1
|
Nazha A, Sekeres MA, Gore SD, Zeidan AM. Molecular Testing in Myelodysplastic Syndromes for the Practicing Oncologist: Will the Progress Fulfill the Promise? Oncologist 2015. [PMID: 26194858 DOI: 10.1634/theoncologist.2015-0067] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Myelodysplastic syndromes (MDS) are heterogeneous hematopoietic neoplasms that are driven by somatically acquired genetic mutations and epigenetic alterations. Accurate risk stratification is essential for delivery of risk-adaptive therapeutic interventions. The current prognostic tools sum the impact of clinical, pathologic, and laboratory parameters. Newer technologies with next-generation targeted deep sequencing and whole-genome and -exome sequencing have identified several recurrent mutations that play a vital role in the pathophysiology of MDS and the impact of these genetic changes on disease phenotype. Equally important, well-annotated databases of MDS patients with paired clinicopathologic and genetic data have enabled better understanding of the independent prognostic impact of several molecular mutations on important clinical endpoints such as overall survival and probability of leukemic progression. Cumulative evidence suggests that genomic data can also be used clinically to aid with the diagnosis, prognosis, prediction of response to specific therapies, and the development of novel and rationally targeted therapies. However, the optimal use of this mutational profiling remains a work in progress and currently there is no standard set of genes or techniques that are recommended for routine use in the clinic. In this review, we discuss the genomic revolution and its impact on our understanding of MDS biology and risk stratification. We also discuss the current role and the challenges of the application of genetic mutational data into daily clinical practice and how future research could help improve the prognostication precision and specific therapy selection for patients with MDS. IMPLICATIONS FOR PRACTICE Heterogeneity in clinical outcomes of MDS is partly related to interpatient variability of recurrent somatic mutations that drive disease phenotype and progression. Although clinical risk stratification tools have functioned well in prognostication for patients with MDS, their ability to predict clinical benefits of specific MDS therapies is limited. Molecular testing shows promise in aiding diagnosis, risk stratification, and therapy-specific benefit prediction for MDS patients. Nonetheless, logistical issues related to assay performance standardization, validation, interpretation, and development of guidelines for how to use the results to inform clinical decisions are yet to be resolved.
Collapse
Affiliation(s)
- Aziz Nazha
- Leukemia Program, Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Mikkael A Sekeres
- Leukemia Program, Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Steven D Gore
- Section of Hematology, Department of Internal Medicine, Yale University and Yale Comprehensive Cancer Center, New Haven, Connecticut, USA
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale University and Yale Comprehensive Cancer Center, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Ortiz ME, Endy D. Engineered cell-cell communication via DNA messaging. J Biol Eng 2012; 6:16. [PMID: 22958599 PMCID: PMC3509006 DOI: 10.1186/1754-1611-6-16] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 09/01/2012] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED BACKGROUND Evolution has selected for organisms that benefit from genetically encoded cell-cell communication. Engineers have begun to repurpose elements of natural communication systems to realize programmed pattern formation and coordinate other population-level behaviors. However, existing engineered systems rely on system-specific small molecules to send molecular messages among cells. Thus, the information transmission capacity of current engineered biological communication systems is physically limited by specific biomolecules that are capable of sending only a single message, typically "regulate transcription." RESULTS We have engineered a cell-cell communication platform using bacteriophage M13 gene products to autonomously package and deliver heterologous DNA messages of varying lengths and encoded functions. We demonstrate the decoupling of messages from a common communication channel via the autonomous transmission of various arbitrary genetic messages. Further, we increase the range of engineered DNA messaging across semisolid media by linking message transmission or receipt to active cellular chemotaxis. CONCLUSIONS We demonstrate decoupling of a communication channel from message transmission within engineered biological systems via the autonomous targeted transduction of user-specified heterologous DNA messages. We also demonstrate that bacteriophage M13 particle production and message transduction occurs among chemotactic bacteria. We use chemotaxis to improve the range of DNA messaging, increasing both transmission distance and communication bit rates relative to existing small molecule-based communication systems. We postulate that integration of different engineered cell-cell communication platforms will allow for more complex spatial programming of dynamic cellular consortia.
Collapse
Affiliation(s)
- Monica E Ortiz
- Bioengineering Department, Stanford University, Y2E2 Room 269B, 473 Via Ortega, Stanford, CA, 94305-4201, USA
| | - Drew Endy
- Bioengineering Department, Stanford University, Y2E2 Room 269B, 473 Via Ortega, Stanford, CA, 94305-4201, USA
| |
Collapse
|
3
|
Specificity of the E. coli LysR-type transcriptional regulators. PLoS One 2010; 5:e15189. [PMID: 21187915 PMCID: PMC3004787 DOI: 10.1371/journal.pone.0015189] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 10/29/2010] [Indexed: 12/12/2022] Open
Abstract
Background Families of paralogous oligomeric proteins are common in biology. How the specificity of assembly evolves is a fundamental question of biology. The LysR-Type Transcriptional Regulators (LTTR) form perhaps the largest family of transcriptional regulators in bacteria. Because genomes often encode many LTTR family members, it is assumed that many distinct homooligomers are formed simultaneously in the same cell without interfering with each other's activities, suggesting specificity in the interactions. However, this assumption has not been systematically tested. Methodology/Principal Findings A negative-dominant assay with λcI repressor fusions was used to evaluate the assembly of the LTTRs in E. coli K-12. Thioredoxin (Trx)-LTTR fusions were used to challenge the homooligomeric interactions of λcI-LTTR fusions. Eight cI-LTTR fusions were challenged with twenty-eight Trx fusions. LTTRs could be divided into three classes based on their interactions with other LTTRs. Conclusions/Significance Multimerization of LTTRs in E. coli K-12 is mostly specific. However, under the conditions of the assay, many LTTRs interact with more than one noncognate partner. The physiological significance and physical basis for these interactions are not known.
Collapse
|
4
|
Abstract
This unit describes the procedure for subcloning the sequence encoding the protein of interest into an maltose-binding protein (MBP) vector, and expressing and purifying the fusion protein from the cytoplasm. MBP vectors include a sequence that encodes the four-amino-acid recognition site for the specific protease factor Xa. The site is placed so it can be used to separate the protein of interest from MBP after affinity purification. A support protocol provides a pilot experiment for analyzing the solubility, affinity for the amylose resin, and export of a particular fusion protein. An alternate protocol gives instructions for purifying a fusion protein from the periplasm for fusions that are made in the signal sequence vector and are exported. Additional support protocols detail two different chromatographic methods for separating the protein of interest from MBP after factor Xa cleavage.
Collapse
Affiliation(s)
- P Riggs
- New England Biolabs, Beverly, Massachusetts, USA
| |
Collapse
|
5
|
Coddeville M, Auvray F, Mikkonen M, Ritzenthaler P. Single independent operator sites are involved in the genetic switch of the Lactobacillus delbrueckii bacteriophage mv4. Virology 2007; 364:256-68. [PMID: 17412387 DOI: 10.1016/j.virol.2007.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 12/31/2006] [Accepted: 02/09/2007] [Indexed: 11/21/2022]
Abstract
The lysogeny region of the Lactobacillus delbrueckii bacteriophage mv4 contains two divergently oriented ORFs coding for the Rep (221 aa) and Tec (64 aa) proteins. The transcription of these two genes was analysed by primer extension and Northern blot experiments on lysogenic strains. The location of the transcription initiation sites of rep and tec in the intergenic region allowed the identification of the divergently oriented non overlapping promoters P(rep) and P(tec). Transcriptional fusions analysis showed that Rep negatively regulates the P(tec) promoter and activates its own transcription, and that Tec is a negative regulator of the two promoters. As demonstrated by gel mobility shift assays, the repressor Rep binds to a single specific 17 bp site located between the P(tec) -10 and -35 regions whereas Tec binds to a single specific 40 bp long complex operator site located between the two promoters. The presence of a single specific operator site for each repressor in the intergenic region is an unusual feature.
Collapse
Affiliation(s)
- Michèle Coddeville
- Laboratoire de Microbiologie et de Génétique Moléculaire du CNRS, Université Paul Sabatier, Bat IBCG, 118 route de Narbonne, Toulouse Cedex, France
| | | | | | | |
Collapse
|
6
|
Handa N, Kowalczykowski SC. A RecA mutant, RecA(730), suppresses the recombination deficiency of the RecBC(1004)D-chi* interaction in vitro and in vivo. J Mol Biol 2006; 365:1314-25. [PMID: 17141804 PMCID: PMC1847798 DOI: 10.1016/j.jmb.2006.10.090] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 10/20/2006] [Accepted: 10/25/2006] [Indexed: 11/18/2022]
Abstract
In Escherichia coli, homologous recombination initiated at double-stranded DNA breaks requires the RecBCD enzyme, a multifunctional heterotrimeric complex that possesses processive helicase and exonuclease activities. Upon encountering the DNA regulatory sequence, chi, the enzymatic properties of RecBCD enzyme are altered. Its helicase activity is reduced, the 3'-->5'nuclease activity is attenuated, the 5'-->3' nuclease activity is up-regulated, and it manifests an ability to load RecA protein onto single-stranded DNA. The net result of these changes is the production of a highly recombinogenic structure known as the presynaptic filament. Previously, we found that the recC1004 mutation alters chi-recognition so that this mutant enzyme recognizes an altered chi sequence, chi*, which comprises seven of the original nucleotides in chi, plus four novel nucleotides. Although some consequences of this mutant enzyme-mutant chi interaction could be detected in vivo and in vitro, stimulation of recombination in vivo could not. To resolve this seemingly contradictory observation, we examined the behavior of a RecA mutant, RecA(730), that displays enhanced biochemical activity in vitro and possesses suppressor function in vivo. We show that the recombination deficiency of the RecBC(1004)D-chi* interaction can be overcome by the enhanced ability of RecA(730) to assemble on single-stranded DNA in vitro and in vivo. These data are consistent with findings showing that the loading of RecA protein by RecBCD is necessary in vivo, and they show that RecA proteins with enhanced single-stranded DNA-binding capacity can partially bypass the need for RecBCD-mediated loading.
Collapse
|
7
|
Frumerie C, M Eriksson J, Dugast M, Haggård-Ljungquist E. Dimerization of bacteriophage P2 integrase is not required for binding to its DNA target but for its biological activity. Gene 2005; 344:221-31. [PMID: 15656988 DOI: 10.1016/j.gene.2004.09.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Revised: 08/30/2004] [Accepted: 09/28/2004] [Indexed: 11/27/2022]
Abstract
Coliphage P2 integrates into the host chromosome upon lysogenization via site-specific recombination mediated by the phage integrase (Int). P2 integrase belongs to the tyrosine family of recombinases. In this work, it is shown that P2 integrase forms dimers but not oligomers in the absence of its DNA target. Furthermore, the C-terminal end of the protein and amino acid (aa) E197 have been found to be involved in dimerization. Amino acid E197 is located in a conserved region of the tyrosine recombinases that has not previously been implicated in dimerization. The dimerization deficient mutants were unaffected in binding to its phage attachment site (attP) substrate, but had a reduced ability to complement an int-defective prophage.
Collapse
Affiliation(s)
- Clara Frumerie
- Department of Genetics, Microbiology and Toxicology, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
8
|
Wellmann F, Matern U, Lukacin R. Significance of C-terminal sequence elements forPetuniaflavanone 3β-hydroxylase activity. FEBS Lett 2004; 561:149-54. [PMID: 15013767 DOI: 10.1016/s0014-5793(04)00159-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Revised: 02/09/2004] [Accepted: 02/09/2004] [Indexed: 11/16/2022]
Abstract
Flavanone 3beta-hydroxylase (FHT), a 2-oxoglutarate-dependent dioxygenase (2-ODD), catalyzes the hydroxylation of (2S)-flavanones to (2R/3R)-dihydroflavonols in plants as a key step towards the biosynthesis of flavonols, anthocyanins and catechins. Crystallographic studies of 2-ODDs typically revealed a jelly roll in the enzyme core, and the C-terminus of the enzyme polypeptides was proposed to form a lid covering the active site cavity, thereby reducing the chances for oxidative or proteolytic damage and unfolding. Moreover, it has been proposed that in some cases the C-terminus is involved in substrate selectivity of 2-ODDs. In a systematic approach with highly active Petunia FHT, four C-terminally truncated enzyme forms were generated by deletion of five, 11, 24 or 29 amino acids. The recombinant FHTs preserved their substrate selectivity, but the specific activity decreased gradually with the extent of truncation. Then, an enzyme chimera was constructed by domain swapping replacing the C-terminal 52 amino acids of Petunia FHT by the equivalent region of flavonol synthase (FLS) from Citrus unshiu, an enzyme showing ambiguous FLS and FHT activity. The chimeric dioxygenase still revealed exclusively FHT activity, albeit at a moderate level only. The data predict that the selectivity of FHT is not governed by the C-terminal sequence accounting for about 13% of the enzyme polypeptide.
Collapse
Affiliation(s)
- Frank Wellmann
- Institut für Pharmazeutische Biologie, Philipps-Universität Marburg, Deutschhausstrasse 17 A, 35037 Marburg, Germany
| | | | | |
Collapse
|
9
|
Hale MB, Nolan GP, Wolkowicz R. Oligonucleotide-directed site-specific integration of high complexity libraries into ssDNA templates. Nucleic Acids Res 2004; 32:e22. [PMID: 14752044 PMCID: PMC373376 DOI: 10.1093/nar/gnh021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present an approach that generates an oligomer-based library with minimal need for restriction site modification of sequences in the target vector. The technique has the advantage that it can be applied for generating peptide aptamer libraries at sites within proteins without the need for introducing flanking enzyme sites. As an example we present a phagemid retroviral shuttle vector that can be used to achieve stable expression of the library in mammalian cells for the purpose of screening for peptides with desired biological activity.
Collapse
Affiliation(s)
- M B Hale
- Department of Molecular Pharmacology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
10
|
Lu Y, Weers BD, Stellwagen NC. Analysis of the intrinsic bend in the M13 origin of replication by atomic force microscopy. Biophys J 2003; 85:409-15. [PMID: 12829495 PMCID: PMC1303096 DOI: 10.1016/s0006-3495(03)74485-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Atomic force microscopy (AFM) has been used to image a 471-bp bent DNA restriction fragment derived from the M13 origin of replication in plasmid LITMUS 28, and a 476-bp normal, unbent fragment from plasmid pUC19. The most probable angle of curvature of the 471-bp DNA fragment is 40-50 degrees, in reasonably good agreement with the bend angle determined by transient electric birefringence, 38 degrees +/- 7 degrees. The normal 476-bp DNA fragment exhibited a Gaussian distribution of bend angles centered at 0 degrees, indicating that this fragment does not contain an intrinsic bend. The persistence length, P, was estimated to be 60 +/- 8 and 62 +/- 8 nm for the 471- and 476-bp fragments, respectively, from the observed mean-square end-to-end distances in the AFM images. Since the P-values of the normal and bent fragments are close to each other, the overall flexibility of DNA fragments of this size is only marginally affected by the presence of a stable bend. The close agreement of AFM and transient electric birefringence results validates the suitability of both methods for characterizing DNA bending and flexibility.
Collapse
Affiliation(s)
- Yongjun Lu
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
11
|
Meier P, Wackernagel W. Mechanisms of homology-facilitated illegitimate recombination for foreign DNA acquisition in transformable Pseudomonas stutzeri. Mol Microbiol 2003; 48:1107-18. [PMID: 12753199 DOI: 10.1046/j.1365-2958.2003.03498.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Intra- and interspecific natural transformation has been observed in many prokaryotic species and is considered a fundamental mechanism for the generation of genetic variation. Recently, it has been described in detail how, in transformable Acinetobacter BD413 and Streptococcus pneumoniae, long stretches of nucleotides lacking homology were integrated into recipient genomes when they were linked on one side to a small piece of DNA with homology to resident DNA serving as a recA-dependent recombination anchor. Now, such homology-facilitated illegitimate recombination (HFIR) has also been detected in transformable Pseudomonas stutzeri. However, analysis of the recombinants revealed qualitative and quantitative differences in their generation compared with that in Acinetobacter BD413. In P. stutzeri, foreign DNA with an anchor sequence was integrated 105- to 106-fold less frequently than fully homologous DNA, but still at least 200-fold more frequently than without the anchor. The anchor sequence could be as small as 311 bp. Remarkably, in 98% of the events, the 3' end was integrated within the homologous anchor, whereas the 5' end underwent illegitimate fusion. Moreover, about one-third of the illegitimate fusion sites shared no or only a single identical basepair in foreign and resident DNA. The other fusions occurred within microhomologies of up to 6 bp with a higher GC content on average than the interacting nucleotide sequences. Foreign DNA of 69-1903 bp was integrated, and resident DNA of 22-2345 bp was lost. In a recA mutant, HFIR was not detectable. The findings suggest that genomic acquisition of foreign DNA by HFIR during transformation occurs widely in prokaryotes, but that details of the required recombination and strand fusion mechanisms may differ between organisms from different genera.
Collapse
Affiliation(s)
- Petra Meier
- Genetik, Fachbereich Biologie, Geo- und Umweltwissenschaften, Carl von Ossietzky Universität Oldenburg, POB 2503, D-26111 Oldenburg, Germany
| | | |
Collapse
|
12
|
Mariño-Ramírez L, Campbell L, Hu JC. Screening peptide/protein libraries fused to the lambda repressor DNA-binding domain in E. coli cells. Methods Mol Biol 2003; 205:235-50. [PMID: 12491891 PMCID: PMC3234586 DOI: 10.1385/1-59259-301-1:235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Affiliation(s)
- Leonardo Mariño-Ramírez
- Center for Macromolecular Design, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | | | | |
Collapse
|
13
|
Wellmann F, Lukacin R, Moriguchi T, Britsch L, Schiltz E, Matern U. Functional expression and mutational analysis of flavonol synthase from Citrus unshiu. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:4134-42. [PMID: 12180990 DOI: 10.1046/j.1432-1033.2002.03108.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Flavonols are produced by the desaturation of flavanols catalyzed by flavonol synthase. The enzyme belongs to the class of intermolecular dioxygenases which depend on molecular oxygen and FeII/2-oxoglutarate for activity, and have been in focus of structural studies recently. Flavonol synthase cDNAs were cloned from six plant species, but none of the enzymes had been studied in detail. Therefore, a cDNA from Citrus unshiu (Satsuma mandarin) designated as flavonol synthase was expressed in Escherichia coli, and the purified recombinant enzyme was subjected to kinetic and mutational chacterizations. The integrity of the recombinant synthase was revealed by a molecular ion from MALDI-TOF mass spectrometry at m/z 37888 +/- 40 (as compared to 37899 Da calculated for the translated polypeptide), and by partial N-terminal sequencing. Maximal flavonol synthase activity was observed in the range of pH 5-6 with dihydroquercetin as substrate and a temperature optimum at about 37 degrees C. Km values of 272, 11 and 36 micro m were determined for dihydroquercetin, FeII and 2-oxoglutarate, respectively, with a sixfold higher affinity to dihydrokaempferol (Km 45 micro m). Flavonol synthase polypeptides share an overall sequence similarity of 85% (47% identity), whereas only 30-60% similarity were apparent with other dioxygenases. Like the other dioxygenases of this class, Citrus flavonol synthase cDNA encodes eight strictly conserved amino-acid residues which include two histidines (His221, His277) and one acidic amino acid (Asp223) residue for FeII-coordination, an arginine (Arg287) proposed to bind 2-oxoglutarate, and four amino acids (Gly68, His75, Gly261, Pro207) with no obvious functionality. Replacements of Gly68 and Gly261 by alanine reduced the catalytic activity by 95%, while the exchange of these Gly residues for proline completely abolished the enzyme activity. Alternatively, the substitution of Pro207 by glycine hardly affected the activity. The data suggest that Gly68 and Gly261, at least, are required for proper folding of the flavonol synthase polypeptide.
Collapse
Affiliation(s)
- Frank Wellmann
- Institut für Pharmazeutische Biologie, Philipps-Universität Marburg, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Beloin C, McKenna S, Dorman CJ. Molecular dissection of VirB, a key regulator of the virulence cascade of Shigella flexneri. J Biol Chem 2002; 277:15333-44. [PMID: 11850420 DOI: 10.1074/jbc.m111429200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The VirB protein is a key regulator of virulence gene expression in the facultative enteroinvasive pathogen Shigella flexneri. While genetic evidence has shown that it is required for activation of transcription of virulence genes located on a 230-kb plasmid in this bacterium, hitherto, evidence that VirB is a DNA-binding protein has been lacking. Although VirB shows extensive homology to proteins involved in plasmid partitioning, it does not resemble any known conventional transcription factor. Here we show for the first time that VirB binds to the promoter regions of the virulence genes in vivo. We also show that VirB forms dimeric and higher oligomeric structures both in vivo and in vitro and that this property is independent of DNA binding. The oligomerization activity of VirB is distributed over two domains: a leucine zipper-like motif and a carboxyl-terminal domain likely to form triple coiled structures. VirB possesses a helix-turn-helix motif, which is required for DNA binding. The amino-terminal domain of the protein is also required for DNA binding and virulence gene activation. The possibility that VirB requires a co-factor for specific interaction with target promoters in vivo is discussed.
Collapse
Affiliation(s)
- Christophe Beloin
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Republic of Ireland
| | | | | |
Collapse
|
15
|
de Vries J, Wackernagel W. Integration of foreign DNA during natural transformation of Acinetobacter sp. by homology-facilitated illegitimate recombination. Proc Natl Acad Sci U S A 2002; 99:2094-9. [PMID: 11854504 PMCID: PMC122324 DOI: 10.1073/pnas.042263399] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The active uptake of extracellular DNA and its genomic integration is termed natural transformation and constitutes a major horizontal gene-transfer mechanism in prokaryotes. Chromosomal DNA transferred within a species can be integrated effectively by homologous recombination, whereas foreign DNA with low or no sequence homology would rely on illegitimate recombination events, which are rare. By using the nptII(+) gene (kanamycin resistance) as selectable marker, we found that the integration of foreign DNA into the genome of the Gram-negative Acinetobacter sp. BD413 during transformation indeed was at least 10(9)-fold lower than that of homologous DNA. However, integration of foreign DNA increased at least 10(5)-fold when it was linked on one side to a piece of DNA homologous to the recipient genome. Analysis of foreign DNA integration sites revealed short stretches of sequence identity (3-8 bp) between donor and recipient DNA, indicating illegitimate recombination events. These findings suggest that homologous DNA served as a recombinational anchor facilitating illegitimate recombination acting on the same molecule. Homologous stretches down to 183 nucleotides served as anchors. Transformation with heteroduplex DNA having different nucleotide sequence tags in the strands indicated that strands entered the cytoplasm 3' to 5' and that strands with either polarity were integrated by homologous recombination. The process led to the genomic integration of thousands of foreign nucleotides and often was accompanied by deletion of a roughly corresponding length of recipient DNA. Homology-facilitated illegitimate recombination would explain the introgression of DNA in prokaryotic genomes without the help of mobile genetic elements.
Collapse
Affiliation(s)
- Johann de Vries
- Genetik, Fachbereich Biologie, Universität Oldenburg, POB 2503, D-26111 Oldenburg, Germany
| | | |
Collapse
|
16
|
Meier P, Berndt C, Weger N, Wackernagel W. Natural transformation of Pseudomonas stutzeri by single-stranded DNA requires type IV pili, competence state and comA. FEMS Microbiol Lett 2002; 207:75-80. [PMID: 11886754 DOI: 10.1111/j.1574-6968.2002.tb11031.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Pseudomonas stutzeri, in addition to being transformed by duplex DNA, is also transformed by the sense or antisense strand of the genetic marker employed (hisX(+)) or by heat-denatured chromosomal DNA. Transformation was absent in non-competent cells and in mutants defective for pilus biogenesis (pilA, pilC) and function (pilT) or DNA translocation into the cytoplasm (comA). Uptake of (3)H-thymidine-labeled single-stranded DNA was hardly detectable reflecting the 20- to 60-fold lower transformation compared to duplex DNA. The results suggest that the steps in natural transformation also accommodate single-stranded DNA and that DNA translocation from the periplasm into the cytoplasm is not necessarily coupled to the degradation of a complementary strand. Small DNA single-stranded fragments are thus not excluded from horizontal gene transfer by transformation.
Collapse
Affiliation(s)
- Petra Meier
- Genetik, Fachbereich Biologie, Universität Oldenburg, D-26111, Oldenburg, Germany
| | | | | | | |
Collapse
|
17
|
Kelley De Zutter J, Forget AL, Logan KM, Knight KL. Phe217 regulates the transfer of allosteric information across the subunit interface of the RecA protein filament. Structure 2001; 9:47-55. [PMID: 11342134 DOI: 10.1016/s0969-2126(00)00552-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND ATP-mediated cooperative assembly of a RecA nucleoprotein filament activates the protein for catalysis of DNA strand exchange. RecA is a classic allosterically regulated enzyme in that ATP binding results in a dramatic increase in ssDNA binding affinity. This increase in ssDNA binding affinity results almost exclusively from an ATP-mediated increase in cooperative filament assembly rather than an increase in the inherent affinity of monomeric RecA for DNA. Therefore, certain residues at the subunit interface must play an important role in transmitting allosteric information across the filament structure of RecA. RESULTS Using electron microscopic analysis of RecA polymer formation in the absence of DNA, we show that while wild-type RecA undergoes a slight decrease in filament length in the presence of ATP, a Phe217Tyr substitution results in a dramatic ATP-induced increase in cooperative filament assembly. Biosensor DNA binding measurements reveal that the Phe217Tyr mutation increases ATP-mediated cooperative interaction between RecA subunits by more than 250-fold. CONCLUSIONS These studies represent the first identification of a subunit interface residue in RecA (Phe217) that plays a critical role in regulating the flow of ATP-mediated information throughout the protein filament structure. We propose a model by which conformational changes that occur upon ATP binding are propagated through the structure of a RecA monomer, resulting in the insertion of the Phe217 side chain into a pocket in the neighboring subunit. This event serves as a key step in intersubunit communication leading to ATP-mediated cooperative filament assembly and high affinity binding to ssDNA.
Collapse
Affiliation(s)
- J Kelley De Zutter
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | | | | | | |
Collapse
|
18
|
Eriksson JM, Haggârd-Ljungquist E. The multifunctional bacteriophage P2 cox protein requires oligomerization for biological activity. J Bacteriol 2000; 182:6714-23. [PMID: 11073917 PMCID: PMC111415 DOI: 10.1128/jb.182.23.6714-6723.2000] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2000] [Accepted: 09/12/2000] [Indexed: 11/20/2022] Open
Abstract
The Cox protein of bacteriophage P2 is a multifunctional protein of 91 amino acids. It is directly involved in the site-specific recombination event leading to excision of P2 DNA out of the host chromosome. In this context, it functions as an architectural protein in the formation of the excisome. Cox is also a transcriptional repressor of the P2 Pc promoter, thereby ensuring lytic growth. Finally it promotes derepression of prophage P4, a nonrelated defective satellite phage, by activating the P4 P(LL) promoter that controls P4 DNA replication. In this case it binds upstream of the P(LL) promoter, which normally is activated by the P4 Delta protein. In this work we have analyzed the native form of the Cox protein in vivo, using a bacteriophage lambda cI-based oligomerization assay system, and in vitro, using gel filtration, cross-linking agents, and gel retardation assays. We found that P2 Cox has a strong oligomerization function in vivo as well as in vitro. The in vitro analysis indicates that its native form is a tetramer that can self-associate to octamers. Furthermore we show that oligomerization is necessary for the biological activity by characterizing different cox mutants and that oligomerization is mediated by the C-terminal region.
Collapse
Affiliation(s)
- J M Eriksson
- Department of Genetics, Stockholm University, S-106 91 Stockholm, Sweden
| | | |
Collapse
|
19
|
Springob K, Lukacin R, Ernwein C, Gröning I, Matern U. Specificities of functionally expressed chalcone and acridone synthases from Ruta graveolens. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:6552-9. [PMID: 11054106 DOI: 10.1046/j.1432-1327.2000.01746.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The common rue, Ruta graveolens L., expresses two types of closely related polyketide synthases that condense three malonyl-CoAs with N-methylanthraniloyl-CoA or 4-coumaroyl-CoA to produce acridone alkaloids and flavonoid pigments, respectively. Two acridone synthase cDNAs (ACS1 and ACS2) have been cloned from Ruta cell cultures, and we report now the cloning of three chalcone synthase cDNAs (CHS1 to CHS3) from immature Ruta flowers. The coding regions of these three cDNAs differ only marginally, and the translated polypeptides show about 90% identity with the CHSs from Citrus sinensis but less than 75% with the Ruta endogeneous ACSs. CHS1 was functionally expressed in Eschericha coli and its substrate specificity compared with those of the recombinant ACS1 and ACS2. 4-Coumaroyl-CoA was the preferred starter substrate for CHS1, but cinnamoyl-CoA and caffeoyl-CoA were also turned over at significant rates. However, N-methylanthraniloyl-CoA was not accepted. In contrast, highly active preparations of recombinant ACS1 or ACS2 showed low, albeit significant, CHS side activities with 4-coumaroyl-CoA, which on average reached 16% (ACS1) and 12% (ACS2) of the maximal activity determined with N-methylanthraniloyl-CoA as the starter substrate, while the conversion of cinnamoyl-CoA was negligible with both ACSs. The condensation mechanism of the acridone ring system differs from that of chalcone/flavanone formation. Nevertheless, our results suggest that very minor changes in the sequences of Ruta CHS genes are sufficient to also accommodate the formation of acridone alkaloids, which will be investigated further by site-directed mutagenesis.
Collapse
Affiliation(s)
- K Springob
- Institut für Pharmazeutische Biologie, Philipps-Universität Marburg, Germany
| | | | | | | | | |
Collapse
|
20
|
Konola JT, Sargent KE, Gow JB. Efficient repair of hydrogen peroxide-induced DNA damage by Escherichia coli requires SOS induction of RecA and RuvA proteins. Mutat Res 2000; 459:187-94. [PMID: 10812330 DOI: 10.1016/s0921-8777(99)00073-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The survival of Escherichia coli following treatment with a low dose (1-3 mM) of hydrogen peroxide (H(2)O(2)) that causes extensive mode-one killing of DNA repair mutants is stimulated by the induction of the SOS regulon. Results for various mutants indicate that induction of recA and RecA protein-mediated recombination are critical factors contributing to the repair of H(2)O(2)-induced oxidative DNA damage. However, because DNA damage activates RecA protein's coprotease activity essential to cleavage of LexA repressor protein and derepression of all SOS genes, it is unclear to what extent induction of RecA protein stimulates this repair. To make this determination, we examined mode-one killing of DeltarecA cells carrying plasmid-borne recA (P(tac)-recA(+)) and constitutively expressing a fully induced level of wild-type RecA protein when SOS genes other than recA are non-inducible in a lexA3 (Ind(-)) genetic background or inducible in a lexA(+) background. At a H(2)O(2) dose resulting in maximal killing, DeltarecA lexA3 (Ind(-)) cells with P(tac)-recA(+) show 40-fold greater survival than lexA3 (Ind(-)) cells with chromosomal recA having a low, non-induced level of RecA protein. However, they still show 10- to 15-fold lower survival than wild-type cells and DeltarecA lexA(+) cells with P(tac)-recA(+). To determine if the inducible RuvA protein stimulates survival, we examined a ruvA60 mutant that is defective for the repair of UV-induced DNA damage. This mutant also shows 10- to 15-fold lower survival than wild-type cells. We conclude that while induction of RecA protein has a pronounced stimulatory effect on the recombinational repair of H(2)O(2)-induced oxidative DNA damage, the induction of other SOS proteins such as RuvA is essential for wild-type repair.
Collapse
Affiliation(s)
- J T Konola
- Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA.
| | | | | |
Collapse
|
21
|
Hu JC, Kornacker MG, Hochschild A. Escherichia coli one- and two-hybrid systems for the analysis and identification of protein-protein interactions. Methods 2000; 20:80-94. [PMID: 10610807 DOI: 10.1006/meth.1999.0908] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Genetic methods based on fusion proteins allow the power of a genetic approach to be applied to the self-assembly of proteins or protein fragments, regardless of whether or not the normal function of the fused assembly domains is either known or amenable to selection or screening. The widespread adoption of variations of the yeast two-hybrid system originally described by S. Fields and O. Song (1989, Nature 340, 245-246) demonstrates the usefulness of these kinds of assays. This review describes some of the many systems used to select or screen for protein-protein interactions based on the regulation of reporter constructs by hybrid proteins expressed in bacteria, including recent implementations of generalizable two-hybrid systems for Escherichia coli.
Collapse
Affiliation(s)
- J C Hu
- Department of Biochemistry and Biophysics and Center for Macromolecular Design, Texas A&M University, College Station, Texas 77843-2128, USA.
| | | | | |
Collapse
|
22
|
Lewis RA, Curnock SP, Dyke KG. Proteolytic cleavage of the repressor (BlaI) of beta-lactamase synthesis in Staphylococcus aureus. FEMS Microbiol Lett 1999; 178:271-5. [PMID: 10499277 DOI: 10.1111/j.1574-6968.1999.tb08687.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The proteolytic cleavage of BlaI was shown to correlate with beta-lactamase synthesis in Staphylococcus aureus. BlaI was found to be autoregulatory when expressed from the blaZ promoter. Insertion of a 10-bp linker into the SnaBI site of blaRI resulted in constitutive synthesis of beta-lactamase.
Collapse
Affiliation(s)
- R A Lewis
- Department of Biochemistry, University of Oxford, UK
| | | | | |
Collapse
|
23
|
Lukacin R, Springob K, Urbanke C, Ernwein C, Schröder G, Schröder J, Matern U. Native acridone synthases I and II from Ruta graveolens L. form homodimers. FEBS Lett 1999; 448:135-40. [PMID: 10217426 DOI: 10.1016/s0014-5793(99)00355-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Acridone synthase II cDNA was cloned from irradiated cell suspension cultures of Ruta graveolens L. and expressed in Escherichia coli. The translated polypeptide of Mr 42,681 revealed a high degree of similarity to heterologous chalcone and stilbene synthases (70-75%), and the sequence was 94% identical to that of acridone synthase I cloned previously from elicited Ruta cells. Highly active recombinant acridone synthases I and II were purified to apparent homogeneity by a four-step purification protocol, and the affinities to N-methylanthraniloyl-CoA and malonyl-CoA were determined. The molecular mass of acridone synthase II was estimated from size exclusion chromatography on a Fractogel EMD BioSEC (S) column at about 45 kDa, as compared to a mass of 44 +/- 3 kDa found for the acridone synthase I on Superdex 75. Nevertheless, the sedimentation analysis by ultracentrifugation revealed molecular masses of 81 +/- 4 kDa for both acridone synthases. It is proposed, therefore, that the acridone synthases of Ruta graveolens are typical homodimeric plant polyketide synthases.
Collapse
Affiliation(s)
- R Lukacin
- Institut für Pharmazeutische Biologie, Universität Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Liu T, Renberg SK, Haggård-Ljungquist E. The E protein of satellite phage P4 acts as an anti-repressor by binding to the C protein of helper phage P2. Mol Microbiol 1998; 30:1041-50. [PMID: 9988480 DOI: 10.1046/j.1365-2958.1998.01132.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Temperate phage P2 has the capacity to function as a helper for the defective, unrelated, satellite phage P4. In the absence of a helper, P4 can either lysogenize its host or establish itself as a plasmid. For lytic growth, P4 requires the structural genes, packaging and lysis functions of the helper. P4 can get access to the late genes of prophage P2 by derepression, which is mediated by the P4 E protein. E has been hypothesized to function as an anti-repressor. To locate possible epitopes interacting with E, an epitope display library was screened against E, and the most frequent sequence found had some identities to a region within P2 C. Using the yeast two-hybrid system, a clear activation of a reporter gene was found, strongly supporting an interaction between E and C. The P2 C repressor is believed to act as a dimer, which is confirmed in this work using in vivo dimerization studies. The E protein was also found to form dimers in vivo. The E protein only affects dimerization of C marginally, but the presence of E enhances multimeric forms of C. Furthermore, binding of the C protein to its operator is inhibited by E in vitro, indicating that the anti-repressor function of E is mediated by the formation of multimeric complexes of E and C that interfere with the binding of C to its operator.
Collapse
Affiliation(s)
- T Liu
- Department of Genetics, Stockholm University, Sweden
| | | | | |
Collapse
|
25
|
Weerasuriya S, Schneider BM, Manson MD. Chimeric chemoreceptors in Escherichia coli: signaling properties of Tar-Tap and Tap-Tar hybrids. J Bacteriol 1998; 180:914-20. [PMID: 9473047 PMCID: PMC106972 DOI: 10.1128/jb.180.4.914-920.1998] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Tap (taxis toward peptides) receptor and the periplasmic dipeptide-binding protein (DBP) of Escherichia coli together mediate chemotactic responses to dipeptides. Tap is a low-abundance receptor. It is present in 5- to 10-fold-fewer copies than high-abundance receptors like Tar and Tsr. Cells expressing Tap as the sole receptor, even from a multicopy plasmid at 5- to 10-fold-overexpressed levels, do not generate sufficient clockwise (CW) signal to tumble and thus swim exclusively smoothly (run). To study the signaling properties of Tap in detail, we constructed reciprocal hybrids between Tap and Tar fused in the linker region between the periplasmic and cytoplasmic domains. The Tapr hybrid senses dipeptides and is a good CW-signal generator, whereas the Tarp hybrid senses aspartate but is a poor CW-signal generator. Thus, the poor CW signaling of Tap is a property of its cytoplasmic domain. Eighteen residues at the carboxyl terminus of high-abundance receptors, including the NWETF sequence that binds the CheR methylesterase, are missing in Tap. The Tart protein, created by removing these 18 residues from Tar, has diminished CW-signaling ability. The Tapl protein, made by adding the last 18 residues of Tar to the carboxyl terminus of Tap, also does not support CW flagellar rotation. However, Tart and Tapl cross-react well with antibody directed against the conserved cytoplasmic region of Tsr, whereas Tap does not cross-react with this antibody. Tap does cross-react, however, with antibody directed against the low-abundance chemoreceptor Trg. The hybrid, truncated, and extended receptors exhibit various levels of methylation. However, Tar and Tapl, which contain a consensus CheR-binding motif (NWETF) at their carboxyl termini, exhibit the highest basal levels of methylation, as expected. We conclude that no simple correlation exists between the abundance of a receptor, its methylation level, and its CW-signaling ability.
Collapse
Affiliation(s)
- S Weerasuriya
- Department of Biology, Texas A&M University, College Station 77843-3258, USA
| | | | | |
Collapse
|
26
|
Abstract
Binding of ATP to the RecA protein induces a high affinity DNA binding required for activation of enzyme function. Screens for in vivo recombination and repressor cleavage activities show Gln194 to be intolerant of all substitutions. Analyses of three mutant proteins (Q194N, Q194E, and Q194A) show that although basal enzyme function is maintained, each protein no longer displays an ATP-induced increase in DNA binding affinity. High salt activation of RecA function is also disrupted by these mutations. In contrast, ATP-induced changes in the oligomeric structure of RecA are maintained in the mutant proteins. These results demonstrate that Gln194 is a critical "allosteric switch" for ATP-induced activation of RecA function but is not the exclusive mediator of ATP-induced changes in RecA.
Collapse
Affiliation(s)
- J A Kelley
- Department of Biochemistry and Molecular Biology, University of Massachusetts Medical Center, Worcester, Massachusetts 01655-0103, USA
| | | |
Collapse
|
27
|
Rathsam C, Jacques NA. Development of a technique for multiple site-directed mutagenesis of the ftf gene of Streptococcus salivarius containing palindromic sequences. FEMS Microbiol Lett 1997; 153:447-53. [PMID: 9271874 DOI: 10.1111/j.1574-6968.1997.tb12609.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Attempts at site-directed mutagenesis of the fructosyltransferase (ftf) gene of Streptococcus salivarius ATCC 25975 using standard protocols were unsuccessful and resulted in a series of deletions. These deletions appeared to commence at points within the ftf gene where there were palindromic sequences which were capable of forming closed loop structures that acted as terminators under the conditions of mutagenesis. To overcome this problem, two modified mutagenic techniques were developed. They made use of T4 DNA polymerase in conjunction with either T7 DNA polymerase at 37 degrees C or Vent DNA polymerase from Thermococcus litoralis at an elevated temperature. These methods eliminated the need for a single-stranded DNA template and allowed polymerisation through palindromic sequences to rapidly produce multiple site-directed mutations.
Collapse
Affiliation(s)
- C Rathsam
- Institute of Dental Research, United Dental Hospital of Sydney, Surry Hills, NSW, Australia
| | | |
Collapse
|
28
|
Palena CM, Chan RL, Gonzalez DH. A novel type of dimerization motif, related to leucine zippers, is present in plant homeodomain proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1352:203-12. [PMID: 9199251 DOI: 10.1016/s0167-4781(97)00012-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sunflower HAHR1 is a homeodomain protein presumably involved in some aspects of root development. In the present work, we have studied the oligomerization properties of HAHR1. A protein containing the entire homeodomain plus adjacent C-terminal sequences (amino acids 86-325) behaves as a dimer in gel filtration experiments. When a fragment C-terminal to the homeodomain (amino acids 151-263) is fused to the N-terminal domain of the lambda phage repressor, it is able to confer binding efficiency to this domain, as judged by protection from lambda superinfection and repression of beta-galactosidase expression under the control of the P(R) promoter. A smaller fragment (amino acids 151-184) confers only conditional repression. GSH transferase fusion proteins containing the entire homeodomain of HAHR1 plus the above-mentioned adjacent sequences bind with similar efficiency a mixture of oligonucleotides selected from a random population. The smaller protein, however, loses its binding capacity when separated from the GSH transferase moiety. Retention of a labelled HAHR1 protein synthesized in vitro by GSH transferase fusions containing different protein fragments adjacent to the homeodomain and bound to GSH agarose suggests that a portion from amino acids 151-263 is required for efficient interaction. The results obtained indicate that HAHR1 interacts with DNA as a dimer and that its dimerization domain is located immediately C-terminal to the homeodomain. We define two regions, the first of which confers non-efficient dimerization; this region would be stabilized by the presence of the second one through putative mutual interactions. A similar motif is present in other related plant homeodomain proteins.
Collapse
Affiliation(s)
- C M Palena
- Area Biología Molecular, Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR) and Programa Multidisciplinario de Biología Experimental (PROMUBIE, CONICET), Suipacha, Rosario, Argentina
| | | | | |
Collapse
|
29
|
Abstract
We have analyzed the oligomeric properties of a number of mutant RecA proteins containing single amino acid substitutions within one region of the subunit interface. In contrast to wild-type RecA, which forms a heterogeneous population of different-sized oligomers, we find that many of these mutant proteins exist in a more homogeneous oligomeric form, which approximates to the size of a RecA hexamer. Some of these mutants have a significant level of activity in vivo for recombinational DNA repair and thus represent the first mutant RecA proteins identified which retain activity yet can exist in a discrete oligomeric state as free protein.
Collapse
Affiliation(s)
- K M Logan
- Department of Biochemistry and Molecular Biology, University of Massachusetts Medical Center, Worcester 01655, USA
| | | | | | | |
Collapse
|
30
|
Zeng X, Hu JC. Detection of tetramerization domains in vivo by cooperative DNA binding to tandem lambda operator sites. Gene X 1997; 185:245-9. [PMID: 9055822 DOI: 10.1016/s0378-1119(96)00652-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Chimeric proteins comprising the N-terminal DNA binding domain of lambda repressor fused to a fragment of a foreign protein have been used to detect oligomerization of the latter. Fusions containing dimeric and tetrameric leucine zipper domains can be distinguished based on their in vivo repressor activities on a pair of cat-lacZ reporter strains. Repressor fusions are unable to efficiently repress transcription from a synthetic promoter that overlaps a weak operator site; repression by tetrameric, but not dimeric, fusion proteins is increased by the presence of a strong, upstream operator site. To construct reporters we developed a shuttle system that allows rapid construction of single-copy operon fusions in E. coli, with both cat and lacZ as reporters.
Collapse
Affiliation(s)
- X Zeng
- Department of Biochemistry and Biophysics, Texas A&M University, College Station 77843-2128, USA
| | | |
Collapse
|
31
|
Stordal L, Maurer R. Defect in general priming conferred by linker region mutants of Escherichia coli dnaB. J Bacteriol 1996; 178:4620-7. [PMID: 8755893 PMCID: PMC178232 DOI: 10.1128/jb.178.15.4620-4627.1996] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The dnaB gene of Escherichia coli encodes a bifunctional primase accessory protein/helicase necessary for chromosomal replication. Monomers of DnaB comprise two trypsin-resistant domains connected by a 45-amino-acid linker. To investigate the role of the linker in the structure and function of DnaB, we have purified and characterized three DnaB mutant proteins having single amino acid substitutions in the linker. We find that the mutant proteins retain the two-domain structure and assemble into hexamers that may be less stable than hexamers formed by wild-type DnaB. These mutant hexamers have hydrodynamic properties slightly different from those of the wild type, suggestive of a more open structure. The mutant proteins had reduced or absent ability to stimulate primase and also exhibited slight alterations in ATPase activity compared with the wild type. We conclude that the linker region promotes primase-DnaB interaction, but this effect may be indirect. We propose a model involving repositioning of N-terminal domains to explain the properties of the mutant proteins.
Collapse
Affiliation(s)
- L Stordal
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4960, USA
| | | |
Collapse
|
32
|
Aronshtam A, Marinus MG. Dominant negative mutator mutations in the mutL gene of Escherichia coli. Nucleic Acids Res 1996; 24:2498-504. [PMID: 8692687 PMCID: PMC145974 DOI: 10.1093/nar/24.13.2498] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The mutL gene product is part of the dam-directed mismatch repair system of Escherichia coli but has no known enzymatic function. It forms a complex on heteroduplex DNA with the mismatch recognition MutS protein and with MutH, which has latent endonuclease activity. An N-terminal hexahistidine-tagged MutL was constructed which was active in vivo. As a first stop to determine the functional domains of MutL, we have isolated 72 hydroxylamine-induced plasmid-borne mutations which impart a dominant-negative phenotype to the wild-type strain for increased spontaneous mutagenesis. None of the mutations complement a mutL deletion mutant, indicating that the mutant proteins by themselves are inactive. All the dominant mutations but one could be complemented by the wild-type mutL at about the same gene dosage. DNA sequencing indicated that the mutations affected 22 amino acid residues located between positions 16 and 549 of the 615 amino acid protein. In the N-terminal half of the protein, 12 out of 15 amino acid replacements occur at positions conserved in various eukaryotic MutL homologs. All but one of the sequence changes affecting the C-terminal end of the protein are nonsense mutations.
Collapse
Affiliation(s)
- A Aronshtam
- Department of Pharmacology and Molecular Toxicology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | |
Collapse
|
33
|
Alt-Mörbe J, Stryker JL, Fuqua C, Li PL, Farrand SK, Winans SC. The conjugal transfer system of Agrobacterium tumefaciens octopine-type Ti plasmids is closely related to the transfer system of an IncP plasmid and distantly related to Ti plasmid vir genes. J Bacteriol 1996; 178:4248-57. [PMID: 8763954 PMCID: PMC178183 DOI: 10.1128/jb.178.14.4248-4257.1996] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have determined the DNA sequences of two unlinked regions of octopine-type Ti plasmids that contain genes required for conjugal transfer. Both regions previously were shown to contain sequences that hybridize with tra genes of the nopaline-type Ti plasmid pTiC58. One gene cluster (designated tra) contains a functional oriT site and is probably required for conjugal DNA processing, while the other gene cluster (designated trb) probably directs the synthesis of a conjugal pilus and mating pore. Most predicted Tra and Trb proteins show relatively strong sequence similarity (30 to 50% identity) to the Tra and Trb proteins of the broad-host-range IncP plasmid RP4 and show significantly weaker sequence similarity to Vir proteins found elsewhere on the Ti plasmid. An exception is found in the Ti plasmid TraA protein, which is predicted to be a bifunctional nickase-helicase that has no counterpart in IncP plasmids or among Vir proteins but has homologs in at least six other self-transmissible and mobilizable plasmids. We conclude that this Ti plasmid tra system evolved by acquiring genes from two or three different sources. A similar analysis of the Ti plasmid vir region indicates that it also evolved by appropriating genes from at least two conjugal transfer systems. The widely studied plasmid pTiA6NC previously was found to be nonconjugal and to have a 12.65-kb deletion of DNA relative to other octopine-type Ti plasmids. We show that this deletion removes the promoter-distal gene of the trb region and probably accounts for the inability of this plasmid to conjugate.
Collapse
Affiliation(s)
- J Alt-Mörbe
- Institut für Biologie III, Universität Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Becherer KA, Rieder SE, Emr SD, Jones EW. Novel syntaxin homologue, Pep12p, required for the sorting of lumenal hydrolases to the lysosome-like vacuole in yeast. Mol Biol Cell 1996; 7:579-94. [PMID: 8730101 PMCID: PMC275911 DOI: 10.1091/mbc.7.4.579] [Citation(s) in RCA: 251] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
pep12/vps6 mutants of Saccharomyces cerevisiae are defective in delivery of soluble vacuolar hydrolases to the vacuole. Morphological analysis by electron microscopy revealed that pep12 cells accumulate 40- to 50-nm vesicles. Furthermore, pep12 cells have enlarged vacuoles characteristic of class D pep/vps mutants. PEP12 encodes a protein of 288 amino acids that has a C-terminal hydrophobic region and shares significant sequence similarity with members of the syntaxin protein family. These proteins appear to participate in the docking and fusion of intracellular transport vesicles. Pep12p is the first member of the syntaxin family to be implicated in transport between the Golgi and the vacuole/lysosome. Pep12p-specific polyclonal antisera detected a 35-kDa protein that fractionated as an integral membrane protein. Subcellular fractionation experiments revealed that Pep12p was associated with membrane fractions of two different densities; the major pool (approximately 90%) of pep12p may associate with the endosome, while a minor pool (approximately 10%) cofractionated with the late Golgi marker Kex2p. These observations suggest that Pep12p may mediate the docking of Golgi-derived transport vesicles at the endosome.
Collapse
Affiliation(s)
- K A Becherer
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | |
Collapse
|
35
|
Freund ET, Susskind MM. The insE open reading frame of IS1 is not required for formation of cointegrates. J Bacteriol 1996; 178:2420-3. [PMID: 8636048 PMCID: PMC177955 DOI: 10.1128/jb.178.8.2420-2423.1996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The role of the insE open reading frame in transposition of IS1 was reexamined by using an insE nonsense mutation that does not alter the amino acid sequence of InsA inhibitor or InsAB transposase. The mutant was active in all strains tested, showing that insE is not essential for formation of cointegrates.
Collapse
Affiliation(s)
- E T Freund
- Hedco Molecular Biology Laboratories, University of Southern California, Los Angeles 90089-1340, USA
| | | |
Collapse
|
36
|
Pöhlmann R, Philippsen P. Sequencing a cosmid clone ofSaccharomyces cerevisiae chromosome XIV reveals 12 new open reading frames (ORFs) and an ancient duplication of six ORFs. Yeast 1996. [DOI: 10.1002/(sici)1097-0061(19960330)12:4<391::aid-yea921>3.0.co;2-n] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
37
|
Pöhlmann R, Philippsen P. Sequencing a cosmid clone of Saccharomyces cerevisiae chromosome XIV reveals 12 new open reading frames (ORFs) and an ancient duplication of six ORFs. Yeast 1996; 12:391-402. [PMID: 8701611 DOI: 10.1002/(sici)1097-0061(19960330)12:4%3c391::aid-yea921%3e3.0.co;2-n] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A sequence of 31431 bp located on the left arm of chromosome (chr.) XIV from Saccharomyces cerevisiae was analysed. A total of 18 open reading frames (ORFs) could be identified. Twelve ORFs are new, two of which are most likely ribosomal protein genes, leaving ten ORFs of unknown function. Nine of the 18 ORFs show either at least 20% overall amino acid identity or significant regional homology to other S. cerevisiae ORFs. Additionally, six of these nine ORFs have homologues of similar size and the same transcriptional orientation within a stretch of 50 kb on chromosome IX. The degree of homology ranges from 90% overall identity to 23% in 375 amino acids. The homologues on chromosome IX are grouped in two blocks that are separated by relatively long ORFs. This is the first example of a multi-gene duplication in S. cerevisiae not linked to a centromere or subtelomere region.
Collapse
Affiliation(s)
- R Pöhlmann
- Institute for Applied Microbiology, University of Basel, Switzerland
| | | |
Collapse
|
38
|
Kusano K, Naito T, Handa N, Kobayashi I. Restriction-modification systems as genomic parasites in competition for specific sequences. Proc Natl Acad Sci U S A 1995; 92:11095-9. [PMID: 7479944 PMCID: PMC40578 DOI: 10.1073/pnas.92.24.11095] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Restriction-modification (RM) systems are believed to have evolved to protect cells from foreign DNA. However, this hypothesis may not be sufficient to explain the diversity and specificity in sequence recognition, as well as other properties, of these systems. We report that the EcoRI restriction endonuclease-modification methylase (rm) gene pair stabilizes plasmids that carry it and that this stabilization is blocked by an RM of the same sequence specificity (EcoRI or its isoschizomer, Rsr I) but not by an RM of a different specificity (PaeR7I) on another plasmid. The PaeR7I rm likewise stabilizes plasmids, unless an rm gene pair with identical sequence specificity is present. Our analysis supports the following model for stabilization and incompatibility: the descendants of cells that have lost an rm gene pair expose the recognition sites in their chromosomes to lethal attack by any remaining restriction enzymes unless modification by another RM system of the same specificity protects these sites. Competition for specific sequences among these selfish genes may have generated the great diversity and specificity in sequence recognition among RM systems. Such altruistic suicide strategies, similar to those found in virus-infected cells, may have allowed selfish RM systems to spread by effectively competing with other selfish genes.
Collapse
Affiliation(s)
- K Kusano
- Department of Molecular Biology, University of Tokyo, Japan
| | | | | | | |
Collapse
|
39
|
Hotze M, Schröder G, Schröder J. Cinnamate 4-hydroxylase from Catharanthus roseus, and a strategy for the functional expression of plant cytochrome P450 proteins as translational fusions with P450 reductase in Escherichia coli. FEBS Lett 1995; 374:345-50. [PMID: 7589568 DOI: 10.1016/0014-5793(95)01141-z] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A PCR-based approach was used to isolate cDNAs for cinnamate 4-hydroxylase (C4H) from Catharanthus roseus cell cultures. The protein shared 75.9% identity with C4H from other plants, and the transcription was induced under various stress conditions. The cloned protein was used to investigate the functional expression of plant P450/P450-reductase fusions in E. coli. Fusions containing a modified N-terminal membrane anchor were located in the membrane and possessed C4H activity without solubilization or addition of other factors. The results indicate that the fusion protein strategy provides a useful tool to analyze the activities encoded in the rapidly increasing number of plant P450 sequences of uncertain or unknown function. We also discuss critical elements of the strategy: the choice of the E. coli host strain, the N-terminal membrane anchor, and the conditions for protein expression.
Collapse
Affiliation(s)
- M Hotze
- Institut für Biologie II, Universität Freiburg, Germany
| | | | | |
Collapse
|
40
|
Kreusch D, von Lintig J, Schröder J. Ti plasmid-encoded octopine and nopaline catabolism in Agrobacterium: specificities of the LysR-type regulators OccR and NocR, and protein-induced DNA bending. MOLECULAR & GENERAL GENETICS : MGG 1995; 249:102-10. [PMID: 8552026 DOI: 10.1007/bf00290241] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The occ and noc regions in octopine and nopaline Ti plasmids, respectively, are responsible for the catabolism of octopine and nopaline in Agrobacterium. The functions are activated in the presence of the opines by OccR and NocR, two related regulatory proteins, and the promoters contain common sequence motifs. We have investigated heterologous interactions between the regulators and the promoters. Previous experiments using all possible heterologous combinations of opines, regulators, and promoters in vivo had demonstrated that only the combination of nopaline, NocR, and the occ promoter led to limited promoter activation. We now show that OccR and NocR bind to the heterologous promoters in vitro and in vivo. The weak or non-existent promoter activation actually observed could be explained by the assumption that OccR and NocR use different activation mechanisms; we investigated protein-induced DNA bending because of reports that the two regulators differ in this respect. Analysis with a bending vector showed that both OccR and NocR induced a DNA bend that is relaxed in the presence of the respective opine. The data suggest that subtle differences in regulator/promoter interactions are responsible for the inactivity of the heterologous combinations. Investigations with a chimeric NocR/OccR protein indicated that it induced a DNA bend in both promoters. No opine-induced relaxation was detectable with the hybrid, and the inducible promoter was not activated. These findings suggest that bend relaxation may be an integral part of promoter activation.
Collapse
Affiliation(s)
- D Kreusch
- Institut für Biologie II, Universität Freiburg, Germany
| | | | | |
Collapse
|
41
|
Yang MT, Scott HB, Gardner JF. Transcription termination at the thr attenuator. Evidence that the adenine residues upstream of the stem and loop structure are not required for termination. J Biol Chem 1995; 270:23330-6. [PMID: 7559489 DOI: 10.1074/jbc.270.40.23330] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The Escherichia coli thr operon attenuator has a structure similar to other Rho-independent terminators. The DNA sequence immediately 5' to the termination site is dG+dC-rich and contains a region of dyad symmetry that, when transcribed into RNA, encodes a hairpin structure in the transcript. It also contains a stretch of 9 consecutive dA-dT residues immediately distal to the region of dyad symmetry which encode uridine residues at the 3' end of the terminated transcript. In addition, the thr attenuator has a stretch of 6 dA-dT residues immediately upstream of the region of dyad symmetry which encode 6 adenines. These adenines could potentially pair with the distal uridines to form a hairpin structure extended by as much as 6 A-U base pairs. In this report we have examined the role of the upstream adenines in transcription termination. We used templates that specify mismatches or create new base pairs in the potential A-U secondary structure of the transcript as well as templates that delete segments of the A residues upstream of the hairpin. We conclude that A-U pairing is not required for efficient transcription termination at the thr attenuator. This conclusion is likely to apply to other Rho-independent terminators that contain hairpin-proximal dA-dT residues.
Collapse
Affiliation(s)
- M T Yang
- Department of Microbiology, University of Illinois, Urbana 61801, USA
| | | | | |
Collapse
|
42
|
Graham JE, Spanier JG, Jarvik JW. Isolation and characterization of Pioneer1, a novel Chlamydomonas transposable element. Curr Genet 1995; 28:429-36. [PMID: 8575015 DOI: 10.1007/bf00310811] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
During the course of this study a novel family of Chlamydomonas mobile elements has been identified in natural isolate strain 224. The first member of this class to be characterized, a 2.8-kb element named Pioneer1, was trapped in an intron of the nitrate reductase structural gene, NIT1. This element has been cloned and completely sequenced and found to be unusual in structure. Pioneer elements are present in a very low-copy number of three per genome in strain 224. The copy number increased by one upon transposition of Pioneer1. Hybridization of Pioneer1 to a variety of Chlamydomonas strains confirmed that this element differed from previously described Chlamydomonas transposons. It also indicated that related elements are present in low-copy number in natural isolate strains 356 and S1D2, but not in the most commonly used laboratory strains 137c and 21 gr. For these reasons, members of the Pioneer family might prove useful as insertional mutagens.
Collapse
Affiliation(s)
- J E Graham
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
43
|
Ahmer BM, Thomas MG, Larsen RA, Postle K. Characterization of the exbBD operon of Escherichia coli and the role of ExbB and ExbD in TonB function and stability. J Bacteriol 1995; 177:4742-7. [PMID: 7642501 PMCID: PMC177240 DOI: 10.1128/jb.177.16.4742-4747.1995] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
TonB protein appears to couple the electrochemical potential of the cytoplasmic membrane to active transport across the essentially unenergized outer membrane of gram-negative bacteria. ExbB protein has been identified as an auxiliary protein in this process. In this paper we show that ExbD protein, encoded by an adjacent gene in the exb cluster at 65', was also required for TonB-dependent energy transduction and, like ExbB, was required for the stability of TonB. The phenotypes of exbB exbD+ strains were essentially indistinguishable from the phenotypes of exbB+ exbD strains. Mutations in either gene resulted in the degradation of TonB protein and in decreased, but not entirely absent, sensitivities to colicins B and Ia and to bacteriophage phi 80. Evidence that the absence of ExbB or ExbD differentially affected the half-lives of newly synthesized and steady-state TonB was obtained. In the absence of ExbB or ExbD, newly synthesized TonB was degraded with a half-life of 5 to 10 min, while the half-life of TonB under steady-state conditions was significantly longer, approximately 30 min. These results were consistent with the idea that ExbB and ExbD play roles in the assembly of TonB into an energy-transducing complex. While interaction between TonB and ExbD was suggested by the effect of ExbD on TonB stability, interaction of ExbD with TonB was detected by neither in vivo cross-linking assays nor genetic tests for competition. Assays of a chromosomally encoded exbD::phoA fusion showed that exbB and exbD were transcribed as an operon, such that ExbD-PhoA levels in an exbB::Tn10 strain were reduced to 4% of the levels observed in an exbB+ strain under iron-limiting conditions. Residual ExbD-PhoA expression in an exbB::Tn10 strain was not iron regulated and may have originated from within the Tn10 element in exbB.
Collapse
Affiliation(s)
- B M Ahmer
- Department of Genetics and Cell Biology, Washington State University, Pullman 99164-4233, USA
| | | | | | | |
Collapse
|
44
|
Guzman LM, Belin D, Carson MJ, Beckwith J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 1995; 177:4121-30. [PMID: 7608087 PMCID: PMC177145 DOI: 10.1128/jb.177.14.4121-4130.1995] [Citation(s) in RCA: 4070] [Impact Index Per Article: 135.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have constructed a series of plasmid vectors (pBAD vectors) containing the PBAD promoter of the araBAD (arabinose) operon and the gene encoding the positive and negative regulator of this promoter, araC. Using the phoA gene and phoA fusions to monitor expression in these vectors, we show that the ratio of induction/repression can be 1,200-fold, compared with 50-fold for PTAC-based vectors. phoA expression can be modulated over a wide range of inducer (arabinose) concentrations and reduced to extremely low levels by the presence of glucose, which represses expression. Also, the kinetics of induction and repression are very rapid and significantly affected by the ara allele in the host strain. Thus, the use of this system which can be efficiently and rapidly turned on and off allows the study of important aspects of bacterial physiology in a very simple manner and without changes of temperature. We have exploited the tight regulation of the PBAD promoter to study the phenotypes of null mutations of essential genes and explored the use of pBAD vectors as an expression system.
Collapse
Affiliation(s)
- L M Guzman
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
45
|
Konola JT, Nastri HG, Logan KM, Knight KL. Mutations at Pro67 in the RecA protein P-loop motif differentially modify coprotease function and separate coprotease from recombination activities. J Biol Chem 1995; 270:8411-9. [PMID: 7721735 DOI: 10.1074/jbc.270.15.8411] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The functional significance of residues in the RecA protein P-loop motif was assessed by analyzing 100 unique mutants with single amino acid substitutions in this region. Comparison of the effects on the LexA coprotease and recombination activities shows that Pro67 is unique among these residues because only at this position did we find substitutions that caused differential effects on these functions. One mutant, Pro67-->Trp, displays high constitutive coprotease activity and a moderate inhibitory effect on recombination functions. Glu and Asp substitutions result in low level constitutive coprotease activity but dramatically reduce recombination activity. The purified Pro67-->Trp protein shows a completely relaxed specificity for NTP cofactors in LexA cleavage assays and can use shorter length oligonucleotides as cofactors for cleavage of lambda cI repressor than can wild type RecA. Interestingly, both the mutant protein and wild type RecA can use very short oligonucleotides, e.g. (dA)6 and (dT)6, as cofactors for LexA cleavage. We have also found two mutations at position 67, which are completely defective for LexA coprotease activity in vivo but still maintain recombinational DNA repair (Pro67-->Lys) and homologous recombination (Pro67-->Lys and Pro67-->Arg) activities. These findings show that the recombination activities of RecA are mutationally separable from the coprotease function and that Pro67 is located in a functionally important position in the RecA structure.
Collapse
Affiliation(s)
- J T Konola
- Department of Biochemistry and Molecular Biology, University of Massachusetts Medical Center, Worcester 01655, USA
| | | | | | | |
Collapse
|
46
|
Tropf S, Kärcher B, Schröder G, Schröder J. Reaction mechanisms of homodimeric plant polyketide synthase (stilbenes and chalcone synthase). A single active site for the condensing reaction is sufficient for synthesis of stilbenes, chalcones, and 6'-deoxychalcones. J Biol Chem 1995; 270:7922-8. [PMID: 7713888 DOI: 10.1074/jbc.270.14.7922] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Stilbene (STS) and chalcone (CHS) synthases are homodimeric, related plant-specific polyketide synthases. Both perform a sequential condensation of three acetate units to a starter residue to form a tetraketide intermediate that is folded to the ring systems specific to the different products. Protein cross-linking and site-directed mutagenesis identified a subunit contact site in position 158, close to the active site (Cys169). This suggested that the active site pockets may be neighboring, possibly alternating in the condensing reactions rather than acting independently. This was investigated by coexpression of active site mutants with differently mutated, inactive proteins. With both STS and CHS, the heterodimers synthesized the end products, indicating that each subunit performed all three condensations. In co-action with a monomeric reductase, CHS also synthesizes 6'-deoxychalcone, but with the chalcone as second product when using plant preparations. The two enzymes expressed as single species in Escherichia coli synthesized both products, and both were also obtained with a CHS heterodimer containing a single active site. The results showed that 6'-deoxychalcone synthesis required no other plant factor and that the formation of two products may be an intrinsic property of the interaction between dimeric CHS and monomeric reductase.
Collapse
Affiliation(s)
- S Tropf
- Institut für Biologie II, Universität Freiburg, Federal Republic of Germany
| | | | | | | |
Collapse
|
47
|
Raiber S, Schröder G, Schröder J. Molecular and enzymatic characterization of two stilbene synthases from Eastern white pine (Pinus strobus). A single Arg/His difference determines the activity and the pH dependence of the enzymes. FEBS Lett 1995; 361:299-302. [PMID: 7698342 DOI: 10.1016/0014-5793(95)00199-j] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Pinus strobus (Eastern white pine) contains stilbenes biosynthetically derived from cinnamoyl-CoA (pinosylvin) or dihydrocinnamoyl-CoA (dihydropinosylvin). We screened a P. strobus cDNA library with a stilbene synthase (STS) probe from Pinus sylvestris. The eight isolated cDNAs represented two closely related STS genes with five amino acid differences in the proteins. The enzyme properties were investigated after heterologous expression in Escherichia coli. Both proteins preferred cinnamoyl-CoA against dihydrocinnamoyl-CoA and thus represented pinosylvin synthases. Otherwise they revealed large differences. STS1 had only 3-5% of the activity of STS2, its pH optimum was shifted to lower values (pH 6), and it synthesized with cinnamoyl-CoA a second unknown product. Site-directed mutagenesis demonstrated that a single Arg-to-His exchange in STS1 was responsible for all of the differences. The proton acceptor properties of His are discussed as the reason for the properties of STS1.
Collapse
Affiliation(s)
- S Raiber
- Institut für Biologie II, Universität Freiburg, Germany
| | | | | |
Collapse
|
48
|
Abouhamad WN, Manson MD. The dipeptide permease of Escherichia coli closely resembles other bacterial transport systems and shows growth-phase-dependent expression. Mol Microbiol 1994; 14:1077-92. [PMID: 7536291 DOI: 10.1111/j.1365-2958.1994.tb01340.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The dipeptide permease (Dpp) of Escherichia coli transports peptides consisting of two or three L-amino acids. The periplasmic dipeptide-binding protein (DBP), encoded by the dppA gene, also serves as a chemoreceptor. We sequenced the dpp locus, which comprises an operon of five genes, dppABCDE. Its organization is the same as the oligopeptide permease (opp) operon of Salmonella typhimurium and the spo0K operon of Bacillus subtilis. The dpp genes are also closely related to the hbpA gene, which encodes a haem-binding lipoprotein, and four other genes in an unlinked operon of unknown function in Haemophilus influenzae. Each Dpp protein has an Opp, Spo0K and H. influenzae homologue. Transcription of the dpp operon initiates 165 bases upstream of the predicted dppA start codon. The start site for transcription is preceded by potential -35 and -10 regions of a sigma 70 promoter. During exponential growth in Luria-Bertani (LB) broth, the level of dpp mRNA increases in two steps, one between A590 0.2 and 0.4 and one between A590 0.7 and 1.0. The 310 nucleotides between dppA and dppB include a RIP (repetitive IHF-binding palindromic) element, whose deletion from a multi-copy plasmid causes fivefold and 10-fold reductions in the levels of upstream and downstream dpp mRNA, respectively.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacterial Proteins
- Base Sequence
- Biological Transport, Active
- DNA, Bacterial/genetics
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Escherichia coli/growth & development
- Gene Expression Regulation, Bacterial
- Gene Expression Regulation, Enzymologic
- Genes, Bacterial
- Heme/metabolism
- Membrane Transport Proteins/genetics
- Membrane Transport Proteins/metabolism
- Molecular Sequence Data
- Operon
- Plasmids/genetics
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Restriction Mapping
- Transcription, Genetic
Collapse
Affiliation(s)
- W N Abouhamad
- Department of Biology, Texas A&M University, College Station 77843-3258
| | | |
Collapse
|
49
|
Nastri HG, Knight KL. Identification of residues in the L1 region of the RecA protein which are important to recombination or coprotease activities. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47195-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
50
|
Lee MH, Ohta T, Walker GC. A monocysteine approach for probing the structure and interactions of the UmuD protein. J Bacteriol 1994; 176:4825-37. [PMID: 8050995 PMCID: PMC196316 DOI: 10.1128/jb.176.16.4825-4837.1994] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
UmuD participates in a variety of protein-protein interactions that appear to be essential for its role in UV mutagenesis. To learn about these interactions, we have initiated an approach based on the construction of a series of monocysteine derivatives of UmuD and have carried out experiments exploring the chemistry of the unique thiol group in each derivative. In vivo and in vitro characterizations indicate that these proteins have an essentially native structure. In proposing a model for the interactions of UmuD in the homodimer, we have made the following assumptions: (i) the conformations of the mutant proteins are similar to that of the wild type, and (ii) the differences in reactivity of the mutant proteins are predominantly due to the positional effects of the single cysteine substitutions. The model proposes the following. The region including the Cys-24-Gly-25 cleavage site, Val-34, and Leu-44 are closer to the interface than the other positions tested as suggested by the relative ease of dimer cross-linking of the monocysteine derivatives at these positions by oxidation with iodine (I2) and by reaction with bis-maleimidohexane. The mutant with a Ser-to-Cys change at position 60 (SC60) is similar in iodoacetate reactivity to the preceding derivatives but cross-links less efficiently by I2 oxidation. This suggests that Ser-60, the site of the putative nucleophile in the cleavage reaction, is located further from the dimer interface or in a cleft region. Both Ser-19, located in the N-terminal fragment of UmuD that is removed by RecA-mediated cleavage, and Ser-67 are probably not as close to the dimer interface, since they are cross-linked more easily with bis-maleimidohexane than with I2. The SC67 mutant phenotype also suggests that this position is less important in RecA-mediated cleavage but more important in a subsequent role for UmuD in mutagenesis. Ala-89, Gln-100, and Asp-126 are probably not particularly solvent accessible and may play important roles in protein architecture.
Collapse
Affiliation(s)
- M H Lee
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | | | |
Collapse
|