1
|
Sheng Q, Yi L, Zhong B, Wu X, Liu L, Zhang B. Shikimic acid biosynthesis in microorganisms: Current status and future direction. Biotechnol Adv 2023; 62:108073. [PMID: 36464143 DOI: 10.1016/j.biotechadv.2022.108073] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/03/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Shikimic acid (SA), a hydroaromatic natural product, is used as a chiral precursor for organic synthesis of oseltamivir (Tamiflu®, an antiviral drug). The process of microbial production of SA has recently undergone vigorous development. Particularly, the sustainable construction of recombinant Corynebacterium glutamicum (141.2 g/L) and Escherichia coli (87 g/L) laid a solid foundation for the microbial fermentation production of SA. However, its industrial application is restricted by limitations such as the lack of fermentation tests for industrial-scale and the requirement of growth-limiting factors, antibiotics, and inducers. Therefore, the development of SA biosensors and dynamic molecular switches, as well as genetic modification strategies and optimization of the fermentation process based on omics technology could improve the performance of SA-producing strains. In this review, recent advances in the development of SA-producing strains, including genetic modification strategies, metabolic pathway construction, and biosensor-assisted evolution, are discussed and critically reviewed. Finally, future challenges and perspectives for further reinforcing the development of robust SA-producing strains are predicted, providing theoretical guidance for the industrial production of SA.
Collapse
Affiliation(s)
- Qi Sheng
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, China; Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lingxin Yi
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, China; Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China
| | - Bin Zhong
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, China; Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaoyu Wu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, China; Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Bin Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, China; Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
2
|
Abstract
This chapter describes in detail the genes and proteins of Escherichia coli involved in the biosynthesis and transport of the three aromatic amino acids tyrosine, phenylalanine, and tryptophan. It provides a historical perspective on the elaboration of the various reactions of the common pathway converting erythrose-4-phosphate and phosphoenolpyruvate to chorismate and those of the three terminal pathways converting chorismate to phenylalanine, tyrosine, and tryptophan. The regulation of key reactions by feedback inhibition, attenuation, repression, and activation are also discussed. Two regulatory proteins, TrpR (108 amino acids) and TyrR (513 amino acids), play a major role in transcriptional regulation. The TrpR protein functions only as a dimer which, in the presence of tryptophan, represses the expression of trp operon plus four other genes (the TrpR regulon). The TyrR protein, which can function both as a dimer and as a hexamer, regulates the expression of nine genes constituting the TyrR regulon. TyrR can bind each of the three aromatic amino acids and ATP and under their influence can act as a repressor or activator of gene expression. The various domains of this protein involved in binding the aromatic amino acids and ATP, recognizing DNA binding sites, interacting with the alpha subunit of RNA polymerase, and changing from a monomer to a dimer or a hexamer are all described. There is also an analysis of the various strategies which allow TyrR in conjunction with particular amino acids to differentially affect the expression of individual genes of the TyrR regulon.
Collapse
|
3
|
Verger D, Carr PD, Kwok T, Ollis DL. Crystal Structure of the N-terminal Domain of the TyrR Transcription Factor Responsible for Gene Regulation of Aromatic Amino Acid Biosynthesis and Transport in Escherichia coli K12. J Mol Biol 2007; 367:102-12. [PMID: 17222426 DOI: 10.1016/j.jmb.2006.12.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 12/05/2006] [Accepted: 12/06/2006] [Indexed: 11/16/2022]
Abstract
The X-ray structure of the N-terminal domain of TyrR has been solved to a resolution of 2.3 A. It reveals a modular protein containing an ACT domain, a connecting helix, a PAS domain and a C-terminal helix. Two dimers are present in the asymmetric unit with one monomer of each pair exhibiting a large rigid-body movement that results in a hinging around residue 74 of approximately 50 degrees . The structure of the dimer is discussed with reference to other transcription regulator proteins. Putative binding sites are identified for the aromatic amino acid cofactors.
Collapse
Affiliation(s)
- D Verger
- School of Crystallography, Birkbeck College, University of London, UK
| | | | | | | |
Collapse
|
4
|
Liu DX, Fan CS, Tao JH, Liang GX, Gao SE, Wang HJ, Li X, Song DX. Integration of E. coli aroG-pheA tandem genes into Corynebacterium glutamicum tyrA locus and its effect on L-phenylalanine biosynthesis. World J Gastroenterol 2004; 10:3683-7. [PMID: 15534933 PMCID: PMC4612019 DOI: 10.3748/wjg.v10.i24.3683] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: To study the effect of integration of tandem aroG-pheA genes into the tyrA locus of Corynebacterium glutamicum (C. glutamicum) on the production of L-phenylalanine.
METHODS: By nitrosoguanidine mutagenesis, five p-fluorophenylalanine (FP)-resistant mutants of C.glutamicum FP were selected. The tyrA gene encoding prephenate dehydrogenase (PDH) of C.glutamicum was amplified by polymerase chain reaction (PCR) and cloned on the plasmid pPR. Kanamycin resistance gene (Km) and the PBF-aroG-pheA-T (GA) fragment of pGA were inserted into tyrA gene to form targeting vectors pTK and pTGAK, respectively. Then, they were transformed into C.glutamicum FP respectively by electroporation. Cultures were screened by a medium containing kanamycin and detected by PCR and phenotype analysis. The transformed strains were used for L-phenylalanine fermentation and enzyme assays.
RESULTS: Engineering strains of C.glutamicum (Tyr-) were obtained. Compared with the original strain, the transformed strain C. glutamicum GAK was observed to have the highest elevation of L-phenylalanine production by a 1.71-fold, and 2.9-, 3.36-, and 3.0-fold in enzyme activities of chorismate mutase, prephenate dehydratase and 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase, respectively.
CONCLUSION: Integration of tandem aroG-pheA genes into tyrA locus of C. glutamicum chromosome can disrupt tyrA gene and increase the yield of L-phenylalanine production.
Collapse
Affiliation(s)
- Dong-Xin Liu
- Department of Microbiology, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai 200433, China
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Wu YQ, Jiang PH, Fan CS, Wang JG, Shang L, Huang WD. Co-expression of five genes in E coli for L-phenylalanine in Brevibacterium flavum. World J Gastroenterol 2003; 9:342-6. [PMID: 12532463 PMCID: PMC4611343 DOI: 10.3748/wjg.v9.i2.342] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the effect of co-expression of ppsA, pckA, aroG, pheA and tyrB genes on the production of L-phenylalanine, and to construct a genetic engineering strain for L-phenylalanine.
METHODS: ppsA and pckA genes were amplified from genomic DNA of E. coli by polymerase chain reaction, and then introduced into shuttle vectors between E coli and Brevibacterium flavum to generate constructs pJN2 and pJN5. pJN2 was generated by inserting ppsA and pckA genes into vector pCZ; whereas pJN5 was obtained by introducing ppsA and pckA genes into pCZ-GAB, which was originally constructed for co-expression of aroG, pheA and tyrB genes. The recombinant plasmids were then introduced into B. flavum by electroporation and the transformants were used for L-phenylalanine fermentation.
RESULTS: Compared with the original B. flavum cells, all the transformants were showed to have increased five enzyme activities specifically, and have enhanced L-phenylalanine biosynthesis ability variably. pJN5 transformant was observed to have the highest elevation of L-phenylalanine production by a 3.4-fold. Co-expression of ppsA and pckA increased activity of DAHP synthetase significantly.
CONCLUSION: Co-expression of ppsA and pckA genes in B. flavum could remarkably increase the expression of DAHP synthetase; Co-expression of ppsA, pckA, aroG, pheA and tyrB of E. coli in B. flavum was a feasible approach to construct a strain for phenylalanine production.
Collapse
Affiliation(s)
- Yong-Qing Wu
- Department of Microbiology, School of Life Science, Fudan University, 220 Han Dan Road, Shanghai 200433, China
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
7
|
Pittard J. The various strategies within the TyrR regulation of Escherichia coli to modulate gene expression. Genes Cells 1996; 1:717-25. [PMID: 9077441 DOI: 10.1111/j.1365-2443.1996.tb00012.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The TyrR Regulon of Escherichia coli comprises eight transcription units whose expression is modulated by the TyrR protein. This protein, which is normally a homodimer in solution, can self-associate to form a hexamer, bind with high affinity to specific DNA sequences (TyrR boxes) and interact with the alpha subunit of the RNA polymerase. These various reactions are influenced by the abundance of one or more of the aromatic amino acids, tyrosine, phenylalanine or tryptophan and by the specific location and sequence of the TyrR boxes associated with each transcription unit. This review describes how these activities can be combined in different ways to produce a variety of responses to varying levels of the three aromatic amino acids.
Collapse
Affiliation(s)
- J Pittard
- Department of Microbiology, University of Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Andrews AE, Lawley B, Pittard AJ. Mutational analysis of repression and activation of the tyrP gene in Escherichia coli. J Bacteriol 1991; 173:5068-78. [PMID: 1860819 PMCID: PMC208197 DOI: 10.1128/jb.173.16.5068-5078.1991] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In a previous report it had been suggested that the tyrP gene of Escherichia coli may be expressed from two separate promoters. We have endeavored to confirm this suggestion by primer extension studies and the separate subcloning of each of these promoters. In these studies, we found a single promoter whose expression was repressed by TyrR protein in the presence of tyrosine and activated by TyrR protein in the presence of phenylalanine. Two adjacent TYR R boxes, with the downstream one overlapping the tyrP promoter, are the likely targets for the action of TyrR protein. Mutational analysis showed that both TYR R boxes were required for tyrosine-mediated repression but that only the upstream box was required for phenylalanine-mediated activation. In vitro DNase protection studies established that whereas in the absence of tyrosine TyrR protein protected the region of DNA represented by the upstream box, at low TyrR protein concentrations both tyrosine and ATP were required to protect the region of DNA involving the downstream box and overlapping the RNA polymerase binding site.
Collapse
Affiliation(s)
- A E Andrews
- Department of Microbiology, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
9
|
Abstract
The linkage map of Escherichia coli K-12 depicts the arrangement of genes on the circular chromosome of this organism. The basic units of the map are minutes, determined by the time-of-entry of markers from Hfr into F- strains in interrupted-conjugation experiments. The time-of-entry distances have been refined over the years by determination of the frequency of cotransduction of loci in transduction experiments utilizing bacteriophage P1, which transduces segments of DNA approximately 2 min in length. In recent years, the relative positions of many genes have been determined even more precisely by physical techniques, including the mapping of restriction fragments and the sequencing of many small regions of the chromosome. On the whole, the agreement between results obtained by genetic and physical methods has been remarkably good considering the different levels of accuracy to be expected of the methods used. There are now few regions of the map whose length is still in some doubt. In some regions, genetic experiments utilizing different mutant strains give different map distances. In other regions, the genetic markers available have not been close enough to give accurate cotransduction data. The chromosome is now known to contain several inserted elements apparently derived from lambdoid phages and other sources. The nature of the region in which the termination of replication of the chromosome occurs is now known to be much more complex than the picture given in the previous map. The present map is based upon the published literature through June of 1988. There are now 1,403 loci placed on the linkage group, which may represent between one-third and one-half of the genes in this organism.
Collapse
Affiliation(s)
- B J Bachmann
- Department of Biology, Yale University, New Haven, Connecticut 06511-7444
| |
Collapse
|
10
|
Baseggio N, Davies WD, Davidson BE. Identification of the promoter, operator, and 5' and 3' ends of the mRNA of the Escherichia coli K-12 gene aroG. J Bacteriol 1990; 172:2547-57. [PMID: 1970563 PMCID: PMC208896 DOI: 10.1128/jb.172.5.2547-2557.1990] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The promoter, operator, and 5' and 3' ends of the mRNA of the Escherichia coli gene aroG (encoding the phenylalanine-sensitive 3-deoxy-arabinoheptulosonate-7-phosphate synthase) were located. Primer extension analysis and nuclease S1 mapping of in vivo transcripts were used to determine the 5' and 3' ends, respectively, of the mRNA. Both ends exhibited some heterogeneity with respect to length. The 3' end of the major molecular species was located within a region that has structural homology with known rho-independent terminators. The location of the aroG promoter was identified in both strands of the DNA by in vitro DNase I footprinting and methylation protection experiments with RNA polymerase. In these experiments, a region of up to 80 base pairs (bp) was protected by the binding of RNA polymerase. The location of the aroG operator was also identified in both strands of the DNA by in vitro DNase I footprinting with pure TyrR. TyrR protected 26 to 28 bp of DNA containing a 22-bp palindrome (TYR R box) and overlapping the -35 region of the promoter. Mutations in the aroG regulatory DNA were isolated by site-directed mutagenesis and cloned in a low-copy-number plasmid to generate aroG-lac fusions. The effects of the mutations on the regulation of aroG expression were determined by measuring the beta-galactosidase activities of the fusions in strains with tyrR, tyrR+, and multicopy tyrR+ genotypes. The results of this mutant analysis confirmed that the aroG operator contains a single TYR R box.
Collapse
Affiliation(s)
- N Baseggio
- Russell Grimwade School of Biochemistry, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
11
|
Ray JM, Yanofsky C, Bauerle R. Mutational analysis of the catalytic and feedback sites of the tryptophan-sensitive 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase of Escherichia coli. J Bacteriol 1988; 170:5500-6. [PMID: 2903857 PMCID: PMC211643 DOI: 10.1128/jb.170.12.5500-5506.1988] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The nucleotide sequence of aroH, the structural gene for the tryptophan-sensitive 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase [DAHPS(Trp)], is presented, and the deduced amino acid sequence of AroH is compared with that of the tyrosine-sensitive (AroF) and phenylalanine-sensitive (AroG) DAHPS isoenzymes. The high degree of sequence similarity among the three isoenzymes strongly indicates that they have a common evolutionary origin. In vitro chemical mutagenesis of the cloned aroH gene was used to identify residues and regions of the polypeptide essential for catalytic activity and for tryptophan feedback regulation. Missense mutations leading either to loss of catalytic activity or to feedback resistance were found interspersed throughout the polypeptide, suggesting overlapping catalytic and regulatory sites in DAHPS(Trp). We conclude that the specificity of feedback regulation of the isoenzymes was probably acquired by the duplication and divergent evolution of an ancestral gene, rather than by domain recruitment.
Collapse
Affiliation(s)
- J M Ray
- Department of Biology and Molecular Biology Institute, University of Virginia, Charlottesville 22901
| | | | | |
Collapse
|
12
|
Cornish EC, Argyropoulos VP, Pittard J, Davidson BE. Structure of the Escherichia coli K12 regulatory gene tyrR. Nucleotide sequence and sites of initiation of transcription and translation. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(17)42487-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|