neurotransmission in the central auditory pathway. This loss of inhibition may be a compensatory response to loss of afferent input such as that caused by acoustic insult and/or age-related hearing loss, the most common causes of tinnitus in people. Compensatory plastic changes may result in pathologic neural activity that underpins tinnitus. The neural correlates include increased spontaneous spiking, increased bursting and decreased variance of inter-spike intervals. This review will examine evidence for chronic plastic neuropathic changes in the central auditory system of animals with psychophysically-defined tinnitus. Neurochemical studies will focus on plastic tinnitus-related changes of inhibitory glycinergic neurotransmission in the adult dorsal cochlear nucleus (DCN). Electrophysiological studies will focus on functional changes in the DCN and inferior colliculus (IC). Tinnitus was associated with increased spontaneous activity and altered response properties of fusiform cells, the major output neurons of DCN. Coincident with these physiologic alterations were changes in glycine receptor (GlyR) subunit composition, its anchoring/trafficking protein, gephyrin and the number and affinity of membrane GlyRs revealed by receptor binding. In the IC, the primary afferent target of DCN fusiform cells, multi-dimensional alterations in unit-spontaneous activity (rate, burst rate, bursting pattern) were found in animals with behavioral evidence of chronic tinnitus more than 9 months following the acoustic/cochlear insult. In contrast, immediately following an intense sound exposure, acute alterations in IC spontaneous activity resembled chronic tinnitus-related changes but were not identical. This suggests that long-term neuroplastic changes responsible for chronic tinnitus are likely to be responsible for its persistence. A clear understanding of tinnitus-related plasticity in the central auditory system and its associated neurochemistry may help define unique targets for therapeutic drug development.
Collapse
Affiliation(s)
- Hongning Wang
- Department of Pharmacology, Southern Illinois University School of Medicine, P.O. Box 19629, Springfield, IL 62794-9629, USA
| | | | | |
Collapse
|
22
|
Richardson BD, Ling LL, Uteshev VV, Caspary DM. Extrasynaptic GABA(A) receptors and tonic inhibition in rat auditory thalamus. PLoS One 2011; 6:e16508. [PMID: 21298071 PMCID: PMC3027696 DOI: 10.1371/journal.pone.0016508] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 12/19/2010] [Indexed: 12/31/2022] Open
Abstract
Background Neural inhibition plays an important role in auditory processing and attentional gating. Extrasynaptic GABAA receptors (GABAAR), containing α4and δ GABAAR subunits, are thought to be activated by GABA spillover outside of the synapse following release resulting in a tonic inhibitory Cl− current which could account for up to 90% of total inhibition in visual and somatosensory thalamus. However, the presence of this unique type of inhibition has not been identified in auditory thalamus. Methodology/Principal Findings The present study used gaboxadol, a partially selective potent agonist for δ-subunit containing GABAA receptor constructs to elucidate the presence of extrasynaptic GABAARs using both a quantitative receptor binding assay and patch-clamp electrophysiology in thalamic brain slices. Intense [3H]gaboxadol binding was found to be localized to the MGB while whole cell recordings from MGB neurons in the presence of gaboxadol demonstrated the expression of δ-subunit containing GABAARs capable of mediating a tonic inhibitory Cl− current. Conclusions/Significance Potent tonic inhibitory GABAAR responses mediated by extrasynaptic receptors may be important in understanding how acoustic information is processed by auditory thalamic neurons as it ascends to auditory cortex. In addition to affecting cellular behavior and possibly neurotransmission, functional extrasynaptic δ-subunit containing GABAARs may represent a novel pharmacological target for the treatment of auditory pathologies including temporal processing disorders or tinnitus.
Collapse
Affiliation(s)
- Ben D Richardson
- Department of Pharmacology, Southern Illinois University-School of Medicine, Springfield, Illinois, United States of America
| | | | | | | |
Collapse
|
23
|
Wang H, Brozoski TJ, Ling L, Hughes LF, Caspary DM. Impact of sound exposure and aging on brain-derived neurotrophic factor and tyrosine kinase B receptors levels in dorsal cochlear nucleus 80 days following sound exposure. Neuroscience 2011; 172:453-9. [PMID: 21034795 PMCID: PMC3057525 DOI: 10.1016/j.neuroscience.2010.10.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 10/18/2010] [Accepted: 10/19/2010] [Indexed: 11/22/2022]
Abstract
Recent studies suggested that acute sound exposure resulting in a temporary threshold shift in young adult animals within a series of maladaptive plasticity changes in central auditory structures. Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, is involved in post-trauma peripheral hair cell and spiral ganglion cell survival and has been shown to modulate synaptic strength in cochlear nucleus following sound exposure. The present study evaluated levels of BDNF and its receptor (tyrosine kinase B, [TrkB]) in the dorsal cochlear nucleus (DCN) following a unilateral moderate sound exposure in young (7-8 months) and aged (28-29 months) Fischer Brown Norway (FBN) rats. Eighty days post-exposure, auditory brainstem response (ABR) thresholds for young exposed rats approached control values while aged exposed rats showed residual permanent threshold shifts (PTS) relative to aged controls. BDNF protein levels were significantly up-regulated by 9% in young exposed fusiform cells ipsilateral to the exposure. BDNF levels in aged sound-exposed fusiform cells increased 31% ipsilateral to the exposure. Protein levels of the BDNF receptor, TrkB, were also significantly increased in aged but not in young sound-exposed DCN fusiform cells. The present findings suggest a relationship between the up-regulation of BDNF/TrkB and the increase in spontaneous and driven activity previously observed for aged and sound-exposed fusiform cells. This might be due to a selective maladaptive compensatory down-regulation of glycinergic inhibition in DCN fusiform cells.
Collapse
MESH Headings
- Acoustic Stimulation/adverse effects
- Acoustic Stimulation/methods
- Aging/metabolism
- Animals
- Brain-Derived Neurotrophic Factor/biosynthesis
- Brain-Derived Neurotrophic Factor/metabolism
- Cell Survival/physiology
- Cochlear Nucleus/metabolism
- Cochlear Nucleus/pathology
- Cochlear Nucleus/physiopathology
- Disease Models, Animal
- Hearing Loss, Central/metabolism
- Hearing Loss, Central/pathology
- Hearing Loss, Central/physiopathology
- Hearing Loss, Noise-Induced/metabolism
- Hearing Loss, Noise-Induced/pathology
- Hearing Loss, Noise-Induced/physiopathology
- Male
- Noise/adverse effects
- Rats
- Rats, Inbred F344
- Receptor, trkB/biosynthesis
- Receptor, trkB/metabolism
Collapse
Affiliation(s)
- Hongning Wang
- Department of Pharmacology, Southern Illinois University School of Medicine, P.O. Box 19629, Springfield, IL 62794-9629, USA
| | - Thomas J. Brozoski
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, IL 62794-9629, USA
| | - Lynne Ling
- Department of Pharmacology, Southern Illinois University School of Medicine, P.O. Box 19629, Springfield, IL 62794-9629, USA
| | - Larry F. Hughes
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, IL 62794-9629, USA
| | - Donald M. Caspary
- Department of Pharmacology, Southern Illinois University School of Medicine, P.O. Box 19629, Springfield, IL 62794-9629, USA
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, IL 62794-9629, USA
| |
Collapse
|
24
|
Syka J. The Fischer 344 rat as a model of presbycusis. Hear Res 2010; 264:70-8. [DOI: 10.1016/j.heares.2009.11.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 10/12/2009] [Accepted: 11/04/2009] [Indexed: 10/20/2022]
|
25
|
Frisina RD, Zhu X. Auditory sensitivity and the outer hair cell system in the CBA mouse model of age-related hearing loss. ACTA ACUST UNITED AC 2010; 2:9-16. [PMID: 21866215 DOI: 10.2147/oaap.s7202] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Age-related hearing loss is a highly prevalent sensory disorder, from both the clinical and animal model perspectives. Understanding of the neurophysiologic, structural, and molecular biologic bases of age-related hearing loss will facilitate development of biomedical therapeutic interventions to prevent, slow, or reverse its progression. Thus, increased understanding of relationships between aging of the cochlear (auditory portion of the inner ear) hair cell system and decline in overall hearing ability is necessary. The goal of the present investigation was to test the hypothesis that there would be correlations between physiologic measures of outer hair cell function (otoacoustic emission levels) and hearing sensitivity (auditory brainstem response thresholds), starting in middle age. For the CBA mouse, a useful animal model of age-related hearing loss, it was found that correlations between these two hearing measures occurred only for high sound frequencies in middle age. However, in old age, a correlation was observed across the entire mouse range of hearing. These findings have implications for improved early detection of progression of age-related hearing loss in middle-aged mammals, including mice and humans, and distinguishing peripheral etiologies from central auditory system decline.
Collapse
Affiliation(s)
- Robert D Frisina
- Otolaryngology, Biomedical Engineering, Neurobiology, and Anatomy Departments, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | | |
Collapse
|
26
|
Wang H, Brozoski TJ, Turner JG, Ling L, Parrish JL, Hughes LF, Caspary DM. Plasticity at glycinergic synapses in dorsal cochlear nucleus of rats with behavioral evidence of tinnitus. Neuroscience 2009; 164:747-59. [PMID: 19699270 DOI: 10.1016/j.neuroscience.2009.08.026] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 07/21/2009] [Accepted: 08/12/2009] [Indexed: 02/01/2023]
Abstract
Fifteen percent to 35% of the United States population experiences tinnitus, a subjective "ringing in the ears". Up to 10% of those afflicted report severe and disabling symptoms. Tinnitus was induced in rats using unilateral, 1 h, 17 kHz-centered octave-band noise (116 dB SPL) and assessed using a gap-startle method. The dorsal cochlear nucleus (DCN) is thought to undergo plastic changes suggestive of altered inhibitory function during tinnitus development. Exposed rats showed near pre-exposure auditory brainstem response (ABR) thresholds for clicks and all tested frequencies 16 weeks post-exposure. Sound-exposed rats showed significantly worse gap detection at 24 and 32 kHz 16 weeks following sound exposure, suggesting the development of chronic, high frequency tinnitus. Message and protein levels of alpha(1-3,) and beta glycine receptor subunits (GlyRs), and the anchoring protein, gephyrin, were measured in DCN fusiform cells 4 months following sound exposure. Rats with evidence of tinnitus showed significant GlyR alpha(1) protein decreases in the middle and high frequency regions of the DCN while alpha(1) message levels were paradoxically increased. Gephyrin levels showed significant tinnitus-related increases in sound-exposed rats suggesting intracellular receptor trafficking changes following sound exposure. Consistent with decreased alpha(1) subunit protein levels, strychnine binding studies showed significant tinnitus-related decreases in the number of GlyR binding sites, supporting tinnitus-related changes in the number and/or composition of GlyRs. Collectively, these findings suggest the development of tinnitus is likely associated with functional GlyR changes in DCN fusiform cells consistent with previously described behavioral and neurophysiologic changes. Tinnitus related GlyR changes could provide a unique receptor target for tinnitus pharmacotherapy or blockade of tinnitus initiation.
Collapse
Affiliation(s)
- H Wang
- Department of Pharmacology, Southern Illinois University School of Medicine, PO Box 19629, Springfield, IL 62794-9629, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Whiting B, Moiseff A, Rubio ME. Cochlear nucleus neurons redistribute synaptic AMPA and glycine receptors in response to monaural conductive hearing loss. Neuroscience 2009; 163:1264-76. [PMID: 19646510 DOI: 10.1016/j.neuroscience.2009.07.049] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 06/26/2009] [Accepted: 07/21/2009] [Indexed: 11/29/2022]
Abstract
Neurons restore their function in response to external or internal perturbations and maintain neuronal or network stability through a homeostatic scaling mechanism. Homeostatic responses at synapses along the auditory system would be important for adaptation to normal and abnormal fluctuations in the sensory environment. We investigated at the electron microscopic level and after postembedding immunogold labeling whether projection neurons in the cochlear nucleus responded to modifications of auditory nerve activity. After unilaterally reducing the level of auditory inputs by approximately 20 dB by monaural earplugging, auditory nerve synapses on bushy cells somata and basal dendrites of fusiform cells of the ventral and dorsal cochlear nucleus, respectively, upregulated GluR3 AMPA receptor subunit, while inhibitory synapses decreased the expression of GlyRalpha1 subunit. These changes in expression levels were fully reversible once the earplug was removed, indicating that activity affects the trafficking of receptors at synapses. Excitatory synapses on apical dendrites of fusiform cells (parallel fibers) with different synaptic AMPA receptor subunit composition, were not affected by sound attenuation, as the expression levels of AMPA receptor subunits were the same as in normal hearing littermates. GlyRalpha1 subunit expression at inhibitory synapses on apical dendrites of fusiform cells was also found unaffected. Furthermore, fusiform and bushy cells of the contralateral side to the earplugging upregulated the GluR3 subunit at auditory nerve synapses. These results show that cochlear nucleus neurons innervated by the auditory nerve, are able to respond to small changes in sound levels by redistributing specific AMPA and glycine receptor subunits.
Collapse
Affiliation(s)
- B Whiting
- Department of Physiology and Neurobiology, University of Connecticut, 75 North Eagleville Road, Storrs, CT 06269-3156, USA
| | | | | |
Collapse
|
28
|
Wang H, Turner JG, Ling L, Parrish JL, Hughes LF, Caspary DM. Age-related changes in glycine receptor subunit composition and binding in dorsal cochlear nucleus. Neuroscience 2009; 160:227-39. [PMID: 19217931 DOI: 10.1016/j.neuroscience.2009.01.079] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 01/22/2009] [Accepted: 01/23/2009] [Indexed: 10/21/2022]
Abstract
Age-related hearing loss, presbycusis, can be thought of, in part, as a slow progressive peripheral deafferentation. Previous studies suggest that certain deficits seen in presbycusis may partially result from functional loss of the inhibitory neurotransmitter glycine in dorsal cochlear nucleus (DCN). The present study assessed age-related behavioral gap detection changes and neurochemical changes of postsynaptic glycine receptor (GlyRs) subunits and their anchoring protein gephyrin in fusiform cells of young (7-11 months) and aged (28-33 months) Fischer brown Norway (FBN) rats. Aged rats showed significantly (20-30 dB) elevated auditory brainstem-evoked response thresholds across all tested frequencies and worse gap detection ability compared to young FBN rats. In situ hybridization and quantitative immunocytochemistry were used to measure GlyR subunit message and protein levels. There were significant age-related increases in the alpha(1) subunit message with significant age-related decreases in alpha(1) subunit protein. Gephyrin message and protein showed significant increases in aged DCN fusiform cells. The pharmacologic consequences of these age-related subunit changes were assessed using [3H] strychnine binding. In support of the age-related decrease of alpha(1) subunit protein levels in DCN, there was a significant age-related decrease in the total number of GlyR binding sites with no significant change in affinity. These age-related changes may reflect an effort to reestablish a homeostatic balance between excitation and inhibition impacting on DCN fusiform cells by downregulation of inhibitory function in the face of an age-related loss of peripheral input. Age-related decrease in presynaptic glycine release results in altered subunit composition and this may correlate with loss of temporal coding of the aged fusiform cell in DCN. The previously reported role for gephyrin in retrograde intracellular receptor subunit trafficking could contribute to the alpha(1) decrease in the face of increased message.
Collapse
Affiliation(s)
- H Wang
- Department of Pharmacology, Southern Illinois University School of Medicine, 801 North Rutledge Street, P.O. Box 19629, Springfield, IL 62794-9629, USA
| | | | | | | | | | | |
Collapse
|
29
|
Caspary DM, Ling L, Turner JG, Hughes LF. Inhibitory neurotransmission, plasticity and aging in the mammalian central auditory system. ACTA ACUST UNITED AC 2008; 211:1781-91. [PMID: 18490394 DOI: 10.1242/jeb.013581] [Citation(s) in RCA: 353] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Aging and acoustic trauma may result in partial peripheral deafferentation in the central auditory pathway of the mammalian brain. In accord with homeostatic plasticity, loss of sensory input results in a change in pre- and postsynaptic GABAergic and glycinergic inhibitory neurotransmission. As seen in development, age-related changes may be activity dependent. Age-related presynaptic changes in the cochlear nucleus include reduced glycine levels, while in the auditory midbrain and cortex, GABA synthesis and release are altered. Presumably, in response to age-related decreases in presynaptic release of inhibitory neurotransmitters, there are age-related postsynaptic subunit changes in the composition of the glycine (GlyR) and GABA(A) (GABA(A)R) receptors. Age-related changes in the subunit makeup of inhibitory pentameric receptor constructs result in altered pharmacological and physiological responses consistent with a net down-regulation of functional inhibition. Age-related functional changes associated with glycine neurotransmission in dorsal cochlear nucleus (DCN) include altered intensity and temporal coding by DCN projection neurons. Loss of synaptic inhibition in the superior olivary complex (SOC) and the inferior colliculus (IC) likely affect the ability of aged animals to localize sounds in their natural environment. Age-related postsynaptic GABA(A)R changes in IC and primary auditory cortex (A1) involve changes in the subunit makeup of GABA(A)Rs. In turn, these changes cause age-related changes in the pharmacology and response properties of neurons in IC and A1 circuits, which collectively may affect temporal processing and response reliability. Findings of age-related inhibitory changes within mammalian auditory circuits are similar to age and deafferentation plasticity changes observed in other sensory systems. Although few studies have examined sensory aging in the wild, these age-related changes would likely compromise an animal's ability to avoid predation or to be a successful predator in their natural environment.
Collapse
Affiliation(s)
- Donald M Caspary
- Southern Illinois University School of Medicine, Springfield, IL 62794, USA.
| | | | | | | |
Collapse
|
30
|
Schatteman TA, Hughes LF, Caspary DM. Aged-related loss of temporal processing: altered responses to amplitude modulated tones in rat dorsal cochlear nucleus. Neuroscience 2008; 154:329-37. [PMID: 18384967 DOI: 10.1016/j.neuroscience.2008.02.025] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 01/31/2008] [Accepted: 02/21/2008] [Indexed: 11/29/2022]
Abstract
Loss of temporal processing is characteristic of age-related loss of speech understanding observed in the elderly. Inhibitory glycinergic circuits provide input onto dorsal cochlear nucleus (DCN) projection neurons which likely serve to modulate excitatory responses to time-varying complex acoustic signals. The present study sought to test the hypothesis that age-related loss of inhibition would compromise the ability of output neurons to encode sinusoidally amplitude modulated (SAM) tones. Extracellular recordings were obtained from young and aged FBN rat DCN putative fusiform cells. Stimuli were SAM tones at three modulation depths (100, 50, and 20%) at 30 dB hearing level with the carrier frequency set to the unit's characteristic frequency. Discharge rate and synchrony were calculated to describe SAM responses. There were significant age-related changes in the shape and peak vector strength [best modulation frequency (BMF)] of temporal modulation transfer functions (tMTFs), with no significant age-related changes in rate modulation transfer functions (rMTFs) at BMF. Young neurons exhibited band-pass tMTFs for most SAM conditions while aged fusiform cells exhibited significantly more low-pass or double-peaked tMTFs. There were significant differences in tMTFs between buildup, pauser-buildup, and wide-chopper temporal response types. Young and aged wide-choppers displayed significantly lower vector strength values than the other two temporal DCN response types. Age-related decreases in the number of pauser-buildup response types and increases in wide-chopper types reported previously, could account, in part, for the observed loss of temporal coding of the aged fusiform cell. Age-related changes in SAM coding were similar to changes observed with receptor blockade of glycinergic inhibition onto fusiform cells and consistent with previously observed age-related loss of endogenous glycine levels and changes in normal adult glycine receptor function. DCN changes in SAM coding could, in part, underpin temporal processing deficits observed in the elderly.
Collapse
Affiliation(s)
- T A Schatteman
- Department of Pharmacology, Southern Illinois University School of Medicine, P.O. Box 19629, Springfield, IL 62794-9629, USA
| | | | | |
Collapse
|
31
|
Abstract
Guided by findings from neural imaging and population responses in humans, where tinnitus is well characterized, several morphological and physiological substrates of tinnitus in animal studies are reviewed. These include changes in ion channels, receptor systems, single unit firing rate, and population responses. Most findings in humans can be interpreted as resulting from increased neural synchrony.
Collapse
Affiliation(s)
- Jos J Eggermont
- Department of Physiology & Biophysics, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
32
|
Kaltenbach JA. The dorsal cochlear nucleus as a participant in the auditory, attentional and emotional components of tinnitus. Hear Res 2006; 216-217:224-34. [PMID: 16469461 DOI: 10.1016/j.heares.2006.01.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2005] [Revised: 12/24/2005] [Accepted: 01/02/2006] [Indexed: 01/01/2023]
Abstract
The dorsal cochlear nucleus (DCN) has been modeled in numerous studies as a possible source of tinnitus-generating signals. This hypothesis was originally developed on the basis of evidence that the DCN becomes hyperactive following exposure to intense noise. Since these early observations, evidence that the DCN is an important contributor to tinnitus has grown considerably. In this paper, the available evidence to date will be summarized. In addition, the DCN hypothesis of tinnitus can now be expanded to include possible involvement in other, non-auditory components of tinnitus. It will be shown by way of literature review that the DCN has direct connections with non-auditory brainstem structures, such as the locus coeruleus, reticular formation and raphe nuclei, that are implicated in the control of attention and emotional responses. The hypothesis will be presented that attentional and emotional disorders, such as anxiety and depression, which are commonly associated with tinnitus, may result from an interplay between these non-auditory brainstem structures and the DCN. Implicit in this hypothesis is that attempts to develop effective anti-tinnitus therapies are likely to benefit from a greater understanding of how the levels of activity in the DCN are influenced by different states of activation of these non-auditory brainstem structures and vice versa.
Collapse
Affiliation(s)
- James A Kaltenbach
- Department of Otolaryngology, Wayne State University School of Medicine, 5E-UHC, Detroit, MI 48201, USA.
| |
Collapse
|
33
|
Caspary DM, Hughes LF, Schatteman TA, Turner JG. Age-related changes in the response properties of cartwheel cells in rat dorsal cochlear nucleus. Hear Res 2006; 216-217:207-15. [PMID: 16644158 DOI: 10.1016/j.heares.2006.03.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Revised: 03/01/2006] [Accepted: 03/03/2006] [Indexed: 11/26/2022]
Abstract
The fusiform cell and deep layers of the dorsal cochlear nucleus (DCN) show neurotransmitter and functional age-related changes suggestive of a downregulation of inhibitory efficacy onto DCN output neurons. Inhibitory circuits implicated in these changes include vertical and D-multipolar cells. Cartwheel cells comprise a large additional population of DCN inhibitory neurons. Cartwheel cells receive excitatory inputs from granule cell parallel fibers and provide a source of glycinergic inhibitory input onto apical dendrites of DCN fusiform cells. The present study compared the response properties from young and aged units meeting cartwheel-cell criteria in anesthetized rats. Single unit recordings from aged cartwheel cells revealed significantly higher thresholds, increased spontaneous activity and significantly altered rate-level functions characterized by hyperexcitability at higher intensities. Aged cartwheel cells showed a significant reduction in off-set suppression. Collectively, these findings suggest a loss of tonic and perhaps response inhibition onto aged DCN cartwheel neurons. These changes likely reflect a compensatory downregulation of synaptic inhibition in response to a loss of excitatory drive from auditory and non-auditory excitatory inputs via granule cells. The impact of increased excitability of cartwheel cells on DCN output neurons is likely to be complex, influenced by loss of glycinergic release and/or subunit receptor changes which would only partially off-set age-related loss of inhibition onto the somata and basal dendrites of fusiform cells.
Collapse
Affiliation(s)
- Donald M Caspary
- Department of Pharmacology, Southern Illinois University School of Medicine, P.O. Box 19629, Springfield, IL 62794-9629, USA.
| | | | | | | |
Collapse
|
34
|
Frisina RD, Walton JP. Age-related structural and functional changes in the cochlear nucleus. Hear Res 2006; 216-217:216-23. [PMID: 16597491 DOI: 10.1016/j.heares.2006.02.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 02/03/2006] [Accepted: 02/10/2006] [Indexed: 11/30/2022]
Abstract
Presbycusis - age-related hearing loss - is a key communication disorder and chronic medical condition of our aged population. The cochlear nucleus is the major site of projections from the auditory portion of the inner ear. Relative to other levels of the peripheral and central auditory systems, relatively few studies have been conducted examining age-related changes in the cochlear nucleus. The neurophysiological investigations suggest declines in glycine-mediated inhibition, reflected in increased firing rates in cochlear nucleus neurons from old animals relative to young adults. Biochemical investigations of glycine inhibition in the cochlear nucleus are consistent with the functional aging declines of this inhibitory neurotransmitter system that affect complex sound processing. Anatomical reductions in neurons of the cochlear nucleus and their output pathways can occur due to aging changes in the brain, as well as due to age-dependent plasticity of the cochlear nucleus in response to the age-related loss of inputs from the cochlea, particularly from the basal, high-frequency regions. Novel preventative and curative biomedical interventions in the future aimed at alleviating the hearing loss that comes with age, will likely emanate from increasing our knowledge and understanding of its neural and molecular bases. To the extent that this sensory deficit resides in the central auditory system, including the cochlear nucleus, future neural therapies will be able to improve hearing in the elderly.
Collapse
Affiliation(s)
- Robert D Frisina
- Otolaryngology Department, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642-8629, USA.
| | | |
Collapse
|
35
|
Caspary DM, Schatteman TA, Hughes LF. Age-related changes in the inhibitory response properties of dorsal cochlear nucleus output neurons: role of inhibitory inputs. J Neurosci 2006; 25:10952-9. [PMID: 16306408 PMCID: PMC6725883 DOI: 10.1523/jneurosci.2451-05.2005] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Age-related hearing loss frequently results in a loss in the ability to discriminate speech signals, especially in noise. This is attributable, in part, to a loss in temporal resolving power and ability to adjust dynamic range. Circuits in the adult dorsal cochlear nucleus (DCN) have been shown to preserve signal in background noise. Fusiform cells, major DCN output neurons, receive focused glycinergic inputs from tonotopically aligned vertical cells that also project to the ventral cochlear nucleus. Glycine-mediated inhibition onto fusiform cells results in decreased tone-evoked activity as intensity is increased at frequencies adjacent to characteristic frequency (CF). DCN output is thus shaped by glycinergic inhibition, which can be readily assessed in recordings from fusiform cells. Previous DCN studies suggest an age-related loss of markers for glycinergic neurotransmission. The present study postulated that response properties of aged fusiform cells would show a loss of inhibition, resembling conditions observed with glycine receptor blockade. The functional impact of aging was examined by comparing response properties from units meeting fusiform-cell criteria in young and aged rats. Fusiform cells in aged animals displayed significantly higher maximum discharge rates to CF tones than those recorded from young-adult animals. Fusiform cells of aged rats displayed significantly fewer nonmonotonic CF rate-level functions and an age-related change in temporal response properties. These findings are consistent with an age-related loss of glycinergic input, likely from vertical cells, and with findings from other sensory aging studies suggesting a selective age-related decrement in inhibitory amino acid neurotransmitter function.
Collapse
Affiliation(s)
- Donald M Caspary
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois 62794-9629, USA.
| | | | | |
Collapse
|
36
|
Popelar J, Groh D, Pelánová J, Canlon B, Syka J. Age-related changes in cochlear and brainstem auditory functions in Fischer 344 rats. Neurobiol Aging 2006; 27:490-500. [PMID: 16464658 DOI: 10.1016/j.neurobiolaging.2005.03.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Revised: 02/11/2005] [Accepted: 03/10/2005] [Indexed: 11/24/2022]
Abstract
Auditory function in Fischer 344 (F344) and Long Evans (LE) rats was monitored during their lifespan by evaluating hair cell loss, middle-ear compliance and the recording of otoacoustic emissions and auditory brainstem responses. The results revealed a faster deterioration of hearing function in F344 rats compared with LE rats, resulting in larger hearing threshold shifts, a decrease in the latency and amplitude of click-evoked auditory brainstem responses, diminution of the distortion product otoacoustic emissions and a decrease in middle-ear compliance. However, hair cell loss, observed only at the most basal and apical parts of the organ of Corti, was comparable in older individuals of both rat strains. The results suggest involvement of cochlear (stria vascularis) and extracochlear (middle-ear) pathological changes during ageing. Thus, F344 rats represent a complex mix of conductive hearing loss (with low-frequency threshold shift, declining parameters of the middle-ear admittance and asymmetric otoacoustic emissions) and sensorineural hearing loss (with a decrease in the amplitudes of auditory brainstem response and a high-frequency threshold shift).
Collapse
Affiliation(s)
- Jiri Popelar
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | | | | | | | | |
Collapse
|
37
|
Kaltenbach JA, Zhang J, Finlayson P. Tinnitus as a plastic phenomenon and its possible neural underpinnings in the dorsal cochlear nucleus. Hear Res 2005; 206:200-26. [PMID: 16081009 DOI: 10.1016/j.heares.2005.02.013] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Accepted: 02/08/2005] [Indexed: 11/22/2022]
Abstract
Tinnitus displays many features suggestive of plastic changes in the nervous system. These can be categorized based on the types of manipulations that induce them. We have categorized the various forms of plasticity that characterize tinnitus and searched for their neural underpinnings in the dorsal cochlear nucleus (DCN). This structure has been implicated as a possible site for the generation of tinnitus-producing signals owing to its tendency to become hyperactive following exposure to tinnitus inducing agents such as intense sound and cisplatin. In this paper, we review the many forms of plasticity that have been uncovered in anatomical, physiological and neurochemical studies of the DCN. Some of these plastic changes have been observed as consequences of peripheral injury or as fluctuations in the behavior and chemical activities of DCN neurons, while others can be induced by stimulation of auditory or even non-auditory structures. We show that many parallels can be drawn between the various forms of plasticity displayed by tinnitus and the various forms of neural plasticity which have been defined in the DCN. These parallels lend further support to the hypothesis that the DCN is an important site for the generation and modulation of tinnitus-producing signals.
Collapse
Affiliation(s)
- James A Kaltenbach
- Department of Otolaryngology, Wayne State University, School of Medicine, 5E-UHC, Detriot, MI 48201, USA.
| | | | | |
Collapse
|
38
|
Rubio ME, Juiz JM. Differential distribution of synaptic endings containing glutamate, glycine, and GABA in the rat dorsal cochlear nucleus. J Comp Neurol 2004; 477:253-72. [PMID: 15305363 DOI: 10.1002/cne.20248] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The dorsal cochlear nucleus (DCN) integrates the synaptic information depending on the organization of the excitatory and inhibitory connections. This study provides, qualitatively and quantitatively, analyses of the organization and distribution of excitatory and inhibitory input on projection neurons (fusiform cells), and inhibitory interneurons (vertical and cartwheel cells) in the DCN, using a combination of high-resolution ultrastructural techniques together with postembedding immunogold labeling. The combination of ultrastructural morphometry together with immunogold labeling enables the identification and quantification of four major synaptic inputs according to their neurotransmitter content. Only one category of synaptic ending was immunoreactive for glutamate and three for glycine and/or gamma-aminobutyric-acid (GABA). Among those, nine subtypes of synaptic endings were identified. These differed in their ultrastructural characteristics and distribution in the nucleus and on three cell types analyzed. Four of the subtypes were immunoreactive for glutamate and contained round synaptic vesicles, whereas five were immunoreactive for glycine and/or GABA and contained flattened or pleomorphic synaptic vesicles. The analysis of the distribution of the nine synaptic endings on the cell types revealed that eight distributed on fusiform cells, six on vertical cells and five on cartwheel cells. In addition, postembedding immunogold labeling of the glycine receptor alpha1 subunit showed that it was present at postsynaptic membranes in apposition to synaptic endings containing flattened or pleomorphic synaptic vesicles and immunoreactive for glycine and/or GABA on the three cells analyzed. This information is valuable to our understanding of the response properties of DCN neurons.
Collapse
Affiliation(s)
- Maria E Rubio
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269-4156, USA.
| | | |
Collapse
|
39
|
Gleich O, Weiss M, Strutz J. Age-dependent changes in the lateral superior olive of the gerbil (Meriones unguiculatus). Hear Res 2004; 194:47-59. [PMID: 15276675 DOI: 10.1016/j.heares.2004.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Accepted: 03/24/2004] [Indexed: 11/29/2022]
Abstract
Data from humans and animal models provide evidence for an age-dependent impairment in the ability to localize sound. The lateral superior olive (LSO) in the ascending auditory pathway is one important center involved in processing of binaural auditory stimuli. To identify potential age-dependent changes we characterized the LSO in young (< 15 months) and old (> or =3 years) gerbils with a special emphasis on the expression of GABA- and glycine-like immuno-reactivity. The dimensions of the LSO, as well as the number and density of glycine- and GABA-immuno-reactive neurons, were not significantly different between young and old gerbils. The size of glycine- and GABA-immuno-reactive neurons was significantly reduced in the high-frequency (medial) limb of the LSO. Over all, age-dependent changes in the LSO of the gerbil were small.
Collapse
Affiliation(s)
- Otto Gleich
- ENT-Department, University of Regensburg, Franz-Joseph-Strauss-Allee 11, Postfach, D-93042 Regensburg, Germany.
| | | | | |
Collapse
|
40
|
Helfert RH, Krenning J, Wilson TS, Hughes LF. Age-related synaptic changes in the anteroventral cochlear nucleus of Fischer-344 rats. Hear Res 2003; 183:18-28. [PMID: 13679134 DOI: 10.1016/s0378-5955(03)00194-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Previous studies have demonstrated age-related decreases in the transmitters glycine and glutamate in the cochlear nucleus (CN) of the Fischer-344 (F344) rat, along with declining levels of binding for glycine receptors. The purpose of this study was to evaluate structural correlates to the transmitter and receptor losses that accompany aging in the anteroventral CN (AVCN). Thin sections were obtained from the middle-frequency area of the right AVCNs from five 3-month-, four 19-month-, and five 28-month-old F344 rats. Montages were constructed from electron micrographs taken of several sites in each AVCN section. The presynaptic terminals were classified by vesicle type and postsynaptic target, and their perimeters and synaptic lengths were traced using morphometry software. The calibers of all dendritic profiles were also measured, and cell counts were performed on semi-thin sections. The data were compared among the three age groups using analysis of variance followed by Tukey's Honestly Significant Difference for pairwise comparisons. There were significant age-related decreases in the size of terminals contacting small-caliber (<2 microm) dendrites. Dendrites of this size comprised the largest percentage of dendrites in the AVCN. On these targets, round and pleomorphic-vesicle terminals were reduced in volume by nearly 44% and 24%, respectively, in 28-month olds when compared to the 3-month olds. On the other hand, the densities and numbers of synaptic terminals and dendritic profiles did not differ among age groups, and no neuronal losses were evident in the older animals. Also, there were no detectable changes in synaptic area among groups. The decrease in terminal size may be related to age-associated reductions in neurotransmitter levels previously described in the F344 CN. The observations presented here contrast with those previously described in the inferior colliculus (IC), in which there were significant age-related losses of synaptic terminals and dendrites, but no change in the size of synaptic terminals. The lack of synaptic and dendritic losses suggests that the structural connectivity of the rat AVCN remains relatively intact during aging, which is interesting in light of the synaptic and dendritic changes evident in the IC, a major target of its projections.
Collapse
Affiliation(s)
- Robert H Helfert
- Department of Surgery, Southern Illinois University School of Medicine, PO Box 19638, Springfield, IL 62794-9638, USA.
| | | | | | | |
Collapse
|
41
|
Syka J. Plastic changes in the central auditory system after hearing loss, restoration of function, and during learning. Physiol Rev 2002; 82:601-36. [PMID: 12087130 DOI: 10.1152/physrev.00002.2002] [Citation(s) in RCA: 271] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Traditionally the auditory system was considered a hard-wired sensory system; this view has been challenged in recent years in light of the plasticity of other sensory systems, particularly the visual and somatosensory systems. Practical experience in clinical audiology together with the use of prosthetic devices, such as cochlear implants, contributed significantly to the present view on the plasticity of the central auditory system, which was originally based on data obtained in animal experiments. The loss of auditory receptors, the hair cells, results in profound changes in the structure and function of the central auditory system, typically demonstrated by a reorganization of the projection maps in the auditory cortex. These plastic changes occur not only as a consequence of mechanical lesions of the cochlea or biochemical lesions of the hair cells by ototoxic drugs, but also as a consequence of the loss of hair cells in connection with aging or noise exposure. In light of the aging world population and the increasing amount of noise in the modern world, understanding the plasticity of the central auditory system has its practical consequences and urgency. In most of these situations, a common denominator of central plastic changes is a deterioration of inhibition in the subcortical auditory nuclei and the auditory cortex. In addition to the processes that are elicited by decreased or lost receptor function, the function of nerve cells in the adult central auditory system may dynamically change in the process of learning. A better understanding of the plastic changes in the central auditory system after sensory deafferentation, sensory stimulation, and learning may contribute significantly to improvement in the rehabilitation of damaged or lost auditory function and consequently to improved speech processing and production.
Collapse
Affiliation(s)
- Josef Syka
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| |
Collapse
|
42
|
Abstract
The results of a quantitative light microscopic analysis of serial glycine immunoreacted sections through the medial nucleus of the trapezoid body (MNTB) of young and old gerbils are presented. Spongiform lesions were prominent in the MNTB of gerbils that were 3 years and older, but were virtually absent in animals below 1 year of age. In old animals the prevalence and density of spongiform lesions were most pronounced in the caudal MNTB and decreased towards the rostral MNTB. Total MNTB volume and rostro-caudal extent were independent of age and the cross-sectional area of MNTB varied in an identical fashion along the MNTB in young and old gerbils. Mean MNTB soma size (cross-sectional area) varied with the age of the animal. In young gerbils soma size increased between 1 and 6 months of age reaching a maximum near 160 microm(2). In old gerbils mean soma size was significantly reduced to 130 microm(2). At all three rostro-caudal positions analyzed along MNTB, soma size varied systematically being largest in the ventro-lateral and smallest in the dorso-medial part of MNTB. The reduction of soma size in old animals appeared uniform across MNTB.
Collapse
Affiliation(s)
- Otto Gleich
- ENT-Department, University of Regensburg, Postfach, Franz-Josef-Strauss-Allee 11, D-93042, Germany.
| | | |
Collapse
|
43
|
Nagase S, Miller JM, Dupont J, Lim HH, Sato K, Altschuler RA. Changes in cochlear electrical stimulation induced Fos expression in the rat inferior colliculus following deafness. Hear Res 2000; 147:242-50. [PMID: 10962188 DOI: 10.1016/s0378-5955(00)00134-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Fos immunoreactive (IR) staining was used to examine changes in excitatory neuronal activity in the rat inferior colliculus (IC) between normal hearing and 21 day deaf rats evoked by basal or apical monopolar cochlear electrical stimulation. The location of evoked Fos IR neurons was consistent with expected tonotopic areas. The number of Fos IR cells increased as stimulation intensity increased in both normal and 21 day deaf animals. Stimulation at 1. 5x threshold evoked fewer Fos IR cells in 21 day deafened animals compared to normal hearing animals. At 5x and above, however, significantly increased numbers of Fos IR neurons (in a larger grouping) were evoked in 21 day deafened animals compared to normal hearing animals. Another group of animals had 7 days of deafness followed by 14 days of chronic basal cochlear electrical stimulation. In this group basal monopolar stimulation at 5x evoked not only a greater number of Fos IR neurons, compared to normal hearing animals, but the location of their grouping was slightly shifted to a more dorso-lateral region in the contralateral IC, compared to the normal hearing and 21 day deaf groups. These observations indicate that both deafness and chronic electrical stimulation may alter central auditory processing.
Collapse
Affiliation(s)
- S Nagase
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, 1301 East Ann Street, Ann Arbor, MI 48109-0506, USA
| | | | | | | | | | | |
Collapse
|
44
|
Potashner SJ, Suneja SK, Benson CG. Altered glycinergic synaptic activities in guinea pig brain stem auditory nuclei after unilateral cochlear ablation. Hear Res 2000; 147:125-36. [PMID: 10962179 DOI: 10.1016/s0378-5955(00)00126-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This paper reviews efforts to determine if a unilateral hearing loss altered inhibitory glycinergic synapses in the cochlear nucleus (CN) and the superior olive. In young adult guinea pigs, 2-147 days after unilateral cochlear ablation, we quantified the electrically evoked release and the high-affinity uptake of [(14)C]glycine as measures of transmitter release from glycinergic presynaptic endings and glycine removal from extracellular spaces. The specific binding of [(3)H]strychnine was quantified to measure synaptic glycine receptor activity and/or expression. Three types of post-lesion change were observed. First, several tissues exhibited changes consistent with a persistent deficiency in glycinergic inhibitory transmission. Deficient binding prevailed on the ablated side in the anterior and caudal anteroventral CN, the posteroventral CN and the lateral superior olive (LSO), while glycine release was near normal and uptake was elevated (except in the LSO). However, deficient release prevailed in the dorsal CN, bilaterally, and was accompanied by elevated uptake. Second, the LSO on the intact side exhibited changes consistent with strengthened glycinergic inhibition, as binding was elevated while release and uptake were near normal. Third, several tissues exhibited various transient changes in activity. These types of post-lesion change might contribute to altered auditory functions, which often accompany hearing loss.
Collapse
Affiliation(s)
- S J Potashner
- Department of Anatomy, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | | | | |
Collapse
|
45
|
Nakagawa H, Sato K, Shiraishi Y, Kuriyama H, Altschuler RA. NMDAR1 isoforms in the rat superior olivary complex and changes after unilateral cochlear ablation. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 77:246-57. [PMID: 10837919 DOI: 10.1016/s0169-328x(00)00059-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Normal expression and deafness related changes in expression of NMDAR1 isoforms were examined in the rat superior olivary complex (SOC) using in situ hybridization with S35 labeled oligoprobes. Expression was assessed in three SOC nuclei, the lateral and medial superior olives (LSO, MSO) and the medial nucleus of the trapezoid body (MNTB). Silver grain labeling over principal cells of each region was assessed using METAMORPH image analysis system. Counts were made in ipsi- and contralateral sides after unilateral cochlear ablation and in treated and untreated animals. In the normal SOC, NMDAR1a expression was higher than 1b and 1-2 expression was followed by 1-4 and 1-1, with 1-3 below the level for detection. The levels and ratio were comparable in LSO, MSO and MNTB. Five days after cochlear ablation 1a, 1-1, 1-2 and 1-4 showed significant decreases in the ipsilateral LSO and 1-a and 1-2 showed significant decreases in the contralateral MNTB, with no significant changes in the MSO. At 20 days after deafening, no significant changes were seen for any isoform in any nucleus. The transient deafness-induced decreases in expression of NMDAR1 isoforms correlate with loss of excitation.
Collapse
Affiliation(s)
- H Nakagawa
- Kresge Hearing Research Institute, University of Michigan, 1301 East Ann St., Ann Arbor, MI 48109-0506, USA
| | | | | | | | | |
Collapse
|
46
|
Nakayama M, Caspary DM, Konrad HR, Milbrandt JC, Helfert RH. Age-related changes in [3H]strychnine binding in the vestibular nuclei of rats. Hear Res 1999; 127:103-7. [PMID: 9925021 DOI: 10.1016/s0378-5955(98)00177-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glycine plays an important role as a neurotransmitter in the four vestibular nuclei (VN). The objective of this study was to determine if the levels of glycine-receptor binding in the VN change as a function of age. Quantitative receptor autoradiography was performed on brainstem sections from three age groups (3, 18 and 26 months) of Fischer 344 rats to assess binding in the VN. Glycine receptors were localized using [3H]strychnine binding. Strychnine binding declined monotonically with increasing age, such that the level of strychnine binding in each of the VN in the 28-month-old animals was approximately one-half that in the 3-month-olds. The age-related decrease in levels of strychnine binding suggest altered glycinergic function in the VN, which may in turn contribute to disturbances in equilibrium observed in the elderly.
Collapse
Affiliation(s)
- M Nakayama
- Department of Surgery, Southern Illinois University School of Medicine, Springfield 62794-1312, USA
| | | | | | | | | |
Collapse
|
47
|
Suneja SK, Benson CG, Potashner SJ. Glycine receptors in adult guinea pig brain stem auditory nuclei: regulation after unilateral cochlear ablation. Exp Neurol 1998; 154:473-88. [PMID: 9878183 DOI: 10.1006/exnr.1998.6946] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In young adult guinea pigs, the effects of unilateral cochlear ablation were determined on the specific binding of [3H]strychnine measured in subdivisions of the cochlear nucleus (CN), the superior olivary complex, and the auditory midbrain, after 2, 7, 31, 60, and 147 postlesion days. Changes in binding relative to that in age-matched controls were interpreted as altered activity and/or expression of synaptic glycine receptors. Postlesion binding declined ipsilaterally in most of the ventral CN and in the lateral superior olive (LSO). Binding was modestly deficient in the ipsilateral dorsal CN and in the anterior part of the contralateral anteroventral CN. Binding was elevated in the contralateral LSO. Transient changes also occurred. Binding was elevated transiently, between 2 and 31 days, contralaterally in parts of the anteroventral CN, bilaterally in the medial superior olive (MSO), and bilaterally in most of the midbrain nuclei. Binding was deficient transiently, at 60 days, in most of the contralateral CN and bilaterally in the midbrain nuclei. The present findings, together with previously reported postlesion changes in glycine release, were consistent with persistently weakened glycinergic inhibitory transmission ipsilaterally in the ventral CN and the LSO and bilaterally in the dorsal CN. Glycinergic inhibitory transmission was strengthened in the contralateral LSO and transiently strengthened in the MSO bilaterally. A hypothetical model of the findings suggested that glycine receptor regulation may depend on excitatory and glycinergic input to auditory neurons. The present changes in glycine receptor activity may contribute to altered auditory functions, which often accompany hearing loss.
Collapse
Affiliation(s)
- S K Suneja
- Department of Anatomy, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, Connecticut, 06030, USA
| | | | | |
Collapse
|
48
|
Ison JR, Agrawal P, Pak J, Vaughn WJ. Changes in temporal acuity with age and with hearing impairment in the mouse: a study of the acoustic startle reflex and its inhibition by brief decrements in noise level. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 1998; 104:1696-1704. [PMID: 9745749 DOI: 10.1121/1.424382] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Temporal acuity for brief gaps in noise was studied in mice of different ages (1-36 months) from strains with differing susceptibility to age-related hearing loss, using reflex modification audiometry. Prepulse inhibition of the acoustic startle reflex (ASR) increased with gap depth (GD: 10-40 dB in 70 dB SPL noise) and lead time (LT: 1-15 ms). The increase in inhibition with LT followed an exponential function in which the two parameters, asymptotic inhibition (AINH) and the time constant (tau), were both affected by GD. AINH rapidly declined from 1 to 6 and then to 18 months of age in C57BL/6J mice with progressively severe hearing loss, but first increased with maturation and then gradually declined beyond 6-12 months of age in CBA/CaJ and CBA x C57BL Fl-hybrid mice, which show no apparent change in sensory function at these ages. In contrast, tau was unaffected by hearing loss or by age, this suggesting that age-related changes in this form of temporal acuity occur because of a reduction in the efficiency with which gaps are centrally processed, not from any reduced ability to follow their rapid shift in noise level.
Collapse
Affiliation(s)
- J R Ison
- Department of Brain and Cognitive Sciences, University of Rochester, New York 14627, USA
| | | | | | | |
Collapse
|
49
|
Krenning J, Hughes LF, Caspary DM, Helfert RH. Age-related glycine receptor subunit changes in the cochlear nucleus of Fischer-344 rats. Laryngoscope 1998; 108:26-31. [PMID: 9432062 DOI: 10.1097/00005537-199801000-00005] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Previous studies have shown that levels of binding for the strychnine-sensitive glycine receptor in the cochlear nucleus (CN) of Fischer (F344) rats decrease with age. Given the major role glycine plays in normal CN function, changes in glycine-receptor activity may contribute to central presbycusis. To further evaluate the impact of age on glycine receptors, in situ hybridization was used to assess, in three age groups of F344 rats, changes in levels of gene expression for four of its subunits. When compared with the 3-month-old rats, expression of mRNAs for alpha1 and beta subunits in the anteroventral CN decreased significantly in the 18- and 27-month-old age groups, while mRNA expression for the alpha2 subunit increased. If protein expressions are similar, these subunit changes may alter the function of glycine receptors, thereby affecting binding to its ligands.
Collapse
Affiliation(s)
- J Krenning
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, Illinois 62794-1312, USA
| | | | | | | |
Collapse
|
50
|
Willott JF, Milbrandt JC, Bross LS, Caspary DM. Glycine immunoreactivity and receptor binding in the cochlear nucleus of C57BL/6J and CBA/CaJ mice: Effects of cochlear impairment and aging. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19970901)385:3<405::aid-cne5>3.0.co;2-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|