1
|
Jiang B, An Z, Niu L, Qin D. Precise genome editing process and its applications in plants driven by AI. Funct Integr Genomics 2025; 25:109. [PMID: 40413357 DOI: 10.1007/s10142-025-01619-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 05/12/2025] [Accepted: 05/15/2025] [Indexed: 05/27/2025]
Abstract
Genome editing technologies have emerged as the keystone of biotechnological research, enabling precise gene modification. The field has evolved rapidly through revolutionary advancements, transitioning from early explorations to the breakthrough of the CRISPR-Cas system. The emergence of the CRISPR-Cas system represents a huge leap in genome editing, prompting the development of advanced tools such as base and prime editors, thereby enhancing precise genomic engineering capabilities. The rapid integration of AI across disciplines is now driving another transformative phase in genome editing, streamlining workflows and enhancing precision. The application prospects of genome editing technology are extensive, particularly in plant breeding, where it has already presented unparalleled opportunities for improving plant traits. Here, we review early genome editing technologies, including meganucleases, ZFNs, TALENs, and CRISPR-Cas systems. We also provide a detailed introduction to next-generation editing tools-such as base editors and prime editors-and their latest applications in plants. At the same time, we summarize and prospect the cutting-edge developments and future trends of genome editing technologies in combination with the rapidly rising AI technology, including optimizing editing systems, predicting the efficiency of editing sites and designing editing strategies. We are convinced that as these technologies progress and their utilization expands, they will provide pioneering solutions to global challenges, ushering in an era of health, prosperity, and sustainability.
Collapse
Affiliation(s)
- Bo Jiang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Zeyu An
- University of Science and Technology Beijing, Beijing, 100083, China
| | - Linlin Niu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Debin Qin
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
2
|
Badwal AK, Singh S. A comprehensive review on the current status of CRISPR based clinical trials for rare diseases. Int J Biol Macromol 2024; 277:134097. [PMID: 39059527 DOI: 10.1016/j.ijbiomac.2024.134097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/03/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
A considerable fraction of population in the world suffers from rare diseases. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and its related Cas proteins offer a modern form of curative gene therapy for treating the rare diseases. Hereditary transthyretin amyloidosis, hereditary angioedema, duchenne muscular dystrophy and Rett syndrome are a few examples of such rare diseases. CRISPR/Cas9, for example, has been used in the treatment of β-thalassemia and sickle cell disease (Frangoul et al., 2021; Pavani et al., 2021) [1,2]. Neurological diseases such as Huntington's have also been focused in some studies involving CRISPR/Cas (Yang et al., 2017; Yan et al., 2023) [3,4]. Delivery of these biologicals via vector and non vector mediated methods depends on the type of target cells, characteristics of expression, time duration of expression, size of foreign genetic material etc. For instance, retroviruses find their applicability in case of ex vivo delivery in somatic cells due to their ability to integrate in the host genome. These have been successfully used in gene therapy involving X-SCID patients although, incidence of inappropriate activation has been reported. On the other hand, ex vivo gene therapy for β-thalassemia involved use of BB305 lentiviral vector for high level expression of CRISPR biological in HSCs. The efficacy and safety of these biologicals will decide their future application as efficient genome editing tools as they go forward in further stages of human clinical trials. This review focuses on CRISPR/Cas based therapies which are at various stages of clinical trials for treatment of rare diseases and the constraints and ethical issues associated with them.
Collapse
Affiliation(s)
- Amneet Kaur Badwal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali 160062, Punjab, India
| | - Sushma Singh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali 160062, Punjab, India.
| |
Collapse
|
3
|
Liu S, Liu H, Wang X, Shi L. The immune system of prokaryotes: potential applications and implications for gene editing. Biotechnol J 2024; 19:e2300352. [PMID: 38403433 DOI: 10.1002/biot.202300352] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/30/2023] [Accepted: 12/28/2023] [Indexed: 02/27/2024]
Abstract
Gene therapy has revolutionized the treatment of genetic diseases. Spearheading this revolution are sophisticated genome editing methods such as TALENs, ZFNs, and CRISPR-Cas, which trace their origins back to prokaryotic immune systems. Prokaryotes have developed various antiviral defense systems to combat viral attacks and the invasion of genetic elements. The comprehension of these defense mechanisms has paved the way for the development of indispensable tools in molecular biology. Among them, restriction endonuclease originates from the innate immune system of bacteria. The CRISPR-Cas system, a widely applied genome editing technology, is derived from the prokaryotic adaptive immune system. Single-base editing is a precise editing tool based on CRISPR-Cas system that involves deamination of target base. It is worth noting that prokaryotes possess deamination enzymes as part of their defense arsenal over foreign genetic material. Furthermore, prokaryotic Argonauts (pAgo) proteins, also function in anti-phage defense, play an important role in complementing the CRISPR-Cas system by addressing certain limitations it may have. Recent studies have also shed light on the significance of Retron, a reverse transcription transposon previously showed potential in genome editing, has also come to light in the realm of prokaryotic immunity. These noteworthy findings highlight the importance of studying prokaryotic immune system for advancing genome editing techniques. Here, both the origin of prokaryotic immunity underlying aforementioned genome editing tools, and potential applications of deaminase, pAgo protein and reverse transcriptase in genome editing among prokaryotes were introduced, thus emphasizing the fundamental mechanism and significance of prokaryotic immunity.
Collapse
Affiliation(s)
- Siyang Liu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Hongling Liu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Xue Wang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Lei Shi
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
4
|
Sorida M, Bonasio R. An efficient cloning method to expand vector and restriction site compatibility of Golden Gate Assembly. CELL REPORTS METHODS 2023; 3:100564. [PMID: 37671021 PMCID: PMC10475842 DOI: 10.1016/j.crmeth.2023.100564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/13/2023] [Accepted: 07/28/2023] [Indexed: 09/07/2023]
Abstract
Golden Gate Assembly is an efficient and rapid cloning method but requires dedicated vectors. Here, we modified Golden Gate to expand its compatibility to a broader range of destination vectors while maintaining its strengths. Our Expanded Golden Gate (ExGG) assembly adds to the insert(s) type IIS restriction sites that generate protruding ends compatible with traditional type IIP sites on the recipient vector. The ligated product cannot be cleaved again, owing to a single-base change near the junction. This allows the reaction to proceed in a single tube without an intermediate purification step. ExGG can be used to introduce multiple fragments into a vector simultaneously, including shorter fragments (<100 bp) and fragments with shared sequences, which can be difficult to assemble with other fast cloning strategies. Thus, ExGG extends the convenience of Golden Gate to a much larger space of pre-existing vectors designed for conventional cloning.
Collapse
Affiliation(s)
- Masato Sorida
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Roberto Bonasio
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Shahwar D, Ahn N, Kim D, Ahn W, Park Y. Mutagenesis-based plant breeding approaches and genome engineering: A review focused on tomato. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108473. [PMID: 37716439 DOI: 10.1016/j.mrrev.2023.108473] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/18/2023]
Abstract
Breeding is the most important and efficient method for crop improvement involving repeated modification of the genetic makeup of a plant population over many generations. In this review, various accessible breeding approaches, such as conventional breeding and mutation breeding (physical and chemical mutagenesis and insertional mutagenesis), are discussed with respect to the actual impact of research on the economic improvement of tomato agriculture. Tomatoes are among the most economically important fruit crops consumed worldwide because of their high nutritional content and health-related benefits. Additionally, we summarize mutation-based mapping approaches, including Mutmap and MutChromeSeq, for the efficient mapping of several genes identified by random indel mutations that are beneficial for crop improvement. Difficulties and challenges in the adaptation of new genome editing techniques that provide opportunities to demonstrate precise mutations are also addressed. Lastly, this review focuses on various effective and convenient genome editing tools, such as RNA interference (RNAi), zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR/Cas9), and their potential for the improvement of numerous desirable traits to allow the development of better varieties of tomato and other horticultural crops.
Collapse
Affiliation(s)
- Durre Shahwar
- Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Republic of Korea
| | - Namju Ahn
- Daenong Seed Company, Hwasun-gun 58155, Republic of Korea
| | - Donghyun Kim
- Daenong Seed Company, Hwasun-gun 58155, Republic of Korea
| | - Wooseong Ahn
- Daenong Seed Company, Hwasun-gun 58155, Republic of Korea
| | - Younghoon Park
- Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Republic of Korea.
| |
Collapse
|
6
|
A Recommendation for a Pre-Standardized Marine Microalgal Dry Weight Determination Protocol for Laboratory Scale Culture Using Ammonium Formate as a Washing Agent. BIOLOGY 2021; 10:biology10080799. [PMID: 34440031 PMCID: PMC8389616 DOI: 10.3390/biology10080799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 11/18/2022]
Abstract
Simple Summary Microalgae are increasingly recognized as a source of valuable biomass with numerous health benefits. Cleaning of marine microalgal biomass is very crucial for microalgal studies as the salt on the microalgae cells will lead to overestimation of biomass determination. Incomplete washing of salt from microalgae could also interfere with the nutritional analyses. The biomass, especially dry weight, has been utilized for nutritional or compositional evaluation. Although standard methods of marine microalgal dry weight determination are available, these methods did not provide comprehensive details, and the parameters vary among themselves. Without a standard method, a comparison of results among previous studies can be misleading and unreliable. Therefore, the current study aimed to investigate and determine the ideal setting of several parameters in the marine microalgal dry weight determination for laboratory-scale culture. The present findings could assist in developing a standardized protocol to ensure a high quality of biomass for microalgal studies. Abstract Microalgal biomass is one of the crucial criteria in microalgal studies. Many reported methods, even the well-established protocol on microalgal dry weight (DW) determination, vary greatly, and reliable comparative assessment amongst published results could be problematic. This study aimed to determine the best condition of critical parameters in marine microalgal DW determination for laboratory-scale culture using four different marine microalgal species. These parameters included the washing process, grades of glass microfiber filter (GMF), GMF pretreatment conditions, washing agent (ammonium formate) concentrations, culture: washing agent ratios (v:v) and washing cycles. GMF grade GF/A with precombustion at 450 °C provided the most satisfactory DW and the highest ash-free dry weight (AFDW)/DW ratio. Furthermore, 0.05 M ammonium formate with 1:2 culture: washing agent ratio and a minimum of two washing cycles appeared to be the best settings of microalgal DW determination. The present treatment increased the AFDW/DW ratio of the four respective microalgae by a minimum of 19%. The findings of this study could serve as a pivotal reference in developing a standardized protocol of marine microalgal DW determination to obtain veracious and reliable marine microalgal DW.
Collapse
|
7
|
Fu L, Luo YX, Liu Y, Liu H, Li HZ, Yu Y. Potential of Mitochondrial Genome Editing for Human Fertility Health. Front Genet 2021; 12:673951. [PMID: 34354734 PMCID: PMC8329452 DOI: 10.3389/fgene.2021.673951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/28/2021] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial DNA (mtDNA) encodes vital proteins and RNAs for the normal functioning of the mitochondria. Mutations in mtDNA leading to mitochondrial dysfunction are relevant to a large spectrum of diseases, including fertility disorders. Since mtDNA undergoes rather complex processes during gametogenesis and fertilization, clarification of the changes and functions of mtDNA and its essential impact on gamete quality and fertility during this process is of great significance. Thanks to the emergence and rapid development of gene editing technology, breakthroughs have been made in mitochondrial genome editing (MGE), offering great potential for the treatment of mtDNA-related diseases. In this review, we summarize the features of mitochondria and their unique genome, emphasizing their inheritance patterns; illustrate the role of mtDNA in gametogenesis and fertilization; and discuss potential therapies based on MGE as well as the outlook in this field.
Collapse
Affiliation(s)
- Lin Fu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yu-Xin Luo
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Ying Liu
- Food Inspection and Quarantine Technology Center of Shenzhen Customs District, FICS, Shenzhen, China
| | - Hui Liu
- Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Hong-Zhen Li
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yang Yu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| |
Collapse
|
8
|
Zhu X, Zhang Y, Yang X, Hao C, Duan H. Gene Therapy for Neurodegenerative Disease: Clinical Potential and Directions. Front Mol Neurosci 2021; 14:618171. [PMID: 34194298 PMCID: PMC8236824 DOI: 10.3389/fnmol.2021.618171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 05/07/2021] [Indexed: 12/21/2022] Open
Abstract
The pathogenesis of neurodegenerative diseases (NDDs) is complex and diverse. Over the decades, our understanding of NDD has been limited to pathological features. However, recent advances in gene sequencing have facilitated elucidation of NDD at a deeper level. Gene editing techniques have uncovered new genetic links to phenotypes, promoted the development of novel treatment strategies and equipped researchers with further means to construct effective cell and animal models. The current review describes the history of evolution of gene editing tools, with the aim of improving overall understanding of this technology, and focuses on the four most common NDD disorders to demonstrate the potential future applications and research directions of gene editing.
Collapse
Affiliation(s)
- Xiaolin Zhu
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yu Zhang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xin Yang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Chunyan Hao
- Department of Geriatrics, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Hubin Duan
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Neurosurgery, Lvliang People's Hospital, Lvliang, China
| |
Collapse
|
9
|
Zakirova EG, Muzyka VV, Mazunin IO, Orishchenko KE. Natural and Artificial Mechanisms of Mitochondrial Genome Elimination. Life (Basel) 2021; 11:life11020076. [PMID: 33498399 PMCID: PMC7909434 DOI: 10.3390/life11020076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 01/11/2023] Open
Abstract
The generally accepted theory of the genetic drift of mitochondrial alleles during mammalian ontogenesis is based on the presence of a selective bottleneck in the female germline. However, there is a variety of different theories on the pathways of genetic regulation of mitochondrial DNA (mtDNA) dynamics in oogenesis and adult somatic cells. The current review summarizes present knowledge on the natural mechanisms of mitochondrial genome elimination during mammalian development. We also discuss the variety of existing and developing methodologies for artificial manipulation of the mtDNA heteroplasmy level. Understanding of the basics of mtDNA dynamics will shed the light on the pathogenesis and potential therapies of human diseases associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Elvira G. Zakirova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.G.Z.); (V.V.M.)
| | - Vladimir V. Muzyka
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.G.Z.); (V.V.M.)
- Department of Genetic Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Ilya O. Mazunin
- Skolkovo Institute of Science and Technology, 143026 Skolkovo, Russia;
| | - Konstantin E. Orishchenko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.G.Z.); (V.V.M.)
- Department of Genetic Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
10
|
Salava H, Thula S, Mohan V, Kumar R, Maghuly F. Application of Genome Editing in Tomato Breeding: Mechanisms, Advances, and Prospects. Int J Mol Sci 2021; 22:E682. [PMID: 33445555 PMCID: PMC7827871 DOI: 10.3390/ijms22020682] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 12/19/2022] Open
Abstract
Plants regularly face the changing climatic conditions that cause biotic and abiotic stress responses. The abiotic stresses are the primary constraints affecting crop yield and nutritional quality in many crop plants. The advances in genome sequencing and high-throughput approaches have enabled the researchers to use genome editing tools for the functional characterization of many genes useful for crop improvement. The present review focuses on the genome editing tools for improving many traits such as disease resistance, abiotic stress tolerance, yield, quality, and nutritional aspects of tomato. Many candidate genes conferring tolerance to abiotic stresses such as heat, cold, drought, and salinity stress have been successfully manipulated by gene modification and editing techniques such as RNA interference, insertional mutagenesis, and clustered regularly interspaced short palindromic repeat (CRISPR/Cas9). In this regard, the genome editing tools such as CRISPR/Cas9, which is a fast and efficient technology that can be exploited to explore the genetic resources for the improvement of tomato and other crop plants in terms of stress tolerance and nutritional quality. The review presents examples of gene editing responsible for conferring both biotic and abiotic stresses in tomato simultaneously. The literature on using this powerful technology to improve fruit quality, yield, and nutritional aspects in tomato is highlighted. Finally, the prospects and challenges of genome editing, public and political acceptance in tomato are discussed.
Collapse
Affiliation(s)
- Hymavathi Salava
- Department of Plant Sciences, University of Hyderabad, Hyderabad 500064, India;
| | - Sravankumar Thula
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic;
| | - Vijee Mohan
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA;
| | - Rahul Kumar
- Plant Translational Research Laboratory, Department of Plant Sciences, University of Hyderabad, Hyderabad 500064, India;
| | - Fatemeh Maghuly
- Plant Functional Genomics, Institute of Molecular Biotechnology, Department of Biotechnology, BOKU-VIBT, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| |
Collapse
|
11
|
Cui Y, Dong H, Ma Y, Zhang D. Strategies for Applying Nonhomologous End Joining-Mediated Genome Editing in Prokaryotes. ACS Synth Biol 2019; 8:2194-2202. [PMID: 31525995 DOI: 10.1021/acssynbio.9b00179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The emergence of genome editing technology based on the CRISPR/Cas system enabled revolutionary progress in genetic engineering. Double-strand breaks (DSBs), which can be induced by the CRISPR/Cas9 system, cause serious DNA damage that can be repaired by a homologous recombination (HR) system or the nonhomologous end joining (NHEJ) pathway. However, many bacterial species have a very weak HR system. Thus, the NHEJ pathway can be used in prokaryotes. Starting with a brief introduction of the mechanism of the NHEJ pathway, this review focuses on current research and details of applications of NHEJ in eukaryotes, which forms the theoretical basis for the application of the NHEJ system in prokaryotes.
Collapse
|
12
|
Chandrasekaran AP, Song M, Ramakrishna S. Genome editing: a robust technology for human stem cells. Cell Mol Life Sci 2017; 74:3335-3346. [PMID: 28405721 PMCID: PMC11107609 DOI: 10.1007/s00018-017-2522-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 12/20/2022]
Abstract
Human pluripotent stem cells comprise induced pluripotent and embryonic stem cells, which have tremendous potential for biological and therapeutic applications. The development of efficient technologies for the targeted genome alteration of stem cells in disease models is a prerequisite for utilizing stem cells to their full potential. Genome editing of stem cells is possible with the help of synthetic nucleases that facilitate site-specific modification of a gene of interest. Recent advances in genome editing techniques have improved the efficiency and speed of the development of stem cells for human disease models. Zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system are powerful tools for editing DNA at specific loci. Here, we discuss recent technological advances in genome editing with site-specific nucleases in human stem cells.
Collapse
Affiliation(s)
| | - Minjung Song
- Division of Bioindustry, Department of Food Biotechnology, College of Medical and Life Science, Silla University, Seoul, Republic of Korea.
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea.
- College of Medicine, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Chen KY, Knoepfler PS. To CRISPR and beyond: the evolution of genome editing in stem cells. Regen Med 2016; 11:801-816. [PMID: 27905217 PMCID: PMC5221123 DOI: 10.2217/rme-2016-0107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/11/2016] [Indexed: 12/17/2022] Open
Abstract
The goal of editing the genomes of stem cells to generate model organisms and cell lines for genetic and biological studies has been pursued for decades. There is also exciting potential for future clinical impact in humans. While recent, rapid advances in targeted nuclease technologies have led to unprecedented accessibility and ease of gene editing, biology has benefited from past directed gene modification via homologous recombination, gene traps and other transgenic methodologies. Here we review the history of genome editing in stem cells (including via zinc finger nucleases, transcription activator-like effector nucleases and CRISPR-Cas9), discuss recent developments leading to the implementation of stem cell gene therapies in clinical trials and consider the prospects for future advances in this rapidly evolving field.
Collapse
Affiliation(s)
- Kuang-Yui Chen
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, CA, USA
- Institute of Pediatric Regenerative Medicine, Shriners Hospital For Children Northern California, Sacramento, CA, USA
- Genome Center, University of California Davis, Davis, CA, USA
| | - Paul S Knoepfler
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, CA, USA
- Institute of Pediatric Regenerative Medicine, Shriners Hospital For Children Northern California, Sacramento, CA, USA
- Genome Center, University of California Davis, Davis, CA, USA
| |
Collapse
|
14
|
AlQuraishi M, Tang S, Xia X. An affinity-structure database of helix-turn-helix: DNA complexes with a universal coordinate system. BMC Bioinformatics 2015; 16:390. [PMID: 26586237 PMCID: PMC4653904 DOI: 10.1186/s12859-015-0819-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 11/11/2015] [Indexed: 11/28/2022] Open
Abstract
Background Molecular interactions between proteins and DNA molecules underlie many cellular processes, including transcriptional regulation, chromosome replication, and nucleosome positioning. Computational analyses of protein-DNA interactions rely on experimental data characterizing known protein-DNA interactions structurally and biochemically. While many databases exist that contain either structural or biochemical data, few integrate these two data sources in a unified fashion. Such integration is becoming increasingly critical with the rapid growth of structural and biochemical data, and the emergence of algorithms that rely on the synthesis of multiple data types to derive computational models of molecular interactions. Description We have developed an integrated affinity-structure database in which the experimental and quantitative DNA binding affinities of helix-turn-helix proteins are mapped onto the crystal structures of the corresponding protein-DNA complexes. This database provides access to: (i) protein-DNA structures, (ii) quantitative summaries of protein-DNA binding affinities using position weight matrices, and (iii) raw experimental data of protein-DNA binding instances. Critically, this database establishes a correspondence between experimental structural data and quantitative binding affinity data at the single basepair level. Furthermore, we present a novel alignment algorithm that structurally aligns the protein-DNA complexes in the database and creates a unified residue-level coordinate system for comparing the physico-chemical environments at the interface between complexes. Using this unified coordinate system, we compute the statistics of atomic interactions at the protein-DNA interface of helix-turn-helix proteins. We provide an interactive website for visualization, querying, and analyzing this database, and a downloadable version to facilitate programmatic analysis. Conclusions This database will facilitate the analysis of protein-DNA interactions and the development of programmatic computational methods that capitalize on integration of structural and biochemical datasets. The database can be accessed at http://ProteinDNA.hms.harvard.edu.
Collapse
Affiliation(s)
- Mohammed AlQuraishi
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA. .,HMS Laboratory of Systems Pharmacology, Harvard Medical School, 200 Longwood Avenue, Boston, MA, 02115, USA.
| | - Shengdong Tang
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA.,HMS Laboratory of Systems Pharmacology, Harvard Medical School, 200 Longwood Avenue, Boston, MA, 02115, USA
| | - Xide Xia
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA.,HMS Laboratory of Systems Pharmacology, Harvard Medical School, 200 Longwood Avenue, Boston, MA, 02115, USA
| |
Collapse
|
15
|
Pingoud A, Wilson GG, Wende W. Type II restriction endonucleases--a historical perspective and more. Nucleic Acids Res 2014; 42:7489-527. [PMID: 24878924 PMCID: PMC4081073 DOI: 10.1093/nar/gku447] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/02/2014] [Accepted: 05/07/2014] [Indexed: 12/17/2022] Open
Abstract
This article continues the series of Surveys and Summaries on restriction endonucleases (REases) begun this year in Nucleic Acids Research. Here we discuss 'Type II' REases, the kind used for DNA analysis and cloning. We focus on their biochemistry: what they are, what they do, and how they do it. Type II REases are produced by prokaryotes to combat bacteriophages. With extreme accuracy, each recognizes a particular sequence in double-stranded DNA and cleaves at a fixed position within or nearby. The discoveries of these enzymes in the 1970s, and of the uses to which they could be put, have since impacted every corner of the life sciences. They became the enabling tools of molecular biology, genetics and biotechnology, and made analysis at the most fundamental levels routine. Hundreds of different REases have been discovered and are available commercially. Their genes have been cloned, sequenced and overexpressed. Most have been characterized to some extent, but few have been studied in depth. Here, we describe the original discoveries in this field, and the properties of the first Type II REases investigated. We discuss the mechanisms of sequence recognition and catalysis, and the varied oligomeric modes in which Type II REases act. We describe the surprising heterogeneity revealed by comparisons of their sequences and structures.
Collapse
Affiliation(s)
- Alfred Pingoud
- Institute of Biochemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| | - Geoffrey G Wilson
- New England Biolabs Inc., 240 County Road, Ipswich, MA 01938-2723, USA
| | - Wolfgang Wende
- Institute of Biochemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| |
Collapse
|
16
|
Fichtner F, Urrea Castellanos R, Ülker B. Precision genetic modifications: a new era in molecular biology and crop improvement. PLANTA 2014; 239:921-39. [PMID: 24510124 DOI: 10.1007/s00425-014-2029-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/06/2014] [Indexed: 05/26/2023]
Abstract
Recently, the use of programmable DNA-binding proteins such as ZFP/ZFNs, TALE/TALENs and CRISPR/Cas has produced unprecedented advances in gene targeting and genome editing in prokaryotes and eukaryotes. These advances allow researchers to specifically alter genes, reprogram epigenetic marks, generate site-specific deletions and potentially cure diseases. Unlike previous methods, these precision genetic modification techniques (PGMs) are specific, efficient, easy to use and economical. Here we discuss the capabilities and pitfalls of PGMs and highlight the recent, exciting applications of PGMs in molecular biology and crop genetic engineering. Further improvement of the efficiency and precision of PGM techniques will enable researchers to precisely alter gene expression and biological/chemical pathways, probe gene function, modify epigenetic marks and improve crops by increasing yield, quality and tolerance to limiting biotic and abiotic stress conditions.
Collapse
Affiliation(s)
- Franziska Fichtner
- Plant Molecular Engineering Group, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | | | | |
Collapse
|
17
|
Yanik M, Alzubi J, Lahaye T, Cathomen T, Pingoud A, Wende W. TALE-PvuII fusion proteins--novel tools for gene targeting. PLoS One 2013; 8:e82539. [PMID: 24349308 PMCID: PMC3857828 DOI: 10.1371/journal.pone.0082539] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/01/2013] [Indexed: 12/15/2022] Open
Abstract
Zinc finger nucleases (ZFNs) consist of zinc fingers as DNA-binding module and the non-specific DNA-cleavage domain of the restriction endonuclease FokI as DNA-cleavage module. This architecture is also used by TALE nucleases (TALENs), in which the DNA-binding modules of the ZFNs have been replaced by DNA-binding domains based on transcription activator like effector (TALE) proteins. Both TALENs and ZFNs are programmable nucleases which rely on the dimerization of FokI to induce double-strand DNA cleavage at the target site after recognition of the target DNA by the respective DNA-binding module. TALENs seem to have an advantage over ZFNs, as the assembly of TALE proteins is easier than that of ZFNs. Here, we present evidence that variant TALENs can be produced by replacing the catalytic domain of FokI with the restriction endonuclease PvuII. These fusion proteins recognize only the composite recognition site consisting of the target site of the TALE protein and the PvuII recognition sequence (addressed site), but not isolated TALE or PvuII recognition sites (unaddressed sites), even at high excess of protein over DNA and long incubation times. In vitro, their preference for an addressed over an unaddressed site is > 34,000-fold. Moreover, TALE-PvuII fusion proteins are active in cellula with minimal cytotoxicity.
Collapse
Affiliation(s)
- Mert Yanik
- Institute for Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany
| | - Jamal Alzubi
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Thomas Lahaye
- ZMBP – General Genetics, University of Tuebingen, Tuebingen, Germany
| | - Toni Cathomen
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Alfred Pingoud
- Institute for Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany
| | - Wolfgang Wende
- Institute for Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
18
|
AlQuraishi M, McAdams HH. Three enhancements to the inference of statistical protein-DNA potentials. Proteins 2012; 81:426-42. [PMID: 23042633 DOI: 10.1002/prot.24201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 09/17/2012] [Accepted: 10/02/2012] [Indexed: 12/28/2022]
Abstract
The energetics of protein-DNA interactions are often modeled using so-called statistical potentials, that is, energy models derived from the atomic structures of protein-DNA complexes. Many statistical protein-DNA potentials based on differing theoretical assumptions have been investigated, but little attention has been paid to the types of data and the parameter estimation process used in deriving the statistical potentials. We describe three enhancements to statistical potential inference that significantly improve the accuracy of predicted protein-DNA interactions: (i) incorporation of binding energy data of protein-DNA complexes, in conjunction with their X-ray crystal structures, (ii) use of spatially-aware parameter fitting, and (iii) use of ensemble-based parameter fitting. We apply these enhancements to three widely-used statistical potentials and use the resulting enhanced potentials in a structure-based prediction of the DNA binding sites of proteins. These enhancements are directly applicable to all statistical potentials used in protein-DNA modeling, and we show that they can improve the accuracy of predicted DNA binding sites by up to 21%.
Collapse
Affiliation(s)
- Mohammed AlQuraishi
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | |
Collapse
|
19
|
Rusling DA, Laurens N, Pernstich C, Wuite GJL, Halford SE. DNA looping by FokI: the impact of synapse geometry on loop topology at varied site orientations. Nucleic Acids Res 2012; 40:4977-87. [PMID: 22362745 PMCID: PMC3367207 DOI: 10.1093/nar/gks183] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Most restriction endonucleases, including FokI, interact with two copies of their recognition sequence before cutting DNA. On DNA with two sites they act in cis looping out the intervening DNA. While many restriction enzymes operate symmetrically at palindromic sites, FokI acts asymmetrically at a non-palindromic site. The directionality of its sequence means that two FokI sites can be bridged in either parallel or anti-parallel alignments. Here we show by biochemical and single-molecule biophysical methods that FokI aligns two recognition sites on separate DNA molecules in parallel and that the parallel arrangement holds for sites in the same DNA regardless of whether they are in inverted or repeated orientations. The parallel arrangement dictates the topology of the loop trapped between sites in cis: the loop from inverted sites has a simple 180° bend, while that with repeated sites has a convoluted 360° turn. The ability of FokI to act at asymmetric sites thus enabled us to identify the synapse geometry for sites in trans and in cis, which in turn revealed the relationship between synapse geometry and loop topology.
Collapse
Affiliation(s)
- David A Rusling
- The DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | | | | | | | | |
Collapse
|
20
|
Pernstich C, Halford SE. Illuminating the reaction pathway of the FokI restriction endonuclease by fluorescence resonance energy transfer. Nucleic Acids Res 2011; 40:1203-13. [PMID: 21993298 PMCID: PMC3273807 DOI: 10.1093/nar/gkr809] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The FokI restriction endonuclease is a monomeric protein that recognizes an asymmetric sequence and cleaves both DNA strands at fixed loci downstream of the site. Its single active site is positioned initially near the recognition sequence, distant from its downstream target 13 nucleotides away. Moreover, to cut both strands, it has to recruit a second monomer to give an assembly with two active sites. Here, the individual steps in the FokI reaction pathway were examined by fluorescence resonance energy transfer (FRET). To monitor DNA binding and domain motion, a fluorescence donor was attached to the DNA, either downstream or upstream of the recognition site, and an acceptor placed on the catalytic domain of the protein. A FokI variant incapable of dimerization was also employed, to disentangle the signal due to domain motion from that due to protein association. Dimerization was monitored separately by using two samples of FokI labelled with donor and acceptor, respectively. The stopped-flow studies revealed a complete reaction pathway for FokI, both the sequence of events and the kinetics of each individual step.
Collapse
Affiliation(s)
- Christian Pernstich
- The DNA-proteins Interaction Unit, School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | | |
Collapse
|
21
|
Li T, Huang S, Jiang WZ, Wright D, Spalding MH, Weeks DP, Yang B. TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res 2010; 39:359-72. [PMID: 20699274 PMCID: PMC3017587 DOI: 10.1093/nar/gkq704] [Citation(s) in RCA: 366] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
DNA double-strand breaks enhance homologous recombination in cells and have been exploited for targeted genome editing through use of engineered endonucleases. Here we report the creation and initial characterization of a group of rare-cutting, site-specific DNA nucleases produced by fusion of the restriction enzyme FokI endonuclease domain (FN) with the high-specificity DNA-binding domains of AvrXa7 and PthXo1. AvrXa7 and PthXo1 are members of the transcription activator-like (TAL) effector family whose central repeat units dictate target DNA recognition and can be modularly constructed to create novel DNA specificity. The hybrid FN-AvrXa7, AvrXa7-FN and PthXo1-FN proteins retain both recognition specificity for their target DNA (a 26 bp sequence for AvrXa7 and 24 bp for PthXo1) and the double-stranded DNA cleaving activity of FokI and, thus, are called TAL nucleases (TALNs). With all three TALNs, DNA is cleaved adjacent to the TAL-binding site under optimal conditions in vitro. When expressed in yeast, the TALNs promote DNA homologous recombination of a LacZ gene containing paired AvrXa7 or asymmetric AvrXa7/PthXo1 target sequences. Our results demonstrate the feasibility of creating a tool box of novel TALNs with potential for targeted genome modification in organisms lacking facile mechanisms for targeted gene knockout and homologous recombination.
Collapse
Affiliation(s)
- Ting Li
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Lippow SM, Aha PM, Parker MH, Blake WJ, Baynes BM, Lipovsek D. Creation of a type IIS restriction endonuclease with a long recognition sequence. Nucleic Acids Res 2009; 37:3061-73. [PMID: 19304757 PMCID: PMC2685105 DOI: 10.1093/nar/gkp182] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 02/27/2009] [Accepted: 03/05/2009] [Indexed: 12/19/2022] Open
Abstract
Type IIS restriction endonucleases cleave DNA outside their recognition sequences, and are therefore particularly useful in the assembly of DNA from smaller fragments. A limitation of type IIS restriction endonucleases in assembly of long DNA sequences is the relative abundance of their target sites. To facilitate ligation-based assembly of extremely long pieces of DNA, we have engineered a new type IIS restriction endonuclease that combines the specificity of the homing endonuclease I-SceI with the type IIS cleavage pattern of FokI. We linked a non-cleaving mutant of I-SceI, which conveys to the chimeric enzyme its specificity for an 18-bp DNA sequence, to the catalytic domain of FokI, which cuts DNA at a defined site outside the target site. Whereas previously described chimeric endonucleases do not produce type IIS-like precise DNA overhangs suitable for ligation, our chimeric endonuclease cleaves double-stranded DNA exactly 2 and 6 nt from the target site to generate homogeneous, 5', four-base overhangs, which can be ligated with 90% fidelity. We anticipate that these enzymes will be particularly useful in manipulation of DNA fragments larger than a thousand bases, which are very likely to contain target sites for all natural type IIS restriction endonucleases.
Collapse
|
23
|
Xiong AS, Peng RH, Zhuang J, Liu JG, Gao F, Chen JM, Cheng ZM, Yao QH. Non-polymerase-cycling-assembly-based chemical gene synthesis: Strategies, methods, and progress. Biotechnol Adv 2008; 26:121-34. [DOI: 10.1016/j.biotechadv.2007.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 08/24/2007] [Accepted: 10/31/2007] [Indexed: 10/22/2022]
|
24
|
Sukackaite R, Lagunavicius A, Stankevicius K, Urbanke C, Venclovas Č, Siksnys V. Restriction endonuclease BpuJI specific for the 5'-CCCGT sequence is related to the archaeal Holliday junction resolvase family. Nucleic Acids Res 2007; 35:2377-89. [PMID: 17392342 PMCID: PMC1874659 DOI: 10.1093/nar/gkm164] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Type IIS restriction endonucleases (REases) recognize asymmetric DNA sequences and cleave both DNA strands at fixed positions downstream of the recognition site. REase BpuJI recognizes the asymmetric sequence 5′-CCCGT, however it cuts at multiple sites in the vicinity of the target sequence. We show that BpuJI is a dimer, which has two DNA binding surfaces and displays optimal catalytic activity when bound to two recognition sites. BpuJI is cleaved by chymotrypsin into an N-terminal domain (NTD), which lacks catalytic activity but binds specifically to the recognition sequence as a monomer, and a C-terminal domain (CTD), which forms a dimer with non-specific nuclease activity. Fold recognition approach reveals that the CTD of BpuJI is structurally related to archaeal Holliday junction resolvases (AHJR). We demonstrate that the isolated catalytic CTD of BpuJI possesses end-directed nuclease activity and preferentially cuts 3 nt from the 3′-terminus of blunt-ended DNA. The nuclease activity of the CTD is repressed in the apo-enzyme and becomes activated upon specific DNA binding by the NTDs. This leads to a complicated pattern of specific DNA cleavage in the vicinity of the target site. Bioinformatics analysis identifies the AHJR-like domain in the putative Type III enzymes and functionally uncharacterized proteins.
Collapse
Affiliation(s)
- Rasa Sukackaite
- Institute of Biotechnology, Graičiūno 8, LT-02241 Vilnius, Lithuania and Strukturanalyse, Medizinische Hochschule Hannover, Carl Neuberg Strasse 1, D-30632 Hannover, Germany
| | - Arunas Lagunavicius
- Institute of Biotechnology, Graičiūno 8, LT-02241 Vilnius, Lithuania and Strukturanalyse, Medizinische Hochschule Hannover, Carl Neuberg Strasse 1, D-30632 Hannover, Germany
| | - Kornelijus Stankevicius
- Institute of Biotechnology, Graičiūno 8, LT-02241 Vilnius, Lithuania and Strukturanalyse, Medizinische Hochschule Hannover, Carl Neuberg Strasse 1, D-30632 Hannover, Germany
| | - Claus Urbanke
- Institute of Biotechnology, Graičiūno 8, LT-02241 Vilnius, Lithuania and Strukturanalyse, Medizinische Hochschule Hannover, Carl Neuberg Strasse 1, D-30632 Hannover, Germany
| | - Česlovas Venclovas
- Institute of Biotechnology, Graičiūno 8, LT-02241 Vilnius, Lithuania and Strukturanalyse, Medizinische Hochschule Hannover, Carl Neuberg Strasse 1, D-30632 Hannover, Germany
| | - Virginijus Siksnys
- Institute of Biotechnology, Graičiūno 8, LT-02241 Vilnius, Lithuania and Strukturanalyse, Medizinische Hochschule Hannover, Carl Neuberg Strasse 1, D-30632 Hannover, Germany
- *To whom correspondence should be addressed.
| |
Collapse
|
25
|
Horner SM, DiMaio D. The DNA binding domain of a papillomavirus E2 protein programs a chimeric nuclease to cleave integrated human papillomavirus DNA in HeLa cervical carcinoma cells. J Virol 2007; 81:6254-64. [PMID: 17392356 PMCID: PMC1900111 DOI: 10.1128/jvi.00232-07] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viral DNA binding proteins that direct nucleases or other protein domains to viral DNA in lytically or latently infected cells may provide a novel approach to modulate viral gene expression or replication. Cervical carcinogenesis is initiated by high-risk human papillomavirus (HPV) infection, and viral DNA persists in the cancer cells. To test whether a DNA binding domain of a papillomavirus protein can direct a nuclease domain to cleave HPV DNA in cervical cancer cells, we fused the DNA binding domain of the bovine papillomavirus type 1 (BPV1) E2 protein to the catalytic domain of the FokI restriction endonuclease, generating a BPV1 E2-FokI chimeric nuclease (BEF). BEF introduced DNA double-strand breaks on both sides of an E2 binding site in vitro, whereas DNA binding or catalytic mutants of BEF did not. After expression of BEF in HeLa cervical carcinoma cells, we detected cleavage at E2 binding sites in the integrated HPV18 DNA in these cells and also at an E2 binding site in cellular DNA. BEF-expressing cells underwent senescence, which required the DNA binding activity of BEF, but not its nuclease activity. These results demonstrate that DNA binding domains of viral proteins can target effector molecules to cognate binding sites in virally infected cells.
Collapse
Affiliation(s)
- Stacy M Horner
- Yale University School of Medicine, Department of Genetics, 333 Cedar Street, SHM-141, New Haven, CT 06510, USA
| | | |
Collapse
|
26
|
Liu Q, Derbyshire V, Belfort M, Edgell DR. Distance determination by GIY-YIG intron endonucleases: discrimination between repression and cleavage functions. Nucleic Acids Res 2006; 34:1755-64. [PMID: 16582101 PMCID: PMC1421500 DOI: 10.1093/nar/gkl079] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
GIY-YIG homing endonucleases are modular proteins, with conserved N-terminal catalytic domains connected by linkers to C-terminal DNA-binding domains. I-TevI, the T4 phage GIY-YIG intron endonuclease, functions both in promoting td intron homing, and in acting as a transcriptional autorepressor. Repression is achieved by binding to an operator, which is cleaved at 100-fold reduced efficiency relative to the intronless homing site. The linker includes a zinc finger, which functions in distance determination, to constrain the catalytic domain to cleave the homing site at a fixed position. Here we show that I-BmoI, a related GIY-YIG endonuclease lacking a zinc finger, also possesses some cleavage distance discrimination. Furthermore, hybrid endonucleases constructed by swapping the domains of I-BmoI and I-TevI are active, precise and demonstrate that features other than the zinc finger facilitate distance determination. Most importantly, I-TevI zinc finger mutants cleave the operator more efficiently than the homing site, the converse of wild-type protein. These results are consistent with the zinc finger acting as a measuring device, directing efficient cleavage of the homing site to promote intron mobility, while reducing cleavage at the operator to ensure transcriptional autorepression and phage viability.
Collapse
Affiliation(s)
- Qingqing Liu
- New York State Department of Health, Wadsworth Center, Center for Medical Science150 New Scotland Avenue, Albany, NY 12208, USA
- Department of Biological Sciences, State University of New York at AlbanyAlbany, NY 12222, USA
| | - Victoria Derbyshire
- New York State Department of Health, Wadsworth Center, Center for Medical Science150 New Scotland Avenue, Albany, NY 12208, USA
| | - Marlene Belfort
- New York State Department of Health, Wadsworth Center, Center for Medical Science150 New Scotland Avenue, Albany, NY 12208, USA
- To whom correspondence should be addressed. Tel: +1 518 473 3345; Fax: +1 518 474 3181;
| | - David R. Edgell
- New York State Department of Health, Wadsworth Center, Center for Medical Science150 New Scotland Avenue, Albany, NY 12208, USA
- Department of Biochemistry, University of Western OntarioLondon, ON N6A 5C1, Canada
| |
Collapse
|
27
|
Durai S, Mani M, Kandavelou K, Wu J, Porteus MH, Chandrasegaran S. Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res 2005; 33:5978-90. [PMID: 16251401 PMCID: PMC1270952 DOI: 10.1093/nar/gki912] [Citation(s) in RCA: 296] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Custom-designed zinc finger nucleases (ZFNs), proteins designed to cut at specific DNA sequences, are becoming powerful tools in gene targeting—the process of replacing a gene within a genome by homologous recombination (HR). ZFNs that combine the non-specific cleavage domain (N) of FokI endonuclease with zinc finger proteins (ZFPs) offer a general way to deliver a site-specific double-strand break (DSB) to the genome. The development of ZFN-mediated gene targeting provides molecular biologists with the ability to site-specifically and permanently modify plant and mammalian genomes including the human genome via homology-directed repair of a targeted genomic DSB. The creation of designer ZFNs that cleave DNA at a pre-determined site depends on the reliable creation of ZFPs that can specifically recognize the chosen target site within a genome. The (Cys2His2) ZFPs offer the best framework for developing custom ZFN molecules with new sequence-specificities. Here, we explore the different approaches for generating the desired custom ZFNs with high sequence-specificity and affinity. We also discuss the potential of ZFN-mediated gene targeting for ‘directed mutagenesis’ and targeted ‘gene editing’ of the plant and mammalian genome as well as the potential of ZFN-based strategies as a form of gene therapy for human therapeutics in the future.
Collapse
Affiliation(s)
- Sundar Durai
- Department of Environmental Health Sciences, The Johns Hopkins University Bloomberg School of Public Health615 North Wolfe Street, Baltimore, MD 21205-2179, USA
- Center for Bioinformatics, School of Life Sciences, Pondicherry UniversityPondicherry 605014, India
| | - Mala Mani
- Department of Environmental Health Sciences, The Johns Hopkins University Bloomberg School of Public Health615 North Wolfe Street, Baltimore, MD 21205-2179, USA
| | - Karthikeyan Kandavelou
- Department of Environmental Health Sciences, The Johns Hopkins University Bloomberg School of Public Health615 North Wolfe Street, Baltimore, MD 21205-2179, USA
- Pondicherry Biotech Private Ltd.21 Louis Pragasam Street, Pondicherry 605001, India
| | - Joy Wu
- Department of Environmental Health Sciences, The Johns Hopkins University Bloomberg School of Public Health615 North Wolfe Street, Baltimore, MD 21205-2179, USA
| | - Matthew H. Porteus
- Department of Pediatrics, University of Texas Southwestern Medical Center5323 Harry Hines Boulevard, Dallas, TX 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Srinivasan Chandrasegaran
- Department of Environmental Health Sciences, The Johns Hopkins University Bloomberg School of Public Health615 North Wolfe Street, Baltimore, MD 21205-2179, USA
- To whom correspondence should be addressed. Tel: 410 614 2289; Fax: 410 955 0299;
| |
Collapse
|
28
|
Doi N, Kumadaki S, Oishi Y, Matsumura N, Yanagawa H. In vitro selection of restriction endonucleases by in vitro compartmentalization. Nucleic Acids Res 2004; 32:e95. [PMID: 15247328 PMCID: PMC484195 DOI: 10.1093/nar/gnh096] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Restriction endonucleases are widely used in laboratory applications from recombinant DNA technology to diagnostics, but engineering of restriction enzymes by structure-guided design and in vivo directed evolution is at an early stage. Here, we report the use of an in vitro compartmentalization system for completely in vitro selection of restriction enzymes. Compartmentalization of a single gene in a rabbit reticulocyte in vitro transcription/translation system serves to isolate individually synthesized enzymes from each other. In each compartment, an active enzyme cleaves only its own encoding gene, whereas genes encoding inactive enzymes remain intact. Affinity selection of the cleaved DNA encoding active restriction endonucleases was accomplished by the use of streptavidin-immobilized beads and dUTP-biotin, which was efficiently incorporated into the cohesive end of the cleaved DNA using a DNA polymerase. We confirmed that genes encoding active restriction endonuclease FokI could be selected from a randomized library. This method overcomes the limitations of current in vivo technologies and should prove useful for rapid screening and evolution of novel restriction enzymes from diverse mutant libraries, as well as for studies of catalytic and evolutionary mechanisms of restriction enzymes.
Collapse
Affiliation(s)
- Nobuhide Doi
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | | | | | | | | |
Collapse
|
29
|
|
30
|
Skowron PM, Majewski J, Zylicz-Stachula A, Rutkowska SM, Jaworowska I, Harasimowicz-Słowińska RI. A new Thermus sp. class-IIS enzyme sub-family: isolation of a 'twin' endonuclease TspDTI with a novel specificity 5'-ATGAA(N(11/9))-3', related to TspGWI, TaqII and Tth111II. Nucleic Acids Res 2003; 31:e74. [PMID: 12853651 PMCID: PMC167652 DOI: 10.1093/nar/gng074] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2003] [Revised: 05/13/2003] [Accepted: 05/13/2003] [Indexed: 11/14/2022] Open
Abstract
The TspDTI restriction endonuclease, which shows a novel recognition specificity 5'-ATGAA(N(11/9))-3', was isolated from Thermus sp. DT. TspDTI appears to be a 'twin' of restriction endonuclease TspGWI from Thermus sp. GW, as we have previously reported. TspGWI was isolated from the same location as TspDTI, it recognizes a related sequence 5'-ACGGA(N(11/9))-3' and has conserved cleavage positions. Both enzymes resemble two other class-IIS endonucleases from Thermus sp.: TaqII and Tth111II. N-terminal amino acid sequences of TspGWI tryptic peptides exhibit 88.9-100% similarity to the TaqII sequence. All four enzymes were purified to homogeneity; their polypeptide sizes (114.5-122 kDa) make them the largest class-IIS restriction endonucleases known to date. The existence of a Thermus sp. sub-family of class-IIS restriction endonucleases of a common origin is herein proposed.
Collapse
|
31
|
Sasnauskas G, Halford SE, Siksnys V. How the BfiI restriction enzyme uses one active site to cut two DNA strands. Proc Natl Acad Sci U S A 2003; 100:6410-5. [PMID: 12750473 PMCID: PMC164460 DOI: 10.1073/pnas.1131003100] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Unlike other restriction enzymes, BfiI functions without metal ions. It recognizes an asymmetric DNA sequence, 5'-ACTGGG-3', and cuts top and bottom strands at fixed positions downstream of this sequence. Many restriction enzymes are dimers of identical subunits, with one active site for each DNA strand. Others, like FokI, dimerize transiently during catalysis. BfiI is also a dimer but it has only one active site, at the dimer interface. We show here that BfiI remains a dimer as it makes double-strand breaks in DNA and that its single active site acts sequentially, first on the bottom and then the top strand. Hence, after cutting the bottom strand, a rearrangement of either the protein and/or the DNA in the BfiI-DNA complex must switch the active site to the top strand. Low pH values selectively block top-strand cleavage, converting BfiI into a nicking enzyme that cleaves only the bottom strand. The switch to the top strand may depend on the ionization of the cleaved 5' phosphate in the bottom strand. BfiI thus uses a mechanism for making double-strand breaks that is novel among restriction enzymes.
Collapse
|
32
|
Abstract
Survival is assuredly the prime directive for all living organisms either as individuals or as a species. One of the main challenges encountered by bacterial populations is the danger of bacteriophage attacks, since infection of a single bacterium may rapidly propagate, decimating the entire population. In order to protect themselves against this acute threat, bacteria have developed an array of defence mechanisms, which range from preventing the infection itself via interference with bacteriophage adsorption to the cell surface and prevention of phage DNA injection, to degradation of the injected phage DNA. This last defence mechanism is catalysed by the bacterial restriction-modification (R-M) systems, and in particular, by nucleoside 5'-triphosphate (NTP)-dependent restriction enzymes, e.g. type I and type III R-M systems or the modification-dependent endonucleases. Type I and type III restriction systems have dual properties. They may either act as methylases and protect the host's own DNA against restriction by methylating specific residues, or they catalyse ATP-dependent endonuclease activity so that invading foreign DNA lacking the host-specific methylation is degraded. These defence mechanism systems are further complemented by the presence of methylation-dependent, GTP-dependent endonucleases, that restricts specifically methylated DNA. Although all three types of endonucleases are structurally very different, they share a common functional mechanism. They recognise and bind to specific DNA sequences but do not cleave DNA within those target sites. They belong to the general class of DNA motor proteins, which use the free energy associated with nucleoside 5'-triphosphate hydrolysis to translocate DNA so that the subsequent DNA cleavage event occurs at a distance from the endonuclease recognition site. Moreover, DNA cleavage appears to be a random process triggered upon stalling of the DNA translocation process and requiring dimerisation of the bound endonucleases for a concerted break of both DNA strands. In this review, we present a detailed description and analysis of the functional mechanism of the three known NTP-dependent restriction systems: type I and type III restriction-modification enzymes, as well as the methylation-dependent McrBC endonuclease.
Collapse
Affiliation(s)
- Aude A Bourniquel
- Department of Molecular Microbiology, Biozentrum, University of Basel, Klingelbergstrasse 50-70, Switzerland.
| | | |
Collapse
|
33
|
Mücke M, Reich S, Möncke-Buchner E, Reuter M, Krüger DH. DNA cleavage by type III restriction-modification enzyme EcoP15I is independent of spacer distance between two head to head oriented recognition sites. J Mol Biol 2001; 312:687-98. [PMID: 11575924 DOI: 10.1006/jmbi.2001.4998] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The type III restriction-modification enzyme EcoP15I requires the interaction of two unmethylated, inversely oriented recognition sites 5'-CAGCAG in head to head configuration to allow an efficient DNA cleavage. It has been hypothesized that two convergent DNA-translocating enzyme-substrate complexes interact to form the active cleavage complex and that translocation is driven by ATP hydrolysis. Using a half-automated, fluorescence-based detection method, we investigated how the distance between two inversely oriented recognition sites affects DNA cleavage efficiency. We determined that EcoP15I cleaves DNA efficiently even for two adjacent head to head or tail to tail oriented target sites. Hence, DNA translocation appears not to be required for initiating DNA cleavage in these cases. Furthermore, we report here that EcoP15I is able to cleave single-site substrates. When we analyzed the interaction of EcoP15I with DNA substrates containing adjacent target sites in the presence of non-hydrolyzable ATP analogues, we found that cleavage depended on the hydrolysis of ATP. Moreover, we show that cleavage occurs at only one of the two possible cleavage positions of an interacting pair of target sequences. When EcoP15I bound to a DNA substrate containing one recognition site in the absence of ATP, we observed a 36 nucleotide DNaseI-footprint that is asymmetric on both strands. All of our footprinting experiments showed that the enzyme did not cover the region around the cleavage site. Analyzing a DNA fragment with two head to head oriented recognition sites, EcoP15I protected 27-33 nucleotides around the recognition sequence, including an additional region of 26 bp between both cleavage sites. For all DNA substrates examined, the presence of ATP caused altered footprinting patterns. We assume that the altered patterns are most likely due to a conformational change of the enzyme. Overall, our data further refine the tracking-collision model for type III restriction enzymes.
Collapse
Affiliation(s)
- M Mücke
- Institut für Virologie, Medizinische Fakultät (Charité), der Humboldt-Universität zu Berlin, D-10098, Germany
| | | | | | | | | |
Collapse
|
34
|
Abstract
FokI is a bipartite restriction endonuclease that recognizes a non-palindromic DNA sequence, and then makes double-stranded cuts outside of that sequence to leave a 5' overhang. Earlier kinetic and crystallographic studies suggested that FokI might function as a dimer. Here, we show, using dynamic light-scattering, gel-filtration and analytical ultracentrifugation, that FokI dimerizes only in the presence of divalent metal ions. Furthermore, analysis of the DNA-bound complex reveals that two copies of the recognition sequence are incorporated into the dimeric complex and that formation of this complex is essential for full activation of cleavage. These results have broad implications for the mechanism by which monomeric type II endonucleases achieve high fidelity.
Collapse
Affiliation(s)
- E S Vanamee
- Department of Physiology and Biophysics, Mount Sinai School of Medicine, NY 10029, USA
| | | | | |
Collapse
|
35
|
Sapranauskas R, Sasnauskas G, Lagunavicius A, Vilkaitis G, Lubys A, Siksnys V. Novel subtype of type IIs restriction enzymes. BfiI endonuclease exhibits similarities to the EDTA-resistant nuclease Nuc of Salmonella typhimurium. J Biol Chem 2000; 275:30878-85. [PMID: 10880511 DOI: 10.1074/jbc.m003350200] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The type IIs restriction enzyme BfiI recognizes the non-palindromic nucleotide sequence 5'-ACTGGG-3' and cleaves complementary DNA strands 5/4 nucleotides downstream of the recognition sequence. The genes coding for the BfiI restriction-modification (R-M) system were cloned/sequenced and biochemical characterization of BfiI restriction enzyme was performed. The BfiI R-M system contained three proteins: two N4-methylcytosine methyltransferases and a restriction enzyme. Sequencing of bisulfite-treated methylated DNA indicated that each methyltransferase modifies cytosines on opposite strands of the recognition sequence. The N-terminal part of the BfiI restriction enzyme amino acid sequence revealed intriguing similarities to an EDTA-resistant nuclease of Salmonella typhimurium. Biochemical analyses demonstrated that BfiI, like the nuclease of S. typhimurium, cleaves DNA in the absence of Mg(2+) ions and hydrolyzes an artificial substrate bis(p-nitrophenyl) phosphate. However, unlike the nonspecific S. typhimurium nuclease, BfiI restriction enzyme cleaves DNA specifically. We propose that the DNA-binding specificity of BfiI stems from the C-terminal part of the protein. The catalytic N-terminal subdomain of BfiI radically differs from that of type II restriction enzymes and is presumably similar to the EDTA-resistant nonspecific nuclease of S. typhimurium; therefore, BfiI did not require metal ions for catalysis. We suggest that BfiI represents a novel subclass of type IIs restriction enzymes that differs from the archetypal FokI endonuclease by the fold of its cleavage domain, the domain location, and reaction mechanism.
Collapse
Affiliation(s)
- R Sapranauskas
- Institute of Biotechnology, Graiciuno 8, Vilnius 2028, Lithuania
| | | | | | | | | | | |
Collapse
|
36
|
Smith J, Bibikova M, Whitby FG, Reddy AR, Chandrasegaran S, Carroll D. Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Res 2000; 28:3361-9. [PMID: 10954606 PMCID: PMC110700 DOI: 10.1093/nar/28.17.3361] [Citation(s) in RCA: 300] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study concerns chimeric restriction enzymes that are hybrids between a zinc finger DNA-binding domain and the non-specific DNA-cleavage domain from the natural restriction enzyme FOK:I. Because of the flexibility of DNA recognition by zinc fingers, these enzymes are potential tools for cleaving DNA at arbitrarily selected sequences. Efficient double-strand cleavage by the chimeric nucleases requires two binding sites in close proximity. When cuts were mapped on the DNA strands, it was found that they occur in pairs separated by approximately 4 bp with a 5' overhang, as for native FOK:I. Furthermore, amino acid changes in the dimer interface of the cleavage domain abolished activity. These results reflect a requirement for dimerization of the cleavage domain. The dependence of cleavage efficiency on the distance between two inverted binding sites was determined and both upper and lower limits were defined. Two different zinc finger combinations binding to non-identical sites also supported specific cleavage. Molecular modeling was employed to gain insight into the precise location of the cut sites. These results define requirements for effective targets of chimeric nucleases and will guide the design of novel specificities for directed DNA cleavage in vitro and in vivo.
Collapse
Affiliation(s)
- J Smith
- Department of Environmental Health Sciences, The Johns Hopkins University School of Hygiene and Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
37
|
Friedrich T, Fatemi M, Gowhar H, Leismann O, Jeltsch A. Specificity of DNA binding and methylation by the M.FokI DNA methyltransferase. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1480:145-59. [PMID: 11004560 DOI: 10.1016/s0167-4838(00)00065-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The M.FokI adenine-N(6) DNA methyltransferase recognizes the asymmetric DNA sequence GGATG/CATCC. It consists of two domains each containing all motifs characteristic for adenine-N(6) DNA methyltransferases. We have studied the specificity of DNA-methylation by both domains using 27 hemimethylated oligonucleotide substrates containing recognition sites which differ in one or two base pairs from GGATG or CATCC. The N-terminal domain of M.FokI interacts very specifically with GGATG-sequences, because only one of the altered sites is modified. In contrast, the C-terminal domain shows lower specificity. It prefers CATCC-sequences but only two of the 12 star sites (i.e. sites that differ in 1 bp from the recognition site) are not accepted and some star sites are modified with rates reduced only 2-3-fold. In addition, GGATGC- and CGATGC-sites are modified which differ at two positions from CATCC. DNA binding experiments show that the N-terminal domain preferentially binds to hemimethylated GGATG/C(m)ATCC sequences whereas the C-terminal domain binds to DNA with higher affinity but without specificity. Protein-protein interaction assays show that both domains of M.FokI are in contact with each other. However, several DNA-binding experiments demonstrate that DNA-binding of both domains is mutually exclusive in full-length M.FokI and both domains do not functionally influence each other. The implications of these results on the molecular evolution of type IIS restriction/modification systems are discussed.
Collapse
Affiliation(s)
- T Friedrich
- Institut für Biochemie, Fachbereich 8, Heinrich-Buff-Ring 58, 35392, Giessen, Germany
| | | | | | | | | |
Collapse
|
38
|
Kaczorowski T, Sektas M, Skowron P, Podhajska AJ. The FokI methyltransferase from Flavobacterium okeanokoites. Purification and characterization of the enzyme and its truncated derivatives. Mol Biotechnol 1999; 13:1-15. [PMID: 10934517 DOI: 10.1385/mb:13:1:1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The gene encoding the FokI methyltransferase from Flavobacterium okeanokoites was cloned into an Escherichia coli vector. The transcriptional start sites were mapped as well as putative -10 and -35 regions of the fokIM promoter. Enzyme overproduction was ensured by cloning the fokIM gene under the phi 10 promoter of phase T7. M.FokI was purified using a two-step chromatography procedure. M.FokI is a monomeric protein with a M(r) = 76,000 +/- 1,500 under denaturing conditions. It contains 21 Arg residues, and at least one of which is required for activity as shown by inhibition using 2,3-butanedione. Deletion mutants in the N- and C-terminus of M.FokI were isolated and characterized. The N-terminal derivative (M.FokIN) methylates the adenine residue within the sequence 5'-GGATG-3', whereas the C-terminal derivative (M.FokIC) modifies the adenine residue within the sequence 5'-CATCC-3'. Substrate-protection studies, utilizing chemical modification combined with data on the effect of divalent cations and pH on methylation activity, proved the existence of two catalytic centers within the FokI methyltransferase molecule. M.FokI and its truncated derivatives require S-adenosyl-L-methionine as the methyl-group donor, and they are strongly inhibited by divalent cations (Mg2+, Ca2+, Ba2+, Mn2+, and Zn2+) and S-adenosyl-L-homocysteine. The Km values for the methyl donor, S-adenosyl-L-methionine are 0.6 microM (M.FokI), 0.4 microM (M.FokIN), and 0.9 microM (M.FokIC) while the Km values for substrate lambda DNA are 1.2 nM (M.FokI), 1.4 nM (M.FokIN), and 1.3 nM (M.FokIC).
Collapse
Affiliation(s)
- T Kaczorowski
- Department of Microbiology, University of Gdansk, Poland.
| | | | | | | |
Collapse
|
39
|
Jeltsch A, Christ F, Fatemi M, Roth M. On the substrate specificity of DNA methyltransferases. adenine-N6 DNA methyltransferases also modify cytosine residues at position N4. J Biol Chem 1999; 274:19538-44. [PMID: 10391886 DOI: 10.1074/jbc.274.28.19538] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Methylation of DNA is important in many organisms and essential in mammals. Nucleobases can be methylated at the adenine-N6, cytosine-N4, or cytosine-C5 atoms by specific DNA methyltransferases. We show here that the M.EcoRV, M.EcoRI, and Escherichia coli dam methyltransferases as well as the N- and C-terminal domains of the M. FokI enzyme, which were formerly all classified as adenine-N6 DNA methyltransferases, also methylate cytosine residues at position N4. Kinetic analyses demonstrate that the rate of methylation of cytosine residues by M.EcoRV and the M.FokI enzymes is reduced by only 1-2 orders of magnitude in relation to methylation of adenines. This result shows that although these enzymes methylate DNA in a sequence specific manner, they have a low substrate specificity with respect to the target base. This unexpected finding has implications on the mechanism of adenine-N6 DNA methyltransferases. Sequence comparisons suggest that adenine-N6 and cytosine-N4 methyltransferases have changed their reaction specificity at least twice during evolution, a model that becomes much more likely given the partial functional overlap of both enzyme types. In contrast, methylation of adenine residues by the cytosine-N4 methyltransferase M.BamHI was not detectable. On the basis of our results, we suggest that adenine-N6 and cytosine-N4 methyltransferases should be grouped into one enzyme family.
Collapse
Affiliation(s)
- A Jeltsch
- Institut für Biochemie, Fachbereich Biologie, Heinrich-Buff-Ring 58, 35392 Giessen, Germany.
| | | | | | | |
Collapse
|
40
|
Abstract
Chimeric restriction enzymes are a novel class of engineered nucleases in which the non-specific DNA cleavage domain of Fokl (a type IIS restriction endonuclease) is fused to other DNA-binding motifs. The latter include the three common eukaryotic DNA-binding motifs, namely the helix-turn-helix motif, the zinc finger motif and the basic helix-loop-helix protein containing a leucine zipper motif. Such chimeric nucleases have been shown to make specific cuts in vitro very close to the expected recognition sequences. The most important chimeric nucleases are those based on zinc finger DNA-binding proteins because of their modular structure. Recently, one such chimeric nuclease, Zif-QQR-F(N) was shown to find and cleave its target in vivo. This was tested by microinjection of DNA substrates and the enzyme into frog oocytes (Carroll et al., 1999). The injected enzyme made site-specific double-strand breaks in the targets even after assembly of the DNA into chromatin. In addition, this cleavage activated the target molecules for efficient homologous recombination. Since the recognition specificity of zinc fingers can be manipulated experimentally, chimeric nucleases could be engineered so as to target a specific site within a genome. The availability of such engineered chimeric restriction enzymes should make it feasible to do genome engineering, also commonly referred to as gene therapy.
Collapse
Affiliation(s)
- S Chandrasegaran
- Department of Environmental Health Sciences, School of Public Health, The Johns Hopkins University, Baltimore, MD 21205, USA
| | | |
Collapse
|
41
|
Su P, Im H, Hsieh H, Kang'A S, Dunn NW. LlaFI, a type III restriction and modification system in Lactococcus lactis. Appl Environ Microbiol 1999; 65:686-93. [PMID: 9925601 PMCID: PMC91080 DOI: 10.1128/aem.65.2.686-693.1999] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe a type III restriction and modification (R/M) system, LlaFI, in Lactococcus lactis. LlaFI is encoded by a 12-kb native plasmid, pND801, harbored in L. lactis LL42-1. Sequencing revealed two adjacent open reading frames (ORFs). One ORF encodes a 680-amino-acid polypeptide, and this ORF is followed by a second ORF which encodes an 873-amino-acid polypeptide. The two ORFs appear to be organized in an operon. A homology search revealed that the two ORFs exhibited significant similarity to type III restriction (Res) and modification (Mod) subunits. The complete amino acid sequence of the Mod subunit of LlaFI was aligned with the amino acid sequences of four previously described type III methyltransferases. Both the N-terminal regions and the C-terminal regions of the Mod proteins are conserved, while the central regions are more variable. An S-adenosyl methionine (Ado-Met) binding motif (present in all adenine methyltransferases) was found in the N-terminal region of the Mod protein. The seven conserved helicase motifs found in the previously described type III R/M systems were found at the same relative positions in the LlaFI Res sequence. LlaFI has cofactor requirements for activity that are characteristic of the previously described type III enzymes. ATP and Mg2+ are required for endonucleolytic activity; however, the activity is not strictly dependent on the presence of Ado-Met but is stimulated by it. To our knowledge, this is the first type III R/M system that has been characterized not just in lactic acid bacteria but also in gram-positive bacteria.
Collapse
Affiliation(s)
- P Su
- Gist-Brocades Australia, Moorebank NSW 2170, Australia.
| | | | | | | | | |
Collapse
|
42
|
Bitinaite J, Wah DA, Aggarwal AK, Schildkraut I. FokI dimerization is required for DNA cleavage. Proc Natl Acad Sci U S A 1998; 95:10570-5. [PMID: 9724744 PMCID: PMC27935 DOI: 10.1073/pnas.95.18.10570] [Citation(s) in RCA: 345] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
FokI is a type IIs restriction endonuclease comprised of a DNA recognition domain and a catalytic domain. The structural similarity of the FokI catalytic domain to the type II restriction endonuclease BamHI monomer suggested that the FokI catalytic domains may dimerize. In addition, the FokI structure, presented in an accompanying paper in this issue of Proceedings, reveals a dimerization interface between catalytic domains. We provide evidence here that FokI catalytic domain must dimerize for DNA cleavage to occur. First, we show that the rate of DNA cleavage catalyzed by various concentrations of FokI are not directly proportional to the protein concentration, suggesting a cooperative effect for DNA cleavage. Second, we constructed a FokI variant, FokN13Y, which is unable to bind the FokI recognition sequence but when mixed with wild-type FokI increases the rate of DNA cleavage. Additionally, the FokI catalytic domain that lacks the DNA binding domain was shown to increase the rate of wild-type FokI cleavage of DNA. We also constructed an FokI variant, FokD483A, R487A, which should be defective for dimerization because the altered residues reside at the putative dimerization interface. Consistent with the FokI dimerization model, the variant FokD483A, R487A revealed greatly impaired DNA cleavage. Based on our work and previous reports, we discuss a pathway of DNA binding, dimerization, and cleavage by FokI endonuclease.
Collapse
Affiliation(s)
- J Bitinaite
- New England Biolabs, Inc., 32 Tozer Road, Beverly, MA 01915, USA
| | | | | | | |
Collapse
|
43
|
Wah DA, Bitinaite J, Schildkraut I, Aggarwal AK. Structure of FokI has implications for DNA cleavage. Proc Natl Acad Sci U S A 1998; 95:10564-9. [PMID: 9724743 PMCID: PMC27934 DOI: 10.1073/pnas.95.18.10564] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
FokI is a member an unusual class of restriction enzymes that recognize a specific DNA sequence and cleave nonspecifically a short distance away from that sequence. FokI consists of an N-terminal DNA recognition domain and a C-terminal cleavage domain. The bipartite nature of FokI has led to the development of artificial enzymes with novel specificities. We have solved the structure of FokI to 2.3 A resolution. The structure reveals a dimer, in which the dimerization interface is mediated by the cleavage domain. Each monomer has an overall conformation similar to that found in the FokI-DNA complex, with the cleavage domain packing alongside the DNA recognition domain. In corroboration with the cleavage data presented in the accompanying paper in this issue of Proceedings, we propose a model for FokI DNA cleavage that requires the dimerization of FokI on DNA to cleave both DNA strands.
Collapse
Affiliation(s)
- D A Wah
- Structural Biology Program, Department of Physiology and Biophysics, Box 1677, 1425 Madison Avenue, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|
44
|
Wah DA, Hirsch JA, Dorner LF, Schildkraut I, Aggarwal AK. Structure of the multimodular endonuclease FokI bound to DNA. Nature 1997; 388:97-100. [PMID: 9214510 DOI: 10.1038/40446] [Citation(s) in RCA: 199] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
FokI is a member of an unusual class of bipartite restriction enzymes that recognize a specific DNA sequence and cleave DNA nonspecifically a short distance away from that sequence. Because of its unusual bipartite nature, FokI has been used to create artificial enzymes with new specificities. We have determined the crystal structure at 2.8A resolution of the complete FokI enzyme bound to DNA. As anticipated, the enzyme contains amino- and carboxy-terminal domains corresponding to the DNA-recognition and cleavage functions, respectively. The recognition domain is made of three smaller subdomains (D1, D2 and D3) which are evolutionarily related to the helix-turn-helix-containing DNA-binding domain of the catabolite gene activator protein CAP. The CAP core has been extensively embellished in the first two subdomains, whereas in the third subdomain it has been co-opted for protein-protein interactions. Surprisingly, the cleavage domain contains only a single catalytic centre, raising the question of how monomeric FokI manages to cleave both DNA strands. Unexpectedly, the cleavage domain is sequestered in a 'piggyback' fashion by the recognition domain. The structure suggests a new mechanism for nuclease activation and provides a framework for the design of chimaeric enzymes with altered specificities.
Collapse
Affiliation(s)
- D A Wah
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York 10032, USA
| | | | | | | | | |
Collapse
|
45
|
Huang B, Schaeffer CJ, Li Q, Tsai MD. Splase: a new class IIS zinc-finger restriction endonuclease with specificity for Sp1 binding sites. JOURNAL OF PROTEIN CHEMISTRY 1996; 15:481-9. [PMID: 8895094 DOI: 10.1007/bf01886856] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A new restriction endonuclease, named Splase, was constructed by genetically fusing the DNA-cleavage domain of the restriction endonuclease Fok1 with the zinc-finger DNA-binding domain of the transcription factor Sp1. The resulting protein was expressed in Escherichia coli., partially purified, and shown to selectively digest plasmid DNA harboring consensus Sp1 sites. Splase was also shown to selectively digest the long terminal repeat of the HIV-1 DNA at Sp1 sites. Splase recognizes a 10-bp DNA sequence and hydrolyzes phosphodiester bonds upstream of the binding sequence. The binding specificity of Splase makes this a "rare cutter" restriction enzyme which could be valuable in creating large DNA fragments for genome sequencing projects. The result also presents the opportunity to create other restriction enzymes by altering the binding specificity of the zinc-finger recognition helix.
Collapse
Affiliation(s)
- B Huang
- Ohio State Biochemistry Program, Ohio State University, Columbus 43210, USA
| | | | | | | |
Collapse
|
46
|
Abdurashitov MA, Kileva EV, Shinkarenko NM, Shevchenko AV, Dedkov VS, Degtyarev SK. BstF5I, an unusual isoschizomer of FokI. Gene 1996; 172:49-51. [PMID: 8654990 DOI: 10.1016/0378-1119(96)85083-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BstF5I, a new restriction endonuclease (ENase) from Bacillus stearothermophilus F5, has been discovered. This enzyme recognizes 5'-GGATG-3' and cleaves DNA, generating a 2-base 3'extension: 5'-GGATG NN[symbol: see text]-3' 3'-CCTAC[symbol: see text]NN-5' BstF5I is an isoschizomer of FokI and seems to be evolutionarily close to other nonpalindromic-recognizing ENases from thermophilic bacilli.
Collapse
|
47
|
Skowron PM, Harasimowicz R, Rutkowska SM. GCN4 eukaryotic transcription factor/FokI endonuclease-mediated 'Achilles' heel cleavage': quantitative study of protein-DNA interaction. Gene 1996; 170:1-8. [PMID: 8621067 DOI: 10.1016/0378-1119(95)00857-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Three proteins, yeast transcription regulatory protein GCN4, M.FokI DNA methyltransferase and R.FokI restriction endonuclease (ENase) were used to attain specific cleavage of DNA at the 18-20-bp GCN4 recognition site. This is a novel version of the 'Achilles' heel cleavage' (AC) technique [Koob et al., Science 241 (1988) 1084-1086]. Since the method employs a class-IIS ENase (R.FokI), which cleaves the DNA outside of its recognition sequence, it leaves the overlapping GCN4-binding intact. Thus, the same GCN4 site can be used in consecutive cleavage reactions. This novel GCN4-IIS-AC technique was applied to study the protein-DNA interaction. Quantitative analysis of the effect of temperature, reaction time, and GCN4 and M.FokI concentrations allowed determination of the GCN4-DNA complex half-life, which was found to be 7 h at 30 degrees C, 18 h at 22 degrees C and over 24 h at 10 degrees C. In addition, conditions for controlled, partial GCN4-IIS-AC digestion of DNA were determined, and applied to the physical mapping of large genomes.
Collapse
Affiliation(s)
- P M Skowron
- University of Wisconsin-Madison, McArdle Laboratory for Cancer Research, Madison, WI 53706, USA
| | | | | |
Collapse
|
48
|
Kita K, Suisha M, Shintoh M, Yanase H, Kato N. Overproduction and characterization of the StsI restriction endonuclease. Gene 1996; 169:69-73. [PMID: 8635752 DOI: 10.1016/0378-1119(95)00797-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The StsI restriction endonuclease (R-StsI), a class-IIS restriction endonuclease, found in Streptococcus sanguis 54, is a heteroschizomer of R-FokI, which recognizes 5'-GGATG-3'. To overproduce R-StsI in Escherichia coli, the coding region of R-StsI was joined to the tac promoter of an expression vector, pKK223-3. By introduction of the plasmid into E. coli UT481 cells expressing the fokIM gene, R-StsI activity was overproduced, from which R-StsI was purified homogeneously. We compared the properties of R-StsI with those of R-FokI. The optimum reaction conditions for R-StsI were quite different fron those for R-FokI. R-StsI is an acidic protein (pI 6.3). Anti-R-StsI serum did not cross-react with R-FokI, indicating three-dimensional structural dissimilarity. The domain structure of R-StsI was elucidated by digestion with trypsin. In the presence of substrate DNA, R-StsI was digested to yield 45-kDa N-terminal and 23-kDa C-terminal fragments. The amino-acid sequences around the trypsin cleavage sites of R-StsI and R-FokI were quite homologous.
Collapse
Affiliation(s)
- K Kita
- Department of Biotechnology, Tottori University, Japan.
| | | | | | | | | |
Collapse
|
49
|
Yonezawa A, Sugiura Y. DNA binding mode of class-IIS restriction endonuclease FokI revealed by DNA footprinting analysis. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1219:369-79. [PMID: 7918634 DOI: 10.1016/0167-4781(94)90061-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We investigate the interaction of FokI with its DNA recognition sequence by several footprinting techniques. Methylation of three guanine bases in the recognition sequence 5'-GGATG-3' is strongly protected by FokI binding, whereas other guanine bases are not masked from the modification. In footprinting using the methidiumpropyl-EDTA-Fe(II) complex, binding of FokI strongly inhibits cleavage by the footprinting reagent at and near the recognition sequence. In high-resolution footprinting techniques using hydroxyl radical and the bleomycin-Fe(II) complex, all footprints in each binding site clearly face one side of the DNA helix. Interference analysis with FokI digestion by preethylation of phosphate groups suggests that essential phosphates for FokI digestion are located at and near the recognition sequence and the cleavage site. Evidently, the results indicate that (i) the sequence-recognition of FokI occurs in the major groove and that (ii) the enzyme interacts with its target DNA from one side of the DNA helix.
Collapse
Affiliation(s)
- A Yonezawa
- Institute for Chemical Research, Kyoto University, Japan
| | | |
Collapse
|
50
|
Campbell R, Gosden CM, Bonthron DT. Parental origin of transcription from the human GNAS1 gene. J Med Genet 1994; 31:607-14. [PMID: 7815417 PMCID: PMC1050021 DOI: 10.1136/jmg.31.8.607] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Variation in the phenotypic expression of Albright's hereditary osteodystrophy (AHO) determined by the parent of transmission, suggests that the human Gs alpha gene (GNAS1), in which mutations occur in AHO, may be under imprinted control. GNAS1 is also known to map to a chromosomal region (20q13.11) showing syntenic homology with the imprinted mouse region 2E1-2H3. To establish if GNAS1 is indeed imprinted, we have examined the parental origin of GNAS1 transcription in human fetal tissues. Of 75 fetuses genotyped, at gestational ages ranging from 6 to 13 weeks, 13 heterozygous for a FokI polymorphism in exon 5 of GNAS1 were identified whose mothers were homozygous for one or other allele. RNA from up to 10 different tissues from each fetus was analysed by RT-PCR. In all cases expression from both parental alleles was shown by FokI digestion of RT-PCR products and quantification of the resulting fragments. No tissue specific pattern of expression was discerned in these experiments. If genomic imprinting regulates the expression of the human GNAS1 gene, our data suggest that the effect must either be subtle and quantitative, or be confined to a small subset of specialised hormone responsive cells within the target tissues.
Collapse
Affiliation(s)
- R Campbell
- Human Genetics Unit, University of Edinburgh, Western General Hospital, UK
| | | | | |
Collapse
|