1
|
Avoiding Pitfalls in Thermal Dose Effect Relationship Studies: A Review and Guide Forward. Cancers (Basel) 2022; 14:cancers14194795. [PMID: 36230717 PMCID: PMC9562191 DOI: 10.3390/cancers14194795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
The challenge to explain the diffuse and unconclusive message reported by hyperthermia studies investigating the thermal dose parameter is still to be unravelled. In the present review, we investigated a wide range of technical and clinical parameters characterising hyperthermia treatment to better understand and improve the probability of detecting a thermal dose effect relationship in clinical studies. We performed a systematic literature review to obtain hyperthermia clinical studies investigating the associations of temperature and thermal dose parameters with treatment outcome or acute toxicity. Different hyperthermia characteristics were retrieved, and their influence on temperature and thermal dose parameters was assessed. In the literature, we found forty-eight articles investigating thermal dose effect relationships. These comprised a total of 4107 patients with different tumour pathologies. The association between thermal dose and treatment outcome was the investigated endpoint in 90% of the articles, while the correlation between thermal dose and toxicity was investigated in 50% of the articles. Significant associations between temperature-related parameters and treatment outcome were reported in 63% of the studies, while those between temperature-related parameters and toxicity were reported in 15% of the studies. One clear difficulty for advancement is that studies often omitted fundamental information regarding the clinical treatment, and among the different characteristics investigated, thermometry details were seldom and divergently reported. To overcome this, we propose a clear definition of the terms and characteristics that should be reported in clinical hyperthermia treatments. A consistent report of data will allow their use to further continue the quest for thermal dose effect relationships.
Collapse
|
2
|
Chicheł A, Burchardt W, Chyrek AJ, Bielęda G. Thermal Boost Combined with Interstitial Brachytherapy in Early Breast Cancer Conserving Therapy—Initial Group Long-Term Clinical Results and Late Toxicity. J Pers Med 2022; 12:jpm12091382. [PMID: 36143167 PMCID: PMC9504368 DOI: 10.3390/jpm12091382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
(1) In breast-conserving therapy (BCT), adjuvant radiation, including tumor bed boost, is mandatory. Safely delivered thermal boost (TB) based on radio-sensitizing interstitial microwave hyperthermia (MWHT) preceding standard high-dose-rate (HDR) brachytherapy (BT) boost has the potential for local control (LC) improvement. The study is to report the long-term results regarding LC, disease-free survival (DFS), overall survival (OS), toxicity, and cosmetic outcome (CO) of HDR-BT boost ± MWHT for early breast cancer (BC) patients treated with BCT. (2) In the years 2006 and 2007, 57 diverse stages and risk (IA-IIIA) BC patients were treated with BCT ± adjuvant chemotherapy followed by 42.5–50.0 Gy whole breast irradiation (WBI) and 10 Gy HDR-BT boost. Overall, 25 patients (group A; 43.9%) had a BT boost, and 32 (group B; 56.1%) had an additional pre-BT single session of interstitial MWHT on a tumor bed. Long-term LC, DFS, OS, CO, and late toxicity were evaluated. (3) Median follow-up was 94.8 months (range 1.1–185.5). LC was 55/57, or 96.5% (1 LR in each group). DFS was 48/57, or 84.2% (4 failures in group A, 5 in B). OS was 46/57, or 80.7% (6 deaths in group A, 5 in B). CO was excellent in 60%, good in 36%, and satisfactory in 4% (A), and in 53.1%, 34.4%, and 9.4% (B), respectively. One poor outcome was noted (B). Late toxicity as tumor bed hardening occurred in 19/57, or 33.3% of patients (9 in A, 10 in B). In one patient, grade 2 telangiectasia occurred (group A). All differences were statistically insignificant. (4) HDR-BT boost ± TB was feasible, well-tolerated, and highly locally effective. LC, DFS, and OS were equally distributed between the groups. Pre-BT MWHT did not increase rare late toxicity.
Collapse
Affiliation(s)
- Adam Chicheł
- Department of Brachytherapy, Greater Poland Cancer Center, 61-866 Poznan, Poland
- Correspondence: ; Tel.: +48-618-850-818 or +48-600-687-369
| | - Wojciech Burchardt
- Department of Brachytherapy, Greater Poland Cancer Center, 61-866 Poznan, Poland
- Department of Electroradiology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
| | - Artur J. Chyrek
- Department of Brachytherapy, Greater Poland Cancer Center, 61-866 Poznan, Poland
| | - Grzegorz Bielęda
- Department of Electroradiology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Department of Medical Physics, Greater Poland Cancer Center, 61-866 Poznan, Poland
| |
Collapse
|
3
|
De-Colle C, Beller A, Gani C, Weidner N, Heinrich V, Lamprecht U, Gaupp S, Voigt O, Dohm O, Zips D, Müller AC. Radiotherapy and hyperthermia for breast cancer patients at high risk of recurrence. Int J Hyperthermia 2022; 39:1010-1016. [PMID: 35902116 DOI: 10.1080/02656736.2022.2103593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
PURPOSE To evaluate the long-term efficacy of combined radiotherapy (RT) and hyperthermia (HT) in a large mono-institutional cohort of breast cancer (BC) patients affected by recurrent, newly diagnosed non-resectable or high risk resected tumor. MATERIALS AND METHODS Records of BC patients treated with RT + HT between 1995 and 2018 were retrospectively analyzed. RT doses of 50-70 Gy concurrent to a twice per week superficial HT were applied. For HT, a temperature between 41 and 42 °C was applied for approximately 1 h. Primary endpoint was local control (LC), secondary endpoints comprised toxicity, overall survival (OS), and progression-free survival (PFS). RESULTS A total of 191 patients and 196 RT + HT treatments were analyzed. In 154 cases (78.6%) RT + HT was performed for patients with recurrent BC. Among these, 93 (47.4% of the entire cohort) had received RT prior to RT + HT. Median follow up was 12.7 years. LC at 2, 5, and 10 years was 76.4, 72.8, and 69.5%, respectively. OS at 2, 5, and 10 years was 73.5, 52.3, and 35.5%, respectively. PFS at 2, 5, and 10 years was 55.6, 41, and 33.6%, respectively. Predictive factors for LC were tumor stage, distant metastases, estrogen/progesterone receptor expression, resection status and number of HT fractions. At multivariate analysis tumor stage and receptor expression were significant. No acute or late toxicities higher than grade 3 were observed. CONCLUSION Combined RT + HT offers long-term high LC rates with acceptable toxicity for patients with recurrent, newly diagnosed non-resectable or resected BC at high risk of relapse.
Collapse
Affiliation(s)
- Chiara De-Colle
- Department of Radiation Oncology, University Hospital and Medical Faculty Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Anna Beller
- Department of Radiation Oncology, University Hospital and Medical Faculty Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Cihan Gani
- Department of Radiation Oncology, University Hospital and Medical Faculty Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Nicola Weidner
- Department of Radiation Oncology, University Hospital and Medical Faculty Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Vanessa Heinrich
- Department of Radiation Oncology, University Hospital and Medical Faculty Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Ulf Lamprecht
- Department of Radiation Oncology, University Hospital and Medical Faculty Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Stephan Gaupp
- Department of Radiation Oncology, University Hospital and Medical Faculty Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Otilia Voigt
- Department of Radiation Oncology, University Hospital and Medical Faculty Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Oliver Dohm
- Department of Radiation Oncology, University Hospital and Medical Faculty Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Daniel Zips
- Department of Radiation Oncology, University Hospital and Medical Faculty Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany.,German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) Partner Site Tübingen, Tübingen, Germany
| | - Arndt-Christian Müller
- Department of Radiation Oncology, University Hospital and Medical Faculty Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany.,Clinic of Radiation Oncology, Ludwisburg Hospital, Ludwisburg, Germany
| |
Collapse
|
4
|
Ariani R, Hwang L, Maliglig AM, Ragab O, Ye JC. Temporality and Patterns of Metastatic Recurrence in Node-Positive Breast Cancer Following Trimodality Therapy: Opportunity for Improved Oligometastases Detection and Salvage Local Therapy. Am J Clin Oncol 2022; 45:88-94. [PMID: 34991105 DOI: 10.1097/coc.0000000000000885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES There is evidence that detection and treatment of oligometastases (≤5 lesions) may improve survival in breast cancer patients. However, there are no current national guidelines for screening of early, asymptomatic metastases. This study examined the patterns and timing of recurrence with respect to survival in node-positive breast cancer (NPBC) patients at higher risk for developing metastases. METHODS A single-institution retrospective review of NPBC patients treated with trimodality therapy was performed to collect patient and disease characteristics, recurrence location, method of detection, and survival outcome. Univariate and multivariate analyses were done to identify factors associated with recurrence. RESULTS Ninety-four NPBC patients treated at a safety-net hospital between 2008 and 2019 were identified. Twenty-one developed recurrence and were divided into oligometastatic (OM) (n=10) or diffusely metastatic (DM) (n=11) subgroups. Median recurrence-free survival in OM and DM was 18 and 36 months, respectively. Median overall survival (OS) for OM was not reached. Median OS for DM was 57 months. Four patients with OM progressed to diffuse disease in a median period of 17 months; median survival thereafter was 57 months. All patients with recurrence had distant metastases on initial detection, with the most common site being bone (14). Recurrence was most frequently detected by computed tomography (CT) (13), with the majority of disease located within the thorax region. CONCLUSIONS All NPBC patients had distant metastasis at time of recurrence. Patients with OM had shorter interval to recurrence yet longer OS compared with DM. This study highlights improved surveillance imaging for timely detection of OM breast cancer that may yet be amenable to aggressive local salvage therapy to prevent progression to diffuse disease.
Collapse
Affiliation(s)
| | | | - Ana M Maliglig
- Radiology, Keck School of Medicine of University of Southern California, Los Angeles, CA
| | | | | |
Collapse
|
5
|
Bakker A, Tello Valverde CP, van Tienhoven G, Kolff MW, Kok HP, Slotman BJ, Konings IRHM, Oei AL, Oldenburg HSA, Rutgers EJT, Rasch CRN, van den Bongard HJGD, Crezee H. Post-operative re-irradiation with hyperthermia in locoregional breast cancer recurrence: Temperature matters. Radiother Oncol 2022; 167:149-157. [PMID: 34973278 DOI: 10.1016/j.radonc.2021.12.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE To investigate the impact of hyperthermia thermal dose (TD) on locoregional control (LRC), overall survival (OS) and toxicity in locoregional recurrent breast cancer patients treated with postoperative re-irradiation and hyperthermia. METHODS In this retrospective study, 112 women with resected locoregional recurrent breast cancer treated in 2010-2017 with postoperative re-irradiation 8frx4Gy (n = 34) or 23frx2Gy (n = 78), combined with 4-5 weekly hyperthermia sessions guided by invasive thermometry, were subdivided into 'low' (n = 56) and 'high' TD (n = 56) groups by the best session with highest median cumulative equivalent minutes at 43 °C (Best CEM43T50) < 7.2 min and ≥7.2 min, respectively. Actuarial LRC, OS and late toxicity incidence were analyzed. Backward multivariable Cox regression and inverse probability weighting (IPW) analysis were performed. RESULTS TD subgroups showed no significant differences in patient/treatment characteristics. Median follow-up was 43 months (range 1-107 months). High vs. low TD was associated with LRC (p = 0.0013), but not with OS (p = 0.29) or late toxicity (p = 0.58). Three-year LRC was 74.0% vs. 92.3% in the low and high TD group, respectively (p = 0.008). After three years, 25.0% and 0.9% of the patients had late toxicity grade 3 and 4, respectively. Multivariable analysis showed that distant metastasis (HR 17.6; 95%CI 5.2-60.2), lymph node involvement (HR 2.9; 95%CI 1.2-7.2), recurrence site (chest wall vs. breast; HR 4.6; 95%CI 1.8-11.6) and TD (low vs. high; HR 4.1; 95%CI 1.4-11.5) were associated with LRC. TD was associated with LRC in IPW analysis (p = 0.0018). CONCLUSIONS High thermal dose (best CEM43T50 ≥ 7.2 min) was associated with significantly higher LRC for patients with locoregional recurrent breast cancer treated with postoperative re-irradiation and hyperthermia, without augmenting toxicity.
Collapse
Affiliation(s)
- Akke Bakker
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - C Paola Tello Valverde
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - Geertjan van Tienhoven
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - M Willemijn Kolff
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - H Petra Kok
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - Ben J Slotman
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - Inge R H M Konings
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - Arlene L Oei
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - Hester S A Oldenburg
- Department of Surgical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Emiel J T Rutgers
- Department of Surgical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Coen R N Rasch
- Department of Radiation Oncology, LUMC, Leiden, the Netherlands.
| | - H J G Desirée van den Bongard
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - Hans Crezee
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Oldenborg S, van Os R, Oei B, Poortmans P. Impact of Technique and Schedule of Reirradiation Plus Hyperthermia on Outcome after Surgery for Patients with Recurrent Breast Cancer. Cancers (Basel) 2019; 11:cancers11060782. [PMID: 31195763 PMCID: PMC6627207 DOI: 10.3390/cancers11060782] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/26/2022] Open
Abstract
Purpose: Combining reirradiation (reRT) with hyperthermia (HT) has shown to be of high therapeutic value for patients with loco-regionally recurrent breast cancer. The purpose of this study was to compare the long-term therapeutic effect and toxicity of reRT + HT following surgery of loco-regionally recurrent breast cancer using two different reRT regimens. Methods: The reRT regimen of the 78 patients treated in Institute A consisted of 8 × 4 Gy twice a week using mostly abutted photon-electron fields. The 78 patients treated in Institute B received a reRT regimen of 12 × 3 Gy, four times a week with single or multiple electron fields. Superficial hyperthermia was applied once a week in Institute A and twice a week in Institute B. Both institutes started HT treatment within 1 hour after reRT and used the same 434-MHz systems to heat the tumor area to 41–43 °C. Results: The 5-year-infield local control (LC) rates were similar; however, the 5-year-survival rates were 13% lower in Institute A. Most remarkable was the difference in risk with respect to 5-year ≥ grade 3 toxicity, which was more than twice as high in Institute A. Conclusion: The combination of reirradiation and hyperthermia after macroscopically complete excision of loco-regional breast cancer recurrences provides durable local control in patients at risk for locoregional recurrent breast cancer. Treatment is well tolerated with the 12 × 3 Gy schedule with limited-sized electron fields.
Collapse
Affiliation(s)
- Sabine Oldenborg
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam (AMC), 1105 AZ Amsterdam, The Netherlands.
| | - Rob van Os
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam (AMC), 1105 AZ Amsterdam, The Netherlands.
| | - Bing Oei
- Department of Radiation Oncology, Institute Verbeeten (BVI), 5042 SB Tilburg, The Netherlands.
| | - Philip Poortmans
- Department of Radiation Oncology, Institute Verbeeten (BVI), 5042 SB Tilburg, The Netherlands.
- Department of Radiation Oncology, Institut Curie, Paris Sciences & Lettres-PSL University, 75248 Paris, France.
| |
Collapse
|
7
|
Bakker A, van der Zee J, van Tienhoven G, Kok HP, Rasch CRN, Crezee H. Temperature and thermal dose during radiotherapy and hyperthermia for recurrent breast cancer are related to clinical outcome and thermal toxicity: a systematic review. Int J Hyperthermia 2019; 36:1024-1039. [PMID: 31621437 DOI: 10.1080/02656736.2019.1665718] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/30/2019] [Accepted: 08/30/2019] [Indexed: 01/07/2023] Open
Abstract
Objective: Hyperthermia therapy (HT), heating tumors to 40-45 °C, is a known radiotherapy (RT) and chemotherapy sensitizer. The additional benefit of HT to RT for recurrent breast cancer has been proven in multiple randomized trials. However, published outcome after RT + HT varies widely. We performed a systematic review to investigate whether there is a relationship between achieved HT dose and clinical outcome and thermal toxicity for patients with recurrent breast cancer treated with RT + HT. Method: Four databases, EMBASE, PubMed, Cochrane library and clinicaltrials.gov, were searched with the terms breast, radiotherapy, hyperthermia therapy and their synonyms. Final search was performed on 3 April 2019. Twenty-two articles were included in the systematic review, reporting on 2330 patients with breast cancer treated with RT + HT. Results: Thirty-two HT parameters were tested for a relationship with clinical outcome. In studies reporting a relationship, the relationship was significant for complete response in 10/15 studies, in 10/13 studies for duration of local control, in 2/2 studies for overall survival and in 7/11 studies for thermal toxicity. Patients who received high thermal dose had on average 34% (range 27%-53%) more complete responses than patients who received low thermal dose. Patients who achieved higher HT parameters had increased odds/probability on improved clinical outcome and on thermal toxicity. Conclusion: Temperature and thermal dose during HT had significant influence on complete response, duration of local control, overall survival and thermal toxicity of patients with recurrent breast cancer treated with RT + HT. Higher temperature and thermal dose improved outcome, while higher maximum temperature increased incidence of thermal toxicity.
Collapse
Affiliation(s)
- Akke Bakker
- Department of Radiation Oncology, Amsterdam UMC , Amsterdam , The Netherlands
| | - Jacoba van der Zee
- Department of Radiation Oncology, Erasmus MC , Rotterdam , The Netherlands
| | | | - H Petra Kok
- Department of Radiation Oncology, Amsterdam UMC , Amsterdam , The Netherlands
| | - Coen R N Rasch
- Department of Radiation Oncology, Amsterdam UMC , Amsterdam , The Netherlands
- Department of Radiation Oncology, LUMC , Leiden , The Netherlands
| | - Hans Crezee
- Department of Radiation Oncology, Amsterdam UMC , Amsterdam , The Netherlands
| |
Collapse
|
8
|
Hyperthermia with Radiotherapy and with Systemic Therapies. Breast Cancer 2017. [DOI: 10.1007/978-3-319-48848-6_75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Hyperthermia and Radiation Therapy in Locoregional Recurrent Breast Cancers: A Systematic Review and Meta-analysis. Int J Radiat Oncol Biol Phys 2015; 94:1073-87. [PMID: 26899950 DOI: 10.1016/j.ijrobp.2015.12.361] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/09/2015] [Accepted: 12/15/2015] [Indexed: 02/07/2023]
Abstract
PURPOSE To conduct a systematic review and meta-analysis to evaluate the outcome of hyperthermia (HT) and radiation therapy (RT) in locally recurrent breast cancers (LRBCs). METHODS AND MATERIALS A total of 708 abstracts were screened from 8 databases according to the PRISMA guidelines. Single-arm and 2-arm studies, treating LRBCs with HT and RT but without surgery (for local recurrence) or concurrent chemotherapy were considered. The evaluated endpoint was complete response (CR). RESULTS Thirty-one full text articles, pertaining to 34 studies, were shortlisted for the meta-analysis. Eight were 2-arm (randomized, n=5; nonrandomized, n=3), whereas 26 were single-arm studies. In all, 627 patients were enrolled in 2-arm and 1483 in single-arm studies. Patients were treated with a median of 7 HT sessions, and an average temperature of 42.5°C was attained. Mean RT dose was 38.2 Gy (range, 26-60 Gy). Hyperthermia was most frequently applied after RT. In the 2-arm studies, a CR of 60.2% was achieved with RT + HT versus 38.1% with RT alone (odds ratio 2.64, 95% confidence interval [CI] 1.66-4.18, P<.0001). Risk ratio and risk difference were 1.57 (95% CI 1.25-1.96, P<.0001) and 0.22 (95% CI 0.11-0.33, P<.0001), respectively. In 26 single-arm studies, RT + HT attained a CR of 63.4% (event rate 0.62, 95% CI 0.57-0.66). Moreover, 779 patients had been previously irradiated (696 from single-arm and 83 from 2-arm studies). A CR of 66.6% (event rate 0.64, 95% CI 0.58-0.70) was achieved with HT and reirradiation (mean ± SD dose: 36.7 ± 7.7 Gy). Mean acute and late grade 3/4 toxicities with RT + HT were 14.4% and 5.2%, respectively. CONCLUSIONS Thermoradiation therapy enhances the likelihood of CR rates in LRBCs over RT alone by 22% with minimal acute and late morbidities. For even those previously irradiated, reirradiation with HT provides locoregional control in two-thirds of the patients. Thermoradiation therapy could therefore be considered as an effective and safe palliative treatment option for LRBCs.
Collapse
|
10
|
Maluta S, Kolff MW. Role of Hyperthermia in Breast Cancer Locoregional Recurrence: A Review. Breast Care (Basel) 2015; 10:408-12. [PMID: 26989361 DOI: 10.1159/000440792] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In patients with locoregional recurrences of breast cancer not suitable for resection, subsequent local control is difficult to maintain in previously irradiated areas when reirradiation alone or reirradiation with chemotherapy is used. Due to the limited number of treatment options there is a high risk of subsequent failure and uncontrollable local disease. In this group of patients, local hyperthermia combined with radiotherapy increases the clinical response and local control, adding limited acute and late toxicity, as has been shown in randomized trials. Hyperthermia is an artificial elevation of tissue temperature (range 40-44°C for 30-60 min). If hyperthermia is applied shortly before or after radiation, the effect of radiation is enhanced by influencing intratumoral hypoxia and by inhibiting sublethal damage repair in the tumor. Moreover, hyperthermia combined with radiation reduces the total dose of radiation needed compared to radiation alone, of which a higher dose is needed to obtain the same effect. Few data are available on the combination of radiotherapy and hyperthermia with chemotherapy, although the results of trimodality treatment consisting of reirradiation and hyperthermia together with liposomal doxorubicin are promising. Therefore, this literature review was performed to provide more comprehensive data on the mechanism and use of hyperthermia in locoregional recurrence of breast cancer.
Collapse
Affiliation(s)
- Sergio Maluta
- Department of Hyperthermia, Serena Medical Center, Padova, Italy
| | - Merel Willemijn Kolff
- Department of Radiotherapy and Hyperthermia, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Re-irradiation and hyperthermia after surgery for recurrent breast cancer. Radiother Oncol 2013; 109:188-93. [DOI: 10.1016/j.radonc.2013.05.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 04/28/2013] [Accepted: 05/09/2013] [Indexed: 11/21/2022]
|
12
|
Varma S, Myerson R, Moros E, Taylor M, Straube W, Zoberi I. Simultaneous radiotherapy and superficial hyperthermia for high-risk breast carcinoma: a randomised comparison of treatment sequelae in heated versus non-heated sectors of the chest wall hyperthermia. Int J Hyperthermia 2012; 28:583-90. [PMID: 22946861 DOI: 10.3109/02656736.2012.705216] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE In vitro data demonstrate that heat-induced radiosensitisation is maximised if hyperthermia and radiotherapy are given simultaneously, with the radiation fraction delivered midway through a hyperthermia session, rather than sequentially. The long-term normal tissue toxicity of full-dose simultaneous thermoradiotherapy is unknown. MATERIALS AND METHODS Patients with locally advanced breast cancer (T3, T4 or more than three involved nodes or local recurrence), no prior radiotherapy, received between four and eight sessions of simultaneous thermoradiotherapy. Hyperthermia always included the primary tumour site. In addition an electively heated sector (EHS) was included. The EHS was randomised to either medial or lateral to the tumour site, with the other side an irradiated but unheated control. As per our usual practice, patients received surgery and/or chemotherapy prior to radiotherapy. Radiation doses were 46-50 Gy followed by a boost of ≤16 Gy at 1.8-2 Gy per fraction. EHS and control sectors received the same dose. RESULTS A total of 57 evaluable cases with average follow-up of 79 months experienced two local and two nodal recurrences. There was no significant difference in ≥grade 2 toxicity for heated versus control sectors (LR χ(2 )= 0.78, p = 0.38) with no relationship between number of hyperthermia sessions and toxicity (LR χ(2 )= 2.90, p = 0.09). CONCLUSIONS Simultaneous full-dose thermoradiotherapy for breast cancer is feasible and well tolerated, with no significant difference in late toxicity between electively heated and unheated control sectors. All patients had hyperthermia to the primary tumour site with excellent local control.
Collapse
Affiliation(s)
- Sumeeta Varma
- Department of Radiation Oncology, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri, USA
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Some of the patients who present with breast cancer already have distant metastatic disease. According to recent literature, these patients may benefit from resection of the breast tumour. One explanation for the effect of this resection is that reducing the tumour load influences metastatic growth. Results of future randomised controlled trials should indicate whether surgery of the breast tumour truly improves survival. Selected patients could even benefit from metastasectomy of liver and lung metastases; survival seems to improve and these procedures seldom lead to major complications. When metastasectomy is not possible, minimally invasive techniques can be used in selected patients for the treatment of breast cancer liver metastases, radiofrequency ablation (RFA) being discussed most in the literature. Patients with locally advanced breast cancer are treated multidisciplinarily and with curative intent. Part of the treatment is surgery to reduce tumour load. Regarding treatment of the axilla, in a clinically negative axilla sentinel node biopsy is advised before neoadjuvant treatment; an axillary lymph node dissection is not warranted. In local recurrence, surgery is the primary treatment. Axillary staging can be done in patients with a previous negative sentinel node biopsy. Regional recurrence after breast-conserving surgery or mastectomy is treated with surgery followed by radiotherapy.
Collapse
|
14
|
Abstract
Many nanotechnologies, which enable unique approaches to treat cancer, have been developed based upon non-toxic organic and inorganic materials to improve current cancer treatments. The use of inorganic materials to form magnetic nanoparticles for hyperthermia therapy is of great interest for localized treatment of cancers without effecting adjacent healthy tissue. Extensive clinical trials have begun using magnetic hyperthermia in animal models. The purpose of this article is to address different factors that affect targeting, heating and biodistribution to safely control the therapeutic efficacy of targeted magnetic hyperthermia. This method involves accumulation of magnetic nanoparticles at a tumor site and then manipulating the magnetic properties of the nanoparticles to heat the targeted tissues.
Collapse
|
15
|
Moros EG, Peñagaricano J, Novàk P, Straube WL, Myerson RJ. Present and future technology for simultaneous superficial thermoradiotherapy of breast cancer. Int J Hyperthermia 2010; 26:699-709. [PMID: 20849263 DOI: 10.3109/02656736.2010.493915] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This paper reviews systems and techniques to deliver simultaneous thermoradiotherapy of breast cancer. It first covers the clinical implementation of simultaneous delivery of superficial (microwave or ultrasound) hyperthermia and external photon beam radiotherapy, first using a Cobalt-60 teletherapy unit and later medical linear accelerators. The parallel development and related studies of the Scanning Ultrasound Reflector Linear Arrays System (SURLAS), an advanced system specifically designed and developed for simultaneous thermoradiotherapy, follows. The performance characteristics of the SURLAS are reviewed and power limitation problems at high acoustic frequencies (>3 MHz) are discussed along with potential solutions. Next, the feasibility of simultaneous SURLAS hyperthermia and intensity modulated radiation therapy/image-guided radiotherapy (IMRT/IGRT) is established based on published and newly presented studies. Finally, based on the encouraging clinical results thus far, it is concluded that new trials employing the latest technologies are warranted along with further developments in treatment planning.
Collapse
Affiliation(s)
- Eduardo G Moros
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | | | | | | | |
Collapse
|
16
|
Oldenborg S, Van Os RM, Van rij CM, Crezee J, Van de Kamer JB, Rutgers EJT, Geijsen ED, Zum vörde sive vörding PJ, Koning CCE, Van tienhoven G. Elective re-irradiation and hyperthermia following resection of persistent locoregional recurrent breast cancer: A retrospective study. Int J Hyperthermia 2010; 26:136-44. [PMID: 20146568 DOI: 10.3109/02656730903341340] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE To analyse the therapeutic effect and toxicity of re-irradiation (re-RT) combined with hyperthermia (HT) following resection or clinically complete remission (CR) of persistent locoregional recurrent breast cancer in previously irradiated area. METHODS AND MATERIALS Between 1988 and 2001, 78 patients with high risk recurrent breast cancer underwent elective re-RT and HT. All patients received extensive previous treatments, including surgery and high-dose irradiation (> or =50Gy). Most had received one or more lines of systemic therapy; 44% had been treated for > or = one previous locoregional recurrences. At start of re-RT + HT there was no macroscopically detectable tumour following surgery (96%) or chemotherapy (CT). Re-RT typically consisted of eight fractions of 4Gy, given twice weekly. Hyperthermia was added once a week. RESULTS After a median follow up of 64.2 months, three-year survival was 66%. Three- and five-year local control rates were 78% and 65%. Acute grade 3 toxicity occurred in 32% of patients. The risk of late > or = grade 3 toxicity was 40% after three years. Time interval to the current recurrence was found to be most predictive for local control in univariate and multivariate analysis. The extensiveness of current surgery was the most relevant treatment related factor associated with toxicity. CONCLUSIONS For patients experiencing local recurrence in a previously radiated area, re-irradiation plus hyperthermia following minimisation of tumour burden leads to a high rate of local control, albeit with significant toxicity. The latter might be reduced by a more fractionated re-RT schedule.
Collapse
Affiliation(s)
- Sabine Oldenborg
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Arunachalam K, Craciunescu OI, Maccarini PF, Schlorff JL, Markowitz E, Stauffer PR. Progress on ThermoBrachytherapy Surface Applicator for Superficial Tissue Diseases. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2009; 7181. [PMID: 24392196 DOI: 10.1117/12.809493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
This work reports the ongoing development of a combination applicator for simultaneous heating of superficial tissue disease using a 915 MHz DCC (dual concentric conductor) array and High Dose Rate (HDR) brachytherapy delivered via an integrated conformal catheter array. The progress includes engineering design changes in the waterbolus, DCC configurations and fabrication techniques of the conformal multilayer applicator. The dosimetric impact of the thin copper DCC array is also assessed. Steady state fluid dynamics of the new waterbolus bag indicates nearly uniform flow with less than 1°C variation across a large (19×32cm) bolus. Thermometry data of the torso phantom acquired with computer controlled movement of fiberoptic temperature probes inside thermal mapping catheters indicate feasibility of real time feedback control for the DCC array. MR (magnetic resonance) scans of a torso phantom indicate that the waterbolus thickness across the treatment area is controlled by the pressure applied by the surrounding inflatable airbladder and applicator securing straps. The attenuation coefficient of the DCC array was measured as 3± 0.001% and 2.95±0.03 % using an ion chamber and OneDose™ dosimeters respectively. The performance of the combination applicator on patient phantoms provides valuable feedback to optimize the applicator prior use in the patient clinic.
Collapse
Affiliation(s)
- Kavitha Arunachalam
- Department of Radiation Oncology, Duke University Medical Center, Durham NC 27710 USA
| | - Oana I Craciunescu
- Department of Radiation Oncology, Duke University Medical Center, Durham NC 27710 USA
| | - Paolo F Maccarini
- Department of Radiation Oncology, Duke University Medical Center, Durham NC 27710 USA
| | | | | | - Paul R Stauffer
- Department of Radiation Oncology, Duke University Medical Center, Durham NC 27710 USA
| |
Collapse
|
18
|
Maccarini PF, Arunachalam K, Martins CD, Stauffer PR. Size reduction and radiation pattern shaping of multi-fed DCC slot antennas used in conformal microwave array hyperthermia applicators. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2009; 7181. [PMID: 24224073 DOI: 10.1117/12.809952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The use of conformal antenna array in the treatment of superficial diseases can significantly increase patient comfort while enhancing the local control of large treatment area with irregular shapes. Originally a regular square multi-fed slot antenna (Dual Concentric Conductor - DCC) was proposed as basic unit cell of the array. The square DCC works well when the outline of the treatment area is rectangular such as in the main chest or back area but is not suitable to outline diseases spreading along the armpit and neck area. In addition as the area of the patch increases, the overall power density decreases affecting the efficiency and thus the ability to deliver the necessary thermal dose with medium power amplifier (<50W). A large number of small efficient antennas is preferable as the disease is more accurately contoured and the lower power requirement for the amplifiers correlates with system reliability, durability, linearity and overall reduced cost. For such reason we developed a set of design rules for multi-fed slot antennas with irregular contours and we implemented a design that reduce the area while increasing the perimeter of the slot, thus increasing the antenna efficiency and the power density. The simulation performed with several commercial packages (Ansoft HFSS, Imst Empire, SemcadX and CST Microwave Studio) show that the size reducing method can be applied to several shapes and for different frequencies. The SAR measurements of several DCCs are performed using an in-house high resolution scanning system with tumor equivalent liquid phantom both at 915 MHz for superficial hyperthermia systems in US) and 433 MHz (Europe). The experimental results are compared with the expected theoretical predictions and both simulated and measured patterns of single antennas of various size and shapes are then summed in various combinations using Matlab to show possible treatment irregular contours of complex diseases. The local control is expected to significantly improve while maintaining the patient comfort.
Collapse
Affiliation(s)
- Paolo F Maccarini
- Department of Radiation Oncology, Duke University Medical Center, Durham NC 27710 USA
| | | | | | | |
Collapse
|
19
|
Würschmidt F, Dahle J, Petersen C, Wenzel C, Kretschmer M, Bastian C. Reirradiation of recurrent breast cancer with and without concurrent chemotherapy. Radiat Oncol 2008; 3:28. [PMID: 18801165 PMCID: PMC2556652 DOI: 10.1186/1748-717x-3-28] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Accepted: 09/18/2008] [Indexed: 12/31/2022] Open
Abstract
Background Treatment options for loco-regional recurrent breast cancer after previous irradiation are limited. The efficacy of chemotherapy might be hampered because of impaired tissue perfusion in preirradiated tissue. Thus, mastectomy or local excision and reconstructive surgery are the preferred treatments. However, in recent years evidence accumulates that a second breast conserving approach with reirradiation as part of the treatment might be feasible and safe and, furthermore, reirradiation might be an option for palliation. Here we report on the experience of a single community centre in reirradiation of recurrent breast cancer. Methods The report is based on 29 patients treated with reirradiation. All data were prospectively collected. The median age was 63 years (range 35 to 82 yrs). The interval between initial diagnosis and diagnosis before start of reirradiation was 11.6 months to 295.5 months. The mean total dose (initial dose and reirradiation dose) was 106.2 Gy (range 80.4 to 126 Gy) and the mean BED3 Gy 168,5 Gy (range 130,6 to 201,6). The mean interval between initial radiotherapy and reirradiation was 92.9 months (range 8.7 to 290.1). Inoperable or incompletely resected patients were offered concurrent chemotherapy with either 5-FU or capecitabine. All patients received 3D-conformal radiotherapy with 1.6 to 2.5 Gy/fraction five times weekly. The treatment volume comprised all visible lesions or lesions detectable on CT/MRI/FDG-PET/CT or the tumour bed or recurrent tumour. Results The local progression-free survival of all patients at one and two years was 81% and 63%. Patients who had no surgery of the recurrence (16/29) had local progression-free survival at one and two years of 72% and 25% with a median progression-free survival time of 17 months. Partial remission and good symptom relief was achieved in 56% (9/16) or complete response of symptoms and/or tumour in 44% (7/16). Patients who had no distant metastases and had at least an R1-resection had a local progression-free survival of 90% after 2 years. The disease-free survival after 2 years was 43% and the median disease-free survival time was 24 months. In four patients a second breast conserving operation was performed and the cosmetic results in all four patients are good to excellent. Acute side effects were mild to moderate with no grade 3 or 4 toxicity. Accordingly, no grade 3 or 4 late effects were observed so far. No grade 3 or 4 plexopathy was observed. Conclusion In this heterogeneous group of patients reirradiation of locoregional recurrences of breast cancer showed low to moderate acute toxicity. In our experience, local control rates are high and palliation is good.
Collapse
|
20
|
The use of hyperthermia to overcome tumour hypoxia in the treatment of advanced breast cancer. JOURNAL OF RADIOTHERAPY IN PRACTICE 2008. [DOI: 10.1017/s1460396907006255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractPurpose:The purpose of this review was to explore the literature on the use of hyperthermia (HT) in advanced breast cancer.Methods:A literature search was conducted to obtain information from recent trials of HT and/or chemotherapy (CH) and radiotherapy (RT) for patients with locally recurrent breast carcinoma. Issues concerned with patient compliance and side effects have also been reviewed and future recommendations for research made.Results:Results of recent trials have demonstrated promising outcomes for HT and RT in combination, particularly for recurrent disease to improve local control (LC). There is no evidence, however, to support a positive effect on overall survival.Conclusions:Despite positive results HT has not been widely embraced, due to financial and logistical limitations. Future recommendations include larger, randomised, controlled studies and the development of temperature mapping to avoid potentially limiting HT blisters.
Collapse
|
21
|
Taschereau R, Stauffer PR, Hsu IC, Schlorff JL, Milligan AJ, Pouliot J. Radiation dosimetry of a conformal heat-brachytherapy applicator. Technol Cancer Res Treat 2004; 3:347-58. [PMID: 15270585 DOI: 10.1177/153303460400300404] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The purpose of this paper is to report the radiation dosimetric characteristics of a new combination applicator for delivering heat and radiation simultaneously to large area superficial disease <1.5 cm deep. The applicator combines an array of brachytherapy catheters (for radiation delivery) with a conformal printed circuit board microwave antenna array (for heat generation), and a body-conforming 5-10 mm thick temperature-controlled water bolus. The rationale for applying both modalities simultaneously includes the potential for significantly higher response rate due to enhanced synergism of modalities, and lower peak toxicity due to temporal extension of heat and radiation induced toxicities. Treatment plans and radiation dosimetry are calculated with IPSA (an optimization tool developed at UCSF) for 15 x 15 cm(2) and 35 x 24 cm(2) applicators, lesion thicknesses of 5 to 15 mm, flat and curved surfaces, and catheter separation of 5 and 10 mm. The effect on skin dose of bolus thickness and presence of thin copper antenna structures between radiation source and tissue are also evaluated. Results demonstrate the ability of the applicator to provide conformal radiation dose coverage for up to 15 mm deep target volumes under the applicator. For clinically acceptable plans, tumor coverage is > 98%, homogeneity index > 0.95 and the percentage of normal tissue irradiated is < 20%. The dose gradient at the skin surface varies from 3 to 5 cGy/mm depending on bolus thickness and lesion depth. Attenuation of the photon beam by the printed circuit antenna array is of the order 0.25% and secondary electron emissions are absorbed completely within 5 mm of water bolus and plastic layers. Both phenomena can then be neglected in dose calculations allowing commercial software to be used for treatment planning. This novel applicator should prove useful for the treatment of diffuse chestwall disease located over contoured anatomy that may be difficult to treat with single field external beam therapy. By delivering heat and radiation simultaneously, increased synergism is expected with a TER in the range of 2-5. Lowering radiation dose by an equivalent factor may produce lower radiation toxicity with similar efficacy, while preserving the option of subsequent retreatment(s) with thermoradiotherapy in order to further extend patient survival.
Collapse
Affiliation(s)
- Richard Taschereau
- Department of Radiation Oncology, University of California, San Francisco, 1600 Divisadero Street, San Franciso, CA 94143-1708, USA
| | | | | | | | | | | |
Collapse
|
22
|
Moros EG, Novak P, Straube WL, Kolluri P, Yablonskiy DA, Myerson RJ. Thermal contribution of compact bone to intervening tissue-like media exposed to planar ultrasound. Phys Med Biol 2004; 49:869-86. [PMID: 15104313 DOI: 10.1088/0031-9155/49/6/001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The presence of bone in the ultrasound beam path raises concerns, both in diagnostic and therapeutic applications, because significant temperature elevations may be induced at nearby soft tissue-bone interfaces due the facts that ultrasound is (i) highly absorbed in bone and (ii) reflected at soft tissue-bone interfaces in various degrees depending on angle of incidence. Consequently, in ultrasonic thermal therapy, the presence of bone in the ultrasound beam path is considered a major disadvantage and it is usually avoided. However, based on clinical experience and previous theoretical studies, we hypothesized that the presence of bone in superficial unfocused ultrasound hyperthermia can actually be exploited to induce more uniform and enhanced (with respect to the no-bone situation) temperature distributions in superficial target volumes. In particular, we hypothesize that the presence of underlying bone in superficial target volume enhances temperature elevation not only by additional direct power deposition from acoustic reflection, but also from thermal diffusion from the underlying bone. Here we report laboratory results that corroborate previous computational studies and strengthen the above-stated hypothesis. Three different temperature measurement techniques, namely, thermometric (using fibre-optic temperature probes), thermographic (using an infrared camera) and magnetic resonance imaging (using proton resonance frequency shifts), were used in high-power short-exposure, and in low-power extended-exposure, experiments using a 19 mm diameter planar transducer operating at 1.0 and 3.3 MHz (frequencies of clinical relevance). The measurements were performed on three technique-specific phantoms (with and without bone inclusions) and experimental set-ups that resembled possible superficial ultrasound hyperthermia clinical situations. Results from all three techniques were in general agreement and clearly showed that significantly higher heating rates (greater than fourfold) were induced in soft tissue-like phantom materials adjacent (within approximately 5 mm) to a bovine bone as compared to similar experiments without bone inclusions. For low-power long-exposure experiments, where thermal conduction effects are significant, the thermal impact of bone reached at distances > 10 mm from the bone surface (upstream of the bone). Therefore, we hypothesize that underlying bone exposed to planar ultrasound hyperthermia creates a high-temperature thermal boundary at depth that compensates for beam attenuation, thus producing more uniform temperature distribution in the intervening tissue layers. With appropriate technology, this finding may lead to improved thermal doses in superficial treatment sites such as the chest wall and the head/neck.
Collapse
Affiliation(s)
- Eduardo G Moros
- Department of Radiation Oncology, Washington University, St Louis, MO 63108, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Jacobsen S, Stauffer PR, Neuman DG. Dual-mode antenna design for microwave heating and noninvasive thermometry of superficial tissue disease. IEEE Trans Biomed Eng 2000; 47:1500-9. [PMID: 11077744 DOI: 10.1109/10.880102] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hyperthermia therapy of superficial skin disease has proven clinically useful, but current heating equipment is somewhat clumsy and technically inadequate for many patients. The present effort describes a dual-purpose, conformal microwave applicator that is fabricated from thin, flexible, multilayer printed circuit board (PCB) material to facilitate heating of surface areas overlaying contoured anatomy. Preliminary studies document the feasibility of combining Archimedean spiral microstrip antennas, located concentrically within the central region of square dual concentric conductor (DCC) annular slot antennas. The motivation is to achieve homogeneous tissue heating simultaneously with noninvasive thermometry by radiometric sensing of blackbody radiation from the target tissue under the applicator. Results demonstrate that the two antennas have complimentary regions of influence. The DCC ring antenna structure produces a peripherally enhanced power deposition pattern with peaks in the outer corners of the aperture and a broad minimum around 50% of maximum centrally. In contrast, the Archimedean spiral radiates (or receives) energy predominantly along the boresight axis of the spiral, thus confining the region of influence to tissue located within the central broad minimum of the DCC pattern. Analysis of the temperature-dependent radiometer signal (brightness temperature) showed linear correlation of radiometer output with test load temperature using either the spiral or DCC structure as the receive antenna. The radiometric performance of the broadband Archimedean antenna was superior compared to the DCC, providing improved temperature resolution (0.1 degree C-0.2 degree C) and signal sensitivity (0.3 degree C-0.8 degree C/degree C) at all four 500 MHz integration bandwidths tested within the frequency range from 1.2 to 3.0 GHz.
Collapse
Affiliation(s)
- S Jacobsen
- Faculty of Science, Institute of Physics, University of Tromsø, Norway
| | | | | |
Collapse
|
24
|
Rossetto F, Diederich CJ, Stauffer PR. Thermal and SAR characterization of multielement dual concentric conductor microwave applicators for hyperthermia, a theoretical investigation. Med Phys 2000; 27:745-53. [PMID: 10798697 DOI: 10.1118/1.598937] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Six aperture array dual concentric conductor (DCO) microwave hyperthermia applicators were studied using theoretical models to characterize power deposition (SAR) and steady state temperature distributions in perfused tissue. SAR patterns were calculated using the finite difference time domain (FDTD) numerical method, and were used as input to a finite difference thermal modeling program based on the Pennes Bio-Heat Equation in order to calculate corresponding temperature distributions. Numerous array configurations were investigated including the use of different size DCC apertures (2, 3, and 4 cm), different spacing between apertures (1.0-2.0 cm), and different water bolus thicknesses (5-15 mm). Thermal simulations were repeated using blood perfusion values ranging from 0.5 to 5 kg/m3 s. Results demonstrate the ability of DCC array applicators to effectively and uniformly heat tissue down to a depth of 7.5-10 mm below the skin surface for a large number of different combinations of DCC element size, spacing, and water bolus thickness. Results also reveal the close correlation between SAR patterns and corresponding temperature distributions, verifying that design studies of the applicator can be performed confidently by analysis of SAR, from which the thermal behavior can be estimated. These simulations are useful in the design optimization of large microwave DCC array applicators for superficial tissue heating and for identifying appropriate aperture spacing and bolus thickness parameters for different size DCC aperture arrays and tissue blood perfusion conditions.
Collapse
Affiliation(s)
- F Rossetto
- Radiation Oncology Department, University of California at San Francisco, 94143-0226, USA
| | | | | |
Collapse
|
25
|
Moros EG, Fan X, Straube WL. Ultrasound power deposition model for the chest wall. ULTRASOUND IN MEDICINE & BIOLOGY 1999; 25:1275-1287. [PMID: 10576270 DOI: 10.1016/s0301-5629(99)00087-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
An ultrasound power deposition model for the chest wall was developed based on secondary-source and plane-wave theories. The anatomic model consisted of a muscle-ribs-lung volume, accounted for wave reflection and refraction at muscle-rib and muscle-lung interfaces, and computed power deposition due to the propagation of both reflected and transmitted waves. Lung tissue was assumed to be air-equivalent. The parts of the theory and numerical program dealing with reflection were experimentally evaluated by comparing simulations with acoustic field measurements using several pertinent reflecting materials. Satisfactory agreement was found. A series of simulations were performed to study the influence of angle of incidence of the beam, frequency, and thickness of muscle tissue overlying the ribs on power deposition distributions that may be expected during superficial ultrasound (US) hyperthermia of chest wall recurrences. Both reflection at major interfaces and attenuation in bone were the determining factors affecting power deposition, the dominance of one vs. the other depending on the angle of incidence of the beam. Sufficient energy is reflected by these interfaces to suggest that improvements in thermal doses to overlying tissues are possible with adequate manipulation of the sound field (advances in ultrasonic heating devices) and prospective treatment planning.
Collapse
Affiliation(s)
- E G Moros
- Radiation Oncology Center, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63108, USA.
| | | | | |
Collapse
|
26
|
Engin K. Biological rationale and clinical experience with hyperthermia. CONTROLLED CLINICAL TRIALS 1996; 17:316-42. [PMID: 8889346 DOI: 10.1016/0197-2456(95)00078-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hyperthermia (HT) as an adjunct to radiation therapy (RT) has been a focus of interest in cancer management in recent years there have been numerous randomized and nonrandomized studies conducted to assess the efficacy of HT combined with either RT or chemotherapy especially in the treatment of superficially seated malignant tumors. The major impact of HT is currently on locoregional control of tumor. Heat may be directly cytotoxic to tumor cells or inhibit repair of both sublethal and potentially lethal damage after radiation. These effects are augmented by the physiological conditions in tumor that lead to states of acidosis and hypoxia. Blood flow is often impaired in tumor relative to normal tissues, and HT may lead to a further decrease in blood flow and augment heat sensitivity. Three major areas of clinical investigation have borne the greatest fruit for HT as adjunctive therapy to RT. These include recurrent and primary breast lesions, melanoma, and head and neck neoplasms. Thermal enhancement ratio was increased in all cases and is approximately 1.4 for neck nodes, 1.5 for breast, and 2 for malignant melanoma. In general, the most important prognostic factors for complete response (CR) are RT dose, tumor size and minimal thermal parameters minimal thermal dose (t43min), mean minimal temperature (Tmin) or T90, i.e., temperature exceeded by 90% of thermal sensors]. The number of HT fractions administered per week appears to have no bearing on the overall response, which may be indicative of the effects of thermotolerance. The total number of HT fractions delivered also appears irrelevant provided adequate HT is delivered in one or two sessions. The major prognostic factors for the duration of local control were tumor histology, concurrent RT dose, tumor depth and Tmin. Although numerous single institution studies showed increased CR rates and improved local control, the efficacy of HT as an adjunct to RT should be assessed with well-designed multi-institutional randomized clinical trials. Such clinical trials are underway.
Collapse
Affiliation(s)
- K Engin
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107-5097, USA
| |
Collapse
|
27
|
Dubois JB. Hyperthermie: principes, techniques. Place actuelle dans le traitement des cancers. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/0924-4212(96)80047-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
28
|
|
29
|
Kapp DS, Brown AN, Cox W, Cox RS. Temperature differentials between treatment and pretreatment temperatures correlate with local control following radiotherapy and hyperthermia. Int J Radiat Oncol Biol Phys 1993; 27:331-44. [PMID: 8407408 DOI: 10.1016/0360-3016(93)90245-q] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE To evaluate the influence of pretreatment tumor temperatures and the temperature differential between treatment and pretreatment temperatures on local tumor control in patients who underwent combined radiation therapy and hyperthermia. METHODS AND MATERIALS Mapped intratumoral temperatures were measured immediately prior to and during hyperthermia in 138 hyperthermia fields among 59 patients with nodular (60 fields) or diffuse (78 fields) superficially-located tumors. In the nodular subgroup there were 40 fields with adenocarcinomas (31 breast, two prostate, seven other primary sites), six melanomas, nine squamous cell carcinomas, and five other histologies. The fields with diffuse tumor involvement consisted of 77 adenocarcinomas (67 breast, 10 other) and one melanoma. The maximum, minimum, and average temperatures were determined for both the pretreatment (pTmax, pTmin, pTave) and treatment (Tmax, Tmin, Tave) distributions and the differences, Dm = Tmin-pTmax, and Da = Tmin-pTave, computed. These quantities were averaged over treatments to produce the corresponding mean quantities for each hyperthermia field. Univariate and multivariate analyses were performed to determine treatment and pretreatment parameters which best correlated with the duration of local control. RESULTS Pretreatment tumor temperatures were significantly lower than the oral temperatures with mean pTmax, mean pTmin, and mean pTave of 36.2 degrees C, 34.2 degrees C, and 35.4 degrees C, respectively. For the adenocarcinomas with diffuse involvement within the hyperthermia field, the covariates best correlating with local control duration on univariate analysis were concurrent radiation dose (p = 0.0026), Dm (p = 0.009), pTmax (p = 0.012) and Da (p = 0.036). Lower pTmax and larger Dm and Da were predictive for longer local control. In multivariate analyses, all thermal parameters lost power, however, the best model included Dm which was significant at the p = 0.040 level. For the nodular subgroup, nonthermal parameters and dichotomized thermal parameters were of prognostic significance for local control. CONCLUSION For fields diffusely involved with adenocarcinoma significant correlations with duration of local control have been demonstrated both for a) low pretreatment temperatures and b) large differentials between treatment and pretreatment intratumoral temperatures. These correlations were also found in a dichotomized description for fields with nodular tumors. The results support the concept that pretreatment hypothermic conditions can lead to an increase in thermal sensitization and may help explain the excellent clinical results noted in the treatment of superficial tumors with radiation and hyperthermia. Further exploitation of this approach by planned cooling of superficially-located recurrent tumors prior to hyperthermia treatment warrants investigation.
Collapse
Affiliation(s)
- D S Kapp
- Department of Radiation Oncology, Stanford University School of Medicine, CA 94305
| | | | | | | |
Collapse
|
30
|
|
31
|
Kapp DS. Response to Dr. Oleson. Int J Radiat Oncol Biol Phys 1992; 24:573. [PMID: 1399748 DOI: 10.1016/0360-3016(92)91078-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|