1
|
Expression analysis of the Pseudomonas aeruginosa AlgZR two-component regulatory system. J Bacteriol 2014; 197:736-48. [PMID: 25488298 DOI: 10.1128/jb.02290-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa virulence components are subject to complex regulatory control primarily through two-component regulatory systems that allow for sensing and responding to environmental stimuli. In this study, the expression and regulation of the P. aeruginosa AlgZR two-component regulatory system were examined. Primer extension and S1 nuclease protection assays were used to identify two transcriptional initiation sites for algR within the algZ coding region, and two additional start sites were identified upstream of the algZ coding region. The two algR transcriptional start sites, RT1 and RT2, are directly regulated by AlgU, consistent with previous reports of increased algR expression in mucoid backgrounds, and RpoS additionally plays a role in algR transcription. The expression of the first algZ promoter, ZT1, is entirely dependent upon Vfr for expression, whereas Vfr, RpoS, or AlgU does not regulate the second algZ promoter, ZT2. Western blot, real-time quantitative PCR (RT-qPCR), and transcriptional fusion analyses show that algZR expression is Vfr dependent. The algZ and algR genes also are cotranscribed in both nonmucoid and mucoid backgrounds. Furthermore, algZR was found to be cotranscribed with hemCD by RT-PCR. RT-qPCR confirmed that hemC transcription in the PAO1 ΔalgZ mutant was 40% of the level of the wild-type strain. Taken together, these results indicate that algZR transcription involves multiple factors at multiple start sites that control individual gene expression as well as coexpression of this two-component system with heme biosynthetic genes.
Collapse
|
2
|
Robert-Genthon M, Casabona MG, Neves D, Couté Y, Cicéron F, Elsen S, Dessen A, Attrée I. Unique features of a Pseudomonas aeruginosa α2-macroglobulin homolog. mBio 2013; 4:e00309-13. [PMID: 23919994 PMCID: PMC3735191 DOI: 10.1128/mbio.00309-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/11/2013] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Human pathogens frequently use protein mimicry to manipulate host cells in order to promote their survival. Here we show that the opportunistic pathogen Pseudomonas aeruginosa synthesizes a structural homolog of the human α2-macroglobulin, a large-spectrum protease inhibitor and important player of innate immunity. Small-angle X-ray scattering analysis demonstrated that the fold of P. aeruginosa MagD (PA4489) is similar to that of the human macroglobulin and undergoes a conformational modification upon binding of human neutrophil elastase. MagD synthesis is under the control of a general virulence regulatory pathway including the inner membrane sensor RetS and the RNA-binding protein RsmA, and MagD undergoes cleavage from a 165-kDa to a 100-kDa form in all clinical isolates tested. Fractionation and immunoprecipitation experiments showed that MagD is translocated to the bacterial periplasm and resides within the inner membrane in a complex with three other molecular partners, MagA, MagB, and MagF, all of them encoded by the same six-gene genetic element. Inactivation of the whole 10-kb operon on the PAO1 genome resulted in mislocalization of uncleaved, in trans-provided MagD as well as its rapid degradation. Thus, pathogenic bacteria have acquired a homolog of human macroglobulin that plays roles in host-pathogen interactions potentially through recognition of host proteases and/or antimicrobial peptides; it is thus essential for bacterial defense. IMPORTANCE The pathogenesis of Pseudomonas aeruginosa is multifactorial and relies on surface-associated and secreted proteins with different toxic activities. Here we show that the bacterium synthesizes a 160-kDa structural homolog of the human large-spectrum protease inhibitor α2-macroglobulin. The bacterial protein is localized in the periplasm and is associated with the inner membrane through the formation of a multimolecular complex. Its synthesis is coregulated at the posttranscriptional level with other virulence determinants, suggesting that it has a role in bacterial pathogenicity and/or in defense against the host immune system. Thus, this new P. aeruginosa macromolecular complex may represent a future target for antibacterial developments.
Collapse
Affiliation(s)
| | | | - David Neves
- Brazilian National Laboratory for Biosciences (LNBio), CNPEM, Campinas, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
3
|
Arhin A, Boucher C. The outer membrane protein OprQ and adherence of Pseudomonas aeruginosa to human fibronectin. Microbiology (Reading) 2010; 156:1415-1423. [DOI: 10.1099/mic.0.033472-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Outer membrane proteins of the Gram-negative organism Pseudomonas aeruginosa play a significant role in membrane permeability, antibiotic resistance, nutrient uptake, and virulence in the infection site. In this study, we show that the P. aeruginosa outer membrane protein OprQ, a member of the OprD superfamily, is involved in the binding of human fibronectin (Fn). Some members of the OprD subfamily have been reported to be important in the uptake of nutrients from the environment. Comparison of wild-type and mutant strains of P. aeruginosa revealed that inactivation of the oprQ gene does not reduce the growth rate. Although it does not appear to be involved in nutrient uptake, an increased doubling time was reproducibly observed with the loss of OprQ in P. aeruginosa. Utilizing an oprQ–xylE transcriptional fusion, we determined that the PA2760 gene, encoding OprQ, was upregulated under conditions of decreased iron and magnesium. This upregulation appears to occur in early exponential phase. Insertional inactivation of PA2760 in the P. aeruginosa wild-type background did not produce a significant increase in resistance to any antibiotic tested, a phenotype that is typical of OprD family members. Interestingly, the in trans expression of OprQ in the ΔoprQ PAO1 mutant resulted in increased sensitivity to certain antibiotics. These findings suggest that OprQ is under dual regulation with other P. aeruginosa genes. Intact P. aeruginosa cells are capable of binding human Fn. We found that loss of OprQ resulted in a reduction of binding to plasmatic Fn in vitro. Finally, we present a discussion of the possible role of the P. aeruginosa outer membrane protein OprQ in adhesion to epithelial cells, thereby increasing colonization and subsequently enhancing lung destruction by P. aeruginosa.
Collapse
Affiliation(s)
- Abraham Arhin
- The University of Texas at Tyler, 3900 University Blvd, Tyler, TX 75701, USA
| | - Cliff Boucher
- The University of Texas at Tyler, 3900 University Blvd, Tyler, TX 75701, USA
| |
Collapse
|
4
|
Pseudomonas aeruginosa AlgR controls cyanide production in an AlgZ-dependent manner. J Bacteriol 2009; 191:2993-3002. [PMID: 19270096 DOI: 10.1128/jb.01156-08] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes chronic infections in individuals suffering from the genetic disorder cystic fibrosis. In P. aeruginosa, the transcriptional regulator AlgR controls a variety of virulence factors, including alginate production, twitching motility, biofilm formation, quorum sensing, and hydrogen cyanide (HCN) production. In this study, the regulation of HCN production was examined. Strains lacking AlgR or the putative AlgR sensor AlgZ produced significantly less HCN than did a nonmucoid isogenic parent. In contrast, algR and algZ mutants showed increased HCN production in an alginate-producing (mucoid) background. HCN production was optimal in a 5% O2 environment. In addition, cyanide production was elevated in bacteria grown on an agar surface compared to bacteria grown in planktonic culture. A conserved AlgR phosphorylation site (aspartate at amino acid position 54), which is required for surface-dependent twitching motility but not alginate production, was found to be critical for cyanide production. Nuclease protection mapping of the hcnA promoter identified a new transcriptional start site required for HCN production. A subset of clinical isolates that lack this start site produced small amounts of cyanide. Taken together, these data show that the P. aeruginosa hcnA promoter contains three transcriptional start sites and that HCN production is regulated by AlgZ and AlgR and is maximal under microaerobic conditions when the organism is surface attached.
Collapse
|
5
|
Kaur R, Ahuja S, Anand A, Singh B, Stark BC, Webster DA, Dikshit KL. Functional implications of the proximal site hydrogen bonding network in Vitreoscilla
hemoglobin (VHb): Role of Tyr95 (G5) and Tyr126 (H12). FEBS Lett 2008; 582:3494-500. [DOI: 10.1016/j.febslet.2008.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 09/04/2008] [Accepted: 09/09/2008] [Indexed: 11/27/2022]
|
6
|
Pastor A, Chabert J, Louwagie M, Garin J, Attree I. PscF is a major component of the Pseudomonas aeruginosa type III secretion needle. FEMS Microbiol Lett 2006; 253:95-101. [PMID: 16239085 DOI: 10.1016/j.femsle.2005.09.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 09/15/2005] [Accepted: 09/15/2005] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas aeruginosa, a Gram-negative opportunistic pathogen, translocates exoenzymes (Exo) directly into the eukaryotic cell cytoplasm. This is accomplished by a type III secretion/translocation machinery. Here, we show that the P. aeruginosa type III secretory needle structure is composed essentially of PscF, a protein required for secretion and P. aeruginosa cytotoxicity. Partially purified needles, detached from the bacterial surface, are 60-80 nm in length and 7 nm in width, resembling needles from Yersinia spp.. YscF of Yersinia enterocolitica was able to functionally complement the pscF deletion, but required 11 P. aeruginosa-specific amino acids at the N-terminus for its function.
Collapse
Affiliation(s)
- Alexandrine Pastor
- Laboratoire de Biochimie et Biophysique des Systèmes Intégrés (UMR 5092 CNRS/CEA/UJF), DRDC/BBSI, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 09, France
| | | | | | | | | |
Collapse
|
7
|
Reiling SA, Jansen JA, Henley BJ, Singh S, Chattin C, Chandler M, Rowen DW. Prc protease promotes mucoidy in mucA mutants of Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2005; 151:2251-2261. [PMID: 16000715 DOI: 10.1099/mic.0.27772-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mucoid strains of Pseudomonas aeruginosa that overproduce the exopolysaccharide alginate are a frequent cause of chronic respiratory infections in cystic fibrosis (CF) patients. The overproduction of alginate by these strains is often caused by mutations within mucA of the algU mucABCD gene cluster. This gene cluster encodes an extreme stress response system composed of the ECF alternative sigma factor AlgU, the anti-sigma factor MucA located in the inner membrane and the negative regulator MucB located in the periplasm. Most of the mutations in mucA found in mucoid strains cause a truncation of the C-terminal, periplasmic domain of MucA. The most significant effect of these mutations appears to be to reduce the levels of MucA. PA3257 (prc) was identified as a regulator of alginate production in P. aeruginosa through the isolation and study of mutations that partially suppressed the mucoid phenotype of a mucA22 strain. The suppressor of mucoidy (som) mutants isolated produced very little alginate when grown on LB medium, but were still mucoid when grown on Pseudomonas isolation agar. These som mutations and another previously isolated suppressor mutation were complemented by cosmids or plasmids carrying PA3257. PA3257 is predicted to encode a periplasmic protease similar to Prc or Tsp of Escherichia coli. Sequencing of prc from three strains with som suppressor mutations confirmed that each had a mutation within the prc coding region. The authors propose that Prc acts to degrade mutant forms of MucA. Additional evidence in support of this hypothesis is: (1) transcription from the AlgU-regulated algD reporter was reduced in som mutants; (2) inactivation of prc affected alginate production in mucoid strains with other mucA mutations found in CF isolates; (3) inactivation or overexpression of prc did not affect alginate production in strains with wild-type MucA.
Collapse
Affiliation(s)
- S A Reiling
- Department of Biology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - J A Jansen
- Department of Biology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - B J Henley
- Department of Biology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - S Singh
- Department of Biology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - C Chattin
- Department of Biology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - M Chandler
- Department of Biology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - D W Rowen
- Department of Biology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| |
Collapse
|
8
|
Quinaud M, Chabert J, Faudry E, Neumann E, Lemaire D, Pastor A, Elsen S, Dessen A, Attree I. The PscE-PscF-PscG complex controls type III secretion needle biogenesis in Pseudomonas aeruginosa. J Biol Chem 2005; 280:36293-300. [PMID: 16115870 DOI: 10.1074/jbc.m508089200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Type III secretion (T3S) systems play key roles in pathogenicity of many Gram-negative bacteria and are employed to inject toxins directly into the cytoplasm of target cells. They are composed of over 20 different proteins that associate into a basal structure that traverses both inner and outer bacterial membranes and a hollow, needle-like structure through which toxins travel. The PscF protein is the main component of the Pseudomonas aeruginosa T3S needle. Here we demonstrate that PscF, when purified on its own, is able to form needle-like fibers of 8 nm in width and >1 microm in length. In addition, we demonstrate for the first time that the T3S needle subunit requires two cytoplasmic partners, PscE and PscG, in P. aeruginosa, which trap PscF in a ternary, 1:1:1 complex, thus blocking it in a monomeric state. Knock-out mutants deficient in PscE and PscG are non-cytotoxic, lack PscF, and are unable to export PscF encoded extrachromosomally. Temperature-scanning circular dichroism measurements show that the PscE-PscF-PscG complex is thermally stable and displays a cooperative unfolding/refolding pattern. Thus, PscE and PscG prevent PscF from polymerizing prematurely in the P. aeruginosa cytoplasm and keep it in a secretion prone conformation, strategies which may be shared by other pathogens that employ the T3S system for infection.
Collapse
Affiliation(s)
- Manuelle Quinaud
- Biochimie et Biophysique des Systèmes Intégrés, UMR 5092 CNRS/Commissariat à l'Energie Atomique (CEA)/Université Joseph Fourier (UJF), Département de Réponse et Dynamique Cellulaires, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex 09, France
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Carterson AJ, Morici LA, Jackson DW, Frisk A, Lizewski SE, Jupiter R, Simpson K, Kunz DA, Davis SH, Schurr JR, Hassett DJ, Schurr MJ. The transcriptional regulator AlgR controls cyanide production in Pseudomonas aeruginosa. J Bacteriol 2004; 186:6837-44. [PMID: 15466037 PMCID: PMC522194 DOI: 10.1128/jb.186.20.6837-6844.2004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes chronic lung infections in cystic fibrosis (CF) patients. One characteristic of P. aeruginosa CF isolates is the overproduction of the exopolysaccharide alginate, controlled by AlgR. Transcriptional profiling analyses comparing mucoid P. aeruginosa strains to their isogenic algR deletion strains showed that the transcription of cyanide-synthesizing genes (hcnAB) was approximately 3-fold lower in the algR mutants. S1 nuclease protection assays corroborated these findings, indicating that AlgR activates hcnA transcription in mucoid P. aeruginosa. Quantification of hydrogen cyanide (HCN) production from laboratory isolates revealed that mucoid laboratory strains made sevenfold more HCN than their nonmucoid parental strains. In addition, comparison of laboratory and clinically derived nonmucoid strains revealed that HCN was fivefold higher in the nonmucoid CF isolates. Moreover, the average amount of cyanide produced by mucoid clinical isolates was 4.7 +/- 0.85 micromol of HCN/mg of protein versus 2.4 +/- 0.40 micromol of HCN/mg of protein for nonmucoid strains from a survey conducted with 41 P. aeruginosa CF isolates from 24 patients. Our data indicate that (i) mucoid P. aeruginosa regardless of their origin (laboratory or clinically derived) produce more cyanide than their nonmucoid counterparts, (ii) AlgR regulates HCN production in P. aeruginosa, and (iii) P. aeruginosa CF isolates are more hypercyanogenic than nonmucoid laboratory strains. Taken together, cyanide production may be a relevant virulence factor in CF lung disease, the production of which is regulated, in part, by AlgR.
Collapse
Affiliation(s)
- Alexander J Carterson
- Department of Microbiology and Immunology, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112-2699, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Lizewski SE, Schurr JR, Jackson DW, Frisk A, Carterson AJ, Schurr MJ. Identification of AlgR-regulated genes in Pseudomonas aeruginosa by use of microarray analysis. J Bacteriol 2004; 186:5672-84. [PMID: 15317771 PMCID: PMC516850 DOI: 10.1128/jb.186.17.5672-5684.2004] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Pseudomonas aeruginosa transcriptional regulator AlgR controls a variety of different processes, including alginate production, type IV pilus function, and virulence, indicating that AlgR plays a pivotal role in the regulation of gene expression. In order to characterize the AlgR regulon, Pseudomonas Affymetrix GeneChips were used to generate the transcriptional profiles of (i) P. aeruginosa PAO1 versus its algR mutant in mid-logarithmic phase, (ii) P. aeruginosa PAO1 versus its algR mutant in stationary growth phase, and (iii) PAO1 versus PAO1 harboring an algR overexpression plasmid. Expression analysis revealed that, during mid-logarithmic growth, AlgR activated the expression of 58 genes while it repressed the expression of 37 others, while during stationary phase, it activated expression of 45 genes and repression of 14 genes. Confirmatory experiments were performed on two genes found to be AlgR repressed (hcnA and PA1557) and one AlgR-activated operon (fimU-pilVWXY1Y2). An S1 nuclease protection assay demonstrated that AlgR repressed both known hcnA promoters in PAO1. Additionally, direct measurement of hydrogen cyanide (HCN) production showed that P. aeruginosa PAO1 produced threefold-less HCN than did its algR deletion strain. AlgR also repressed transcription of two promoters of the uncharacterized open reading frame PA1557. Further, the twitching motility defect of an algR mutant was complemented by the fimTU-pilVWXY1Y2E operon, thus identifying the AlgR-controlled genes responsible for this defect in an algR mutant. This study identified four new roles for AlgR: (i) AlgR can repress gene transcription, (ii) AlgR activates the fimTU-pilVWXY1Y2E operon, (iii) AlgR regulates HCN production, and (iv) AlgR controls transcription of the putative cbb3-type cytochrome PA1557.
Collapse
Affiliation(s)
- Stephen E Lizewski
- Department of Microbiology and Immunology, Program in Molecular Pathogenesis and Immunity, Louisiana Center for Lung Biology and Immunotherapy, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112-2699, USA
| | | | | | | | | | | |
Collapse
|
11
|
Goure J, Pastor A, Faudry E, Chabert J, Dessen A, Attree I. The V antigen of Pseudomonas aeruginosa is required for assembly of the functional PopB/PopD translocation pore in host cell membranes. Infect Immun 2004; 72:4741-50. [PMID: 15271936 PMCID: PMC470589 DOI: 10.1128/iai.72.8.4741-4750.2004] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Pseudomonas aeruginosa efficiently intoxicates eukaryotic cells through the activity of the type III secretion-translocation system (TTSS). Gene deletions within the translocation operon pcrGVH-popBD abolish pore-forming activity of P. aeruginosa strains with macrophages and TTSS-dependent hemolysis. Here we investigated the requirements for PcrV, PopB, and PopD in pore formation by analyzing specific mutants using red blood cells (RBCs) and fibroblasts expressing green fluorescent protein fused to actin. Simultaneous secretion of three proteins, PopB, PopD, and PcrV, was required to achieve wild-type hemolysis and effector translocation. Deletion of pcrV in a cytotoxic strain did not affect secretion of PopB and PopD but abolished hemolytic activity and translocation of effectors into fibroblasts. Notably, the PcrV-deficient mutant was not capable of inserting PopD into host cell membranes, whereas PopB and PopD, but not PcrV, were readily found within membranes of wild-type-infected RBCs. Immunoprecipitation experiments performed by using a liposome model of pore assembly revealed a direct interaction between PopD and PopB but not between PopD and PcrV. Consequently, PcrV is necessary for the functional assembly of the PopB/D translocon complex but does not interact directly with pore-forming Pop proteins.
Collapse
Affiliation(s)
- Julien Goure
- Biochimie et Biophysique des Systèmes Intégrés, UMR 5092 CNRS/CEA/UJF, DRDC, CEA, Grenoble, France
| | | | | | | | | | | |
Collapse
|
12
|
Lizewski SE, Lundberg DS, Schurr MJ. The transcriptional regulator AlgR is essential for Pseudomonas aeruginosa pathogenesis. Infect Immun 2002; 70:6083-93. [PMID: 12379685 PMCID: PMC130412 DOI: 10.1128/iai.70.11.6083-6093.2002] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chronic Pseudomonas aeruginosa lung infection is the major cause of morbidity and mortality in cystic fibrosis (CF) patients. One P. aeruginosa virulence factor unique to CF isolates is overproduction of alginate, phenotypically termed mucoidy. Mucoidy is the result of increased transcription from the algD gene and is activated by the transcriptional regulator AlgR. Mutations in algR result in a nonmucoid phenotype and loss of twitching motility. Additionally, AlgR controls transcription of algC, encoding a dual-function enzyme necessary for both lipopolysaccharide (LPS) and alginate production. Therefore, to determine the effect of algR on P. aeruginosa virulence, an algR mutant was examined for sensitivity to reactive oxygen intermediates, killing by phagocytes, systemic virulence, and the ability to maintain a murine lung infection. We found that P. aeruginosa PAO700 (algR::Gm(r)) was less lethal than PAO1, as tested in an acute septicemia infection mouse model, and was cleared more efficiently in a mouse pneumonia model. Additionally, the algR mutant (PAO700) was more sensitive to hypochlorite. However, PAO700 was more resistant to hydrogen peroxide and killed less readily in an acellular myeloperoxidase assay than PAO1. There was little difference in killing between PAO1 and PAO700 with macrophage-like J774 cells and human polymorhonuclear leukocytes. Two-dimensional gel analysis of P. aeruginosa algR mutant and wild-type protein extracts revealed 47 differentially regulated proteins, suggesting that AlgR plays both a positive role and a negative role in gene expression. Together, these results imply that AlgR is necessary for virulence and regulates genes in addition to the genes associated with alginate and LPS production and pilus function.
Collapse
Affiliation(s)
- Stephen E Lizewski
- Department of Microbiology and Immunology, Program in Molecular Pathogenesis and Immunity, Tulane University Health Sciences Center, New Orleans, Louisiana 70112-2699, USA
| | | | | |
Collapse
|
13
|
Poschet JF, Boucher JC, Firoved AM, Deretic V. Conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients. Methods Enzymol 2001; 336:65-76. [PMID: 11398420 DOI: 10.1016/s0076-6879(01)36579-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- J F Poschet
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
14
|
Xu Q, Blaser MJ. Promoters of the CATG-specific methyltransferase gene hpyIM differ between iceA1 and iceA2 Helicobacter pylori strains. J Bacteriol 2001; 183:3875-84. [PMID: 11395450 PMCID: PMC95269 DOI: 10.1128/jb.183.13.3875-3884.2001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Helicobacter pylori strains can be divided into two groups, based on the presence of two unrelated genes, iceA1 and iceA2, that occupy the same genomic locus. hpyIM, located immediately downstream of either gene, encodes a functional CATG-specific methyltransferase. Despite the strong conservation of the hpyIM open reading frame (ORF) among all H. pylori strains, the sequences upstream of the ORF in iceA1 and iceA2 strains are substantially different. To explore the roles of these upstream sequences in hpyIM regulation, promoter analysis of hpyIM was performed. Both deletion mutation and primer extension analyses demonstrate that the hpyIM promoters differ between H. pylori strains 60190 (iceA1) and J188 (iceA2). In strain 60190, hpyIM has two promoters, P(a) or P(I), which may function independently, whereas only one hpyIM promoter, P(c), was found in strain J188. The XylE assay showed that the hpyIM transcription level was much higher in strain 60190 than in strain J188, indicating that regulation of hpyIM transcription differs between the H. pylori iceA1 strain (60190) and iceA2 strains (J188). Since the iceA1 and iceA2 sequences are highly conserved within iceA1 or iceA2 strains, we conclude that promoters of the CATG-specific methylase gene hpyIM differ between iceA1 and iceA2 strains, which leads to differences in regulation of hpyIM transcription.
Collapse
Affiliation(s)
- Q Xu
- Department of Microbiology and Immunology, Department of Medicine, Vanderbilt University School of Medicine and VA Medical Center, Nashville, Tennessee 37232, USA.
| | | |
Collapse
|
15
|
Miller WG, Leveau JH, Lindow SE. Improved gfp and inaZ broad-host-range promoter-probe vectors. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2000; 13:1243-50. [PMID: 11059491 DOI: 10.1094/mpmi.2000.13.11.1243] [Citation(s) in RCA: 441] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A new set of broad-host-range promoter-probe vectors has been constructed. One subset contains the pVS1 and p15a replicons and confers resistance to either gentamicin or kanamycin. The other set contains the broad-host-range replicon from pBBR1 and confers resistance to kanamycin, tetracycline, ampicillin, or spectinomycin/streptomycin. Both plasmid sets are highly stable and are maintained without selection for more than 30 generations in several bacterial taxa. Each plasmid contains a promoter-probe cassette that consists of a multicloning site, containing several unique restriction sites, and gfp or inaZ as a reporter gene. The cassette is bound by transcriptional terminators to permit the insertion of strong promoters and to insulate the cassette from external transcription enabling the detection of weak or moderate promoters. The vector suite was augmented with derivatives of the kanamycin-resistant gfp promoter-probe plasmids that encode Gfp variants with different half-life times.
Collapse
Affiliation(s)
- W G Miller
- University of California, Department of Plant and Microbial Biology, Berkeley 94720, USA
| | | | | |
Collapse
|
16
|
Macfarlane EL, Kwasnicka A, Ochs MM, Hancock RE. PhoP-PhoQ homologues in Pseudomonas aeruginosa regulate expression of the outer-membrane protein OprH and polymyxin B resistance. Mol Microbiol 1999; 34:305-16. [PMID: 10564474 DOI: 10.1046/j.1365-2958.1999.01600.x] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rapid adaptation to environmental challenge is essential for the survival of many bacterial species, and is often effectively mediated by two-component regulatory systems. Part of the adaptive response of Pseudomonas aeruginosa to Mg2+ starvation is overexpression of the outer-membrane protein OprH and increased resistance to the polycationic antibiotic polymyxin B. Two overlapping open reading frames that encoded proteins with high similarities to the PhoP-PhoQ two-component regulatory system of Salmonella typhimurium were identified downstream of the oprH gene. A P. aeruginosa PhoP-null mutant, H851, was constructed by means of a phoP:xylE-GmR transcriptional fusion, and shown to be deficient in OprH expression. In contrast, an analogous PhoQ-null mutant, H854 (phoQ:xylE-GmR), exhibited constitutive overexpression of OprH. Normal Mg2+-regulated OprH expression could be restored in both mutants by complementation with a plasmid carrying the phoP and phoQ genes. Measurement of the catechol-2,3-dioxygenase activity, expressed from the xylE transcriptional fusion in strains H851 and H854, indicated that PhoP-PhoQ is involved in the regulation of phoP-phoQ as well as oprH. Reverse transcription polymerase chain reaction experiments and Northern blot analysis revealed linkage of oprH, phoP and phoQ into an operon that was demonstrated to be under the joint control of PhoP-PhoQ and Mg2+ ion concentration. In addition, studies of the polymyxin B resistance of the two mutant strains, H851 and H854, indicated that PhoP-PhoQ is involved in regulating P. aeruginosa polymyxin resistance in response to external Mg2+ concentrations.
Collapse
Affiliation(s)
- E L Macfarlane
- Department of Microbiology, 300, 6174 University Boulevard, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | | | | | | |
Collapse
|
17
|
Carbonelli DL, Corley E, Seigelchifer M, Zorzópulos J. A plasmid vector for isolation of strong promoters in Escherichia coli. FEMS Microbiol Lett 1999; 177:75-82. [PMID: 10436925 DOI: 10.1111/j.1574-6968.1999.tb13716.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
In order to isolate very strong promoters from bacteria and bacteriophage a plasmid named pProm was constructed. It possesses an origin (ORI) for replication in Gram-negative bacteria, an ORI for replication in Gram-positive bacteria, a promoterless ampicillin resistance gene with a multiple cloning site (MCS) in the position formerly occupied by the ampicillin promoter, a tetracycline resistance gene for selection in Gram-negative bacteria and a chloramphenicol resistance gene for selection in Gram-positive bacteria. Insertion in the MCS of DNA fragments of Staphylococcus aureus bacteriophages resulted in isolation of several clones very resistant to ampicillin. The DNA fragments inserted in these recombinant plasmids were sequenced and all of them contained putative promoter motifs. Direct measurement of the penicillinase activity indicated that one of the isolated promoters could be included within a group of the stronger known prokaryotic promoters. According to these results pProm is a powerful tool to perform studies on promoter strength and for industrial applications.
Collapse
Affiliation(s)
- D L Carbonelli
- Instituto de Investigaciones Biomédicas Fundación Pablo Cassará, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
18
|
VanBogelen RA, Greis KD, Blumenthal RM, Tani TH, Matthews RG. Mapping regulatory networks in microbial cells. Trends Microbiol 1999; 7:320-8. [PMID: 10431205 DOI: 10.1016/s0966-842x(99)01540-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Genome sequences are the blueprints of diverse life forms but they reveal little information about how cells make coherent responses to environmental changes. The combined use of gene fusions, gene chips, 2-D polyacrylamide gel electrophoresis, mass spectrometry and 'old-fashioned' microbial physiology will provide the means to reveal a cell's regulatory networks and how those networks are integrated.
Collapse
Affiliation(s)
- R A VanBogelen
- Parke-Davis Pharmaceutical Research Division, Warner-Lambert, Ann Arbor, MI 48105, USA
| | | | | | | | | |
Collapse
|
19
|
Ochs MM, McCusker MP, Bains M, Hancock RE. Negative regulation of the Pseudomonas aeruginosa outer membrane porin OprD selective for imipenem and basic amino acids. Antimicrob Agents Chemother 1999; 43:1085-90. [PMID: 10223918 PMCID: PMC89115 DOI: 10.1128/aac.43.5.1085] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa OprD is a specific porin which facilitates the uptake of basic amino acids and imipenem, a carbapenem antibiotic. Resistance to imipenem due to the loss of OprD is an important mechanism for the loss of clinical effectiveness. To investigate the negative regulatory mechanisms influencing oprD expression, a gene upstream of the coregulated mexEF-oprN efflux operon, designated mexT, was cloned. The predicted 304-amino-acid mature MexT protein showed strong homology to LysR-type regulators. When overexpressed it induced the expression of the mexEF-oprN efflux operon while decreasing the level of expression of OprD. The use of an oprD::xylE transcriptional fusion indicated that it acted by repressing the transcription of oprD. Salicylate, a weak aromatic acid known to reduce porin expression and induce low levels of multiple antibiotic resistance in Escherichia coli, was able to induce imipenem resistance and reduce the expression of OprD but not multiple antibiotic resistance or OprN expression in P. aeruginosa. This was also demonstrated to occur at the level of transcription. Acetyl salicylate and benzoate, but not catechol, were also able to reduce the levels of OprD in the P. aeruginosa outer membranes. These OprD-suppressing compounds increased imipenem resistance even in a mexT-overexpressing and nfxC mutant backgrounds, suggesting that such resistance is independent of the MexT repressor and that oprD is influenced by more than a single mechanism of repression.
Collapse
Affiliation(s)
- M M Ochs
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | | | | | | |
Collapse
|
20
|
Peñaloza-Vázquez A, Kidambi SP, Chakrabarty AM, Bender CL. Characterization of the alginate biosynthetic gene cluster in Pseudomonas syringae pv. syringae. J Bacteriol 1997; 179:4464-72. [PMID: 9226254 PMCID: PMC179280 DOI: 10.1128/jb.179.14.4464-4472.1997] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Alginate, a copolymer of D-mannuronic acid and L-guluronic acid, is produced by a variety of pseudomonads, including Pseudomonas syringae. Alginate biosynthesis has been most extensively studied in P. aeruginosa, and a number of structural and regulatory genes from this species have been cloned and characterized. In the present study, an alginate-defective (Alg-) mutant of P. syringae pv. syringae FF5 was shown to contain a Tn5 insertion in algL, a gene encoding alginate lyase. A cosmid clone designated pSK2 restored alginate production to the algL mutant and was shown to contain homologs of algD, alg8, alg44, algG, algX (alg60), algL, algF, and algA. The order and arrangement of the structural gene cluster were virtually identical to those previously described for P. aeruginosa. Complementation analyses, however, indicated that the structural gene clusters in P. aeruginosa and P. syringae were not functionally interchangeable when expressed from their native promoters. A region upstream of the algD gene in P. syringae pv. syringae was shown to activate the transcription of a promoterless glucuronidase (uidA) gene and indicated that transcription initiated upstream of algD as described for P. aeruginosa. Transcription of the algD promoter from P. syringae FF5 was significantly higher at 32 degrees C than at 18 or 26 degrees C and was stimulated when copper sulfate or sodium chloride was added to the medium. Alginate gene expression was also stimulated by the addition of the nonionic solute sorbitol, indicating that osmolarity is a signal for algD expression in P. syringae FF5.
Collapse
Affiliation(s)
- A Peñaloza-Vázquez
- Department of Plant Pathology, Oklahoma State University, Stillwater 74078-3032, USA
| | | | | | | |
Collapse
|
21
|
Ma JF, Phibbs PV, Hassett DJ. Glucose stimulates alginate production and algD transcription in Pseudomonas aeruginosa. FEMS Microbiol Lett 1997; 148:217-21. [PMID: 9084150 DOI: 10.1111/j.1574-6968.1997.tb10291.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A previous study [DeVault et al. (1991) Mol. Microbiol. 5, 2503-2509] suggested that growth of Pseudomonas aeruginosa in glucose-containing medium represses algD gene transcription. In this study, growth of P. aeruginosa in rich medium containing glucose or gluconate increased alginate production and algD transcription at concentrations ranging from 1 to 5%.
Collapse
Affiliation(s)
- J F Ma
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, OH 45257-0524, USA
| | | | | |
Collapse
|
22
|
Hassett DJ. Anaerobic production of alginate by Pseudomonas aeruginosa: alginate restricts diffusion of oxygen. J Bacteriol 1996; 178:7322-5. [PMID: 8955420 PMCID: PMC178651 DOI: 10.1128/jb.178.24.7322-7325.1996] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Pseudomonas aeruginosa produced alginate and elevated algD (encoding GDPmannose 6-dehydrogenase) transcription under strict anaerobic conditions, especially when using nitrate as a terminal electron acceptor. Purified alginate added to bacterial suspensions caused a decrease in growth, suggesting that alginate contributes to oxygen limitation for the organism and likely for patients afflicted with the inherited autosomal disease cystic fibrosis.
Collapse
Affiliation(s)
- D J Hassett
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Ohio 45257-0524, USA.
| |
Collapse
|
23
|
Karita M, Tummuru MK, Wirth HP, Blaser MJ. Effect of growth phase and acid shock on Helicobacter pylori cagA expression. Infect Immun 1996; 64:4501-7. [PMID: 8890198 PMCID: PMC174404 DOI: 10.1128/iai.64.11.4501-4507.1996] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Helicobacter pylori strains possessing cagA are associated with peptic ulceration. To understand the regulation of expression of cagA, picB, associated with interleukin-8 induction, and ureA, encoding the small urease subunit, we created gene fusions of cagA, ureA, and picB of strain 3401, using a promoterless reporter (xylE). Expression of XylE after growth in broth culture revealed that basal levels of expression of cagA and urea in H. pylori were substantially greater than for picB. For cagA expression in stationary-phase cells, brief exposure to acid pH caused a significant increase in xylE expression compared with neutral pH. In contrast, expression of xylE in urea or picB decreased after parallel exposure to acid pH (pH 7 > 6 > 5 > 4), regardless of the growth phase. Expression of the CagA protein varied with growth phase and pH exposure in parallel with the observed transcriptional variation. The concentration of CagA in a cell membrane-enriched fraction after growth at pH 6 was significantly higher than after growth at pH 5 or 7. We conclude that the promoterless reporter xylE is useful for studying the regulation of gene expression in H. pylori and that regulation of CagA production occurs mainly at the transcriptional level.
Collapse
Affiliation(s)
- M Karita
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2605, USA
| | | | | | | |
Collapse
|
24
|
Abstract
Of all the methods customarily used to transform E. coli we found only electroporation to be effective for transformation of the Gram-negative bacterium Vitreoscilla, yielding 5.10(5) transformants/microgram of plasmid DNA. The conditions used were close to those described for E. coli E. coli plasmids are stably maintained in Vitreoscilla. This is the first report of exogenous DNA transfer in Vitreoscilla which opens the way for the application of recombinant-DNA techniques to study this unique group of organisms.
Collapse
Affiliation(s)
- N K Navani
- Institute of Microbial Technology, Chandigarh, India
| | | | | |
Collapse
|
25
|
Polack B, Dacheux D, Delic-Attree I, Toussaint B, Vignais PM. Role of manganese superoxide dismutase in a mucoid isolate of Pseudomonas aeruginosa: adaptation to oxidative stress. Infect Immun 1996; 64:2216-9. [PMID: 8675329 PMCID: PMC174058 DOI: 10.1128/iai.64.6.2216-2219.1996] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Chronic infection by alginate-producing (mucoid) Pseudomonas aeruginosa is a leading cause of morbidity among cystic fibrosis (CF) patients. In the lungs of CF patients, the bacteria are exposed to activated oxygen species produced by the phagocytes of the host or resulting from the metabolism of oxygen. Two isoforms of superoxide dismutase are synthesized by P. aeruginosa; they differ by the metal present at their active site, which is either iron or manganese. To evaluate the role of manganese-containing superoxide dismutase (MnSOD), encoded by sodA, we have isolated a sodA mutant of the mucoid P. aeruginosa strain CHA isolated from the bronchopulmonary tract of a CF patient. The sodA mutant exhibited an increased sensitivity to oxidative stress generated by paraquat and was less resistant to oxidative stress in the stationary phase of growth compared with its parental strain. It was observed that MnSOD was expressed in the parental strain solely during the stationary phase of growth and that cells of the sodA mutant taken at the stationary phase resumed growth with a longer delay than the sodA+ cells when reinoculated in a new medium, especially in the presence of paraquat. These results suggest that MnSOD may participate in the adaptation of mucoid strains of P. aeruginosa to the stationary phase of growth in the lungs of CF patients.
Collapse
Affiliation(s)
- B Polack
- Laboratoire de Biochimie Microbienne (Centre National de la Recherche Scientifique Unite 1130 alliée a l'Institut National de la Santé et de la Recherche Médicale), Grenoble, France
| | | | | | | | | |
Collapse
|
26
|
Wu J, Benson AK, Newton A. Global regulation of a sigma 54-dependent flagellar gene family in Caulobacter crescentus by the transcriptional activator FlbD. J Bacteriol 1995; 177:3241-50. [PMID: 7768824 PMCID: PMC177017 DOI: 10.1128/jb.177.11.3241-3250.1995] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Biosynthesis of the Caulobacter crescentus polar flagellum requires the expression of a large number of flagellar (fla) genes that are organized in a regulatory hierarchy of four classes (I to IV). The timing of fla gene expression in the cell cycle is determined by specialized forms of RNA polymerase and the appearance and/or activation of regulatory proteins. Here we report an investigation of the role of the C. crescentus transcriptional regulatory protein FlbD in the activation of sigma 54-dependent class III and class IV fla genes of the hierarchy by reconstituting transcription from these promoters in vitro. Our results demonstrate that transcription from promoters of the class III genes flbG, flgF, and flgI and the class IV gene fliK by Escherichia coli E sigma 54 is activated by FlbD or the mutant protein FlbDS140F (where S140F denotes an S-to-F mutation at position 140), which we show here has a higher potential for transcriptional activation. In vitro studies of the flbG promoter have shown previously that transcriptional activation by the FlbD protein requires ftr (ftr for flagellar transcription regulation) sequence elements. We have now identified multiple ftr sequences that are conserved in both sequence and spatial architecture in all known class III and class IV promoters. These newly identified ftr elements are positioned ca. 100 bp from the transcription start sites of each sigma 54-dependent fla gene promoter, and our studies indicate that they play an important role in controlling the levels of transcription from different class III and class IV promoters. We have also used mutational analysis to show that the ftr sequences are required for full activation by the FlbD protein both in vitro and in vivo. Thus, our results suggest that FlbD, which is encoded by the class II flbD gene, is a global regulator that activates the cell cycle-regulated transcription from all identified sigma 54-dependent promoters in the C. crescentus fla gene hierarchy.
Collapse
Affiliation(s)
- J Wu
- Department of Molecular Biology, Princeton University, New Jersey 08544-1014, USA
| | | | | |
Collapse
|
27
|
Venturi V, Ottevanger C, Bracke M, Weisbeek P. Iron regulation of siderophore biosynthesis and transport in Pseudomonas putida WCS358: involvement of a transcriptional activator and of the Fur protein. Mol Microbiol 1995; 15:1081-93. [PMID: 7623664 DOI: 10.1111/j.1365-2958.1995.tb02283.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Pseudobactin 358 is the yellow-green fluorescent siderophore produced by Pseudomonas putida WCS358 in conditions of iron limitation. The genes encoding for siderophore biosynthesis are iron-regulated at the transcriptional level. Previous work has shown that a positive regulator, PfrA, is absolutely required for the activation under iron-limiting conditions of pseudobactin 358 biosynthesis. In this study we identified a set of Tn5 insertion mutants of strain WCS358 which lost the ability to activate an iron-regulated siderophore promoter. These mutants no longer produced pseudobactin 358. Molecular analysis revealed that they carried a Tn5 insertion in a gene, designated pfrl (Pseudomonas ferric regulator), which codes for a protein (Pfrl) of 19.5 kDa. Pfrl contains a putative helix-turn-helix motif typical of DNA-binding proteins and has homology to two DNA-binding transcriptional activators, Fecl from Escherichia coli and Pupl from P. putida. The proposed role of Pfrl in strain WCS358 is an activator protein regulating pseudobactin 358 biosynthesis under iron limitation. The pfrl promoter region contains a sequence which displays high identity to the Fur-box consensus. This 19 bp consensus sequence is recognized by Fur, an iron-binding repressor protein found in many different bacteria. The E. coli Fur protein can bind to the pfrl promoter region, indicating that this activator gene is likely to be iron-regulated by Fur. We also report the identification and characterization of the P. putida WCS358 fur gene. The Fur protein of strain WCS358 is structurally and functionally similar to other cloned Fur proteins from other bacterial species.
Collapse
Affiliation(s)
- V Venturi
- Department of Molecular Cell Biology, University of Utrecht, The Netherlands
| | | | | | | |
Collapse
|
28
|
Martin DW, Schurr MJ, Yu H, Deretic V. Analysis of promoters controlled by the putative sigma factor AlgU regulating conversion to mucoidy in Pseudomonas aeruginosa: relationship to sigma E and stress response. J Bacteriol 1994; 176:6688-96. [PMID: 7961422 PMCID: PMC197026 DOI: 10.1128/jb.176.21.6688-6696.1994] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Alginate overproducition by mucoid Pseudomonas aeruginosa is a critical pathogenic determinant expressed by this organism during chronic infections in cystic fibrosis. Conversion to mucoidy and a subsequent loss of mucoid character can occur via different mutations in the algU mucA mucB gene cluster. The algU gene encodes a 22.2-kDa putative alternative sigma factor required for expression of the critical alginate biosynthetic gene algD. In this work, algU transcription was studied by S1 nuclease protection analysis. Transcription from the promoter proximal to the algU coding region was found to be dependent on AlgU. The -35 and -10 sequences of this newly mapped promoter showed strong similarity ot the promoters of two other critical alg genes: algD and algR. The proximal promoter of algR was also shown to depend on algU. Interestingly, the putative -35 and -10 regions of all three promoters displayed striking similarity to the consensus sequence of the sigma E-dependent promoters in Escherichia coli and Salmonella typhimurium. This 24-kDa sigma factor, controlling genes participating in resistance to high temperatures and oxidative stress, has been previously biochemically characterized, but the gene for sigma E remained unidentified. To examine whether AlgU is related to sigma E, the effect of algU inactivation on the sensitivity of P. aeruginosa to killing by heat and reactive oxygen intermediates was tested. Two isogenic pairs of algU+ and algU mutant strains were compared. The algU mutants, irrespective of the mucoid status of the parental strains, displayed increased sensitivity to killing by paraquat, known to generate intracellular superoxide radicals, and heat. Further lgobal homology searches revealed the presence of a previously unrecognized E. coli gene with the predicted gene product showing a striking 66% identity to AlgU. The corresponding gene from S. typhimurium was cloned and sequenced, and it is displayed one amino acid substitution relative to its E. coli equivalent. AlgU and its close homologs in E. coli and S. typhimurium may be functionally related.
Collapse
Affiliation(s)
- D W Martin
- Department of Microbiology, University of Texas Health Science Center at San Antonio, 78284-7758
| | | | | | | |
Collapse
|
29
|
Venturi V, Wolfs K, Leong J, Weisbeek PJ. Amplification of the groESL operon in Pseudomonas putida increases siderophore gene promoter activity. MOLECULAR & GENERAL GENETICS : MGG 1994; 245:126-32. [PMID: 7845355 DOI: 10.1007/bf00279758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Pseudobactin 358 is the yellow-green fluorescent siderophore [microbial iron(III) transport agent] produced by Pseudomonas putida WCS358 under iron-limiting conditions. The genes encoding pseudobactin 358 biosynthesis are iron-regulated at the level of transcription. In this study, the molecular characterization is reported of a cosmid clone of WCS358 DNA that can stimulate, in an iron-dependent manner, the activity of a WCS358 siderophore gene promoter in the heterologous Pseudomonas strain A225. The functional region in the clone was identified by subcloning, transposon mutagenesis and DNA sequencing as the groESL operon of strain WCS358. This increase in promoter activity was not observed when the groESL genes of strain WCS358 were integrated via a transposon vector into the genome of Pseudomonas A225, indicating that multiple copies of the operon are necessary for the increase in siderophore gene promoter activity. Amplification of the Escherichia coli and WCS358 groESL genes also increased iron-regulated promoter activity in the parent strain WCS358. The groESL operon codes for the chaperone proteins GroES and GroEL, which are responsible for mediating the folding and assembly of many proteins.
Collapse
Affiliation(s)
- V Venturi
- Department of Molecular Cell Biology, University of Utrecht, The Netherlands
| | | | | | | |
Collapse
|
30
|
Curcic R, Dhandayuthapani S, Deretic V. Gene expression in mycobacteria: transcriptional fusions based on xylE and analysis of the promoter region of the response regulator mtrA from Mycobacterium tuberculosis. Mol Microbiol 1994; 13:1057-64. [PMID: 7854120 DOI: 10.1111/j.1365-2958.1994.tb00496.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Understanding promoter regulation and signal-transduction systems in pathogenic mycobacteria is critical for uncovering the processes that govern interactions of these bacteria with the human host. In order to develop additional genetic tools for analysis of mycobacterial promoters, the xyIE gene from Pseudomonas was tested as a transcriptional fusion reporter in fast- and slow-growing mycobacteria. Initially, its utility was demonstrated by expression behind the hsp60 promoter in Mycobacterium smegmatis and Mycobacterium bovis BCG. The presence of an active promoter in front of the promoterless xyIE cassette on a plasmid was scored by development of a bright yellow colour upon spraying of mycobacterial colonies on plates with a solution of catechol. The gene product of xyIE, catechol 2,3 dioxygenase, was measurable in sonic extracts and whole cells, permitting quantitative determination of promoter activity in both fast- and slow-growing mycobacteria. The xyIE-based mycobacterial transcriptional fusion plasmid pRCX3 was constructed and used to assess promoter activity within the sequences located upstream of the newly characterized Mycobacterium tuberculosis H37Rv response regulator mtrA, a member of the superfamily of bacterial signal-transduction systems.
Collapse
Affiliation(s)
- R Curcic
- Department of Microbiology, University of Texas Health Science Center at San Antonio 78284-7758
| | | | | |
Collapse
|
31
|
Schurr MJ, Martin DW, Mudd MH, Deretic V. Gene cluster controlling conversion to alginate-overproducing phenotype in Pseudomonas aeruginosa: functional analysis in a heterologous host and role in the instability of mucoidy. J Bacteriol 1994; 176:3375-82. [PMID: 8195094 PMCID: PMC205510 DOI: 10.1128/jb.176.11.3375-3382.1994] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Conversion to mucoidy, caused by the overproduction of the exopolysaccharide alginate in laboratory and cystic fibrosis strains of Pseudomonas aeruginosa, can occur via frameshift or nonsense mutations in the second gene of the algU mucA mucB cluster. The first gene of the cluster, algU, encodes a putative alternative sigma factor required for algD transcription. The algD gene encodes a critical alginate biosynthetic enzyme and is invariably activated in mucoid P. aeruginosa cells. To investigate the function of the genes controlling conversion to mucoidy, the wild-type algU mucA mucB cluster from the standard genetic strain PAO1 was used to reconstitute algD transcription in Escherichia coli. Transcription of an algD-lacZ chromosomal fusion in E. coli was detected upon introduction of plasmid-borne algU mucA mucB. Moreover, insertional inactivation of either mucA or mucB resulted in further stimulation of transcriptional activity from the algD promoter. This activation was dependent on algU, since a double algU mucA mutation abrogated transcription of algD. These experiments suggest that the phenotypic manifestations of muc mutations, i.e., increased algD expression and mucoid phenotype, depend on the presence of an active algU gene and that this regulator and the factors encoded by the downstream genes interact. Further support for these conclusions came from the investigations of the mechanism of reversion to nonmucoidy in P. aeruginosa, a phenomenon frequently referred to as the instability of mucoid phenotype. Spontaneous nonmucoid derivatives of the mucoid strain PAO578 carrying the mucA22 mutation were examined for the presence of alterations within the algU mucA mucB locus. Point mutations which inactivated algU were detected in some, but not all, nonmucoid revertants. No reversion of the original mucA22 mutation (a deletion of one C) was observed in any of the investigated strains. This observation suggests that the process of conversion to nonmucoidy ban be explained, at least partially, by second-site suppressor mutations and that a fraction of such mutations occurs in algU.
Collapse
Affiliation(s)
- M J Schurr
- Department of Microbiology, University of Texas Health Science Center at San Antonio 78284-7758, USA
| | | | | | | |
Collapse
|
32
|
Mohr CD, Sonsteby SK, Deretic V. The Pseudomonas aeruginosa homologs of hemC and hemD are linked to the gene encoding the regulator of mucoidy AlgR. MOLECULAR & GENERAL GENETICS : MGG 1994; 242:177-84. [PMID: 8159168 DOI: 10.1007/bf00391011] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The algD gene encodes NAD-linked GDPmannose dehydrogenase, which is essential for the mucoid phenotype, an important virulence factor expressed by Pseudomonas aeruginosa in cystic fibrosis patients. AlgR, a response regulator controlling mucoidy, is required for high level expression of algD. Inactivation of algR completely abrogates algD expression while mutations immediately downstream of algR affect induction of the algD promoter. In order to examine the nature of genetic elements located downstream of algR, the complete nucleotide sequence of this region was determined. This analysis revealed the presence of two newly identified P. aeruginosa genes with predicted gene products homologous to known porphobilinogen deaminases (HemC) from other organisms, and uroporphyrinogen III cosynthase (HemD) from Escherichia coli. The concerted action of both of these enzymes is essential for the synthesis of heme precursors. Mutations within the region containing the P. aeruginosa homologs of hemC and hemD affect algD promoter activity during growth on nitrate. Furthermore, transcriptional analyses indicated that hemC was cotranscribed with algR at detectable levels in mucoid cells. These results suggest a link between physiological processes dependent on heme and conditions conductive to algD expression and mucoidy.
Collapse
Affiliation(s)
- C D Mohr
- Department of Microbiology, University of Texas Health Science Center, San Antonio 78284-7758
| | | | | |
Collapse
|
33
|
Abstract
Two plasmids, X1918 and Z1918, were constructed which contain the promoter-less xylE and lacZ reporter genes flanked symmetrically by the multiple cloning site (MCS) from pUC19. These cassettes can easily be derived from the multicopy plasmid, pUC1918.
Collapse
Affiliation(s)
- H P Schweizer
- Department of Microbiology and Infectious Diseases, University of Calgary Health Sciences Center, Alberta, Canada
| |
Collapse
|
34
|
Parales RE, Harwood CS. Construction and use of a new broad-host-range lacZ transcriptional fusion vector, pHRP309, for gram- bacteria. Gene 1993; 133:23-30. [PMID: 8224891 DOI: 10.1016/0378-1119(93)90220-w] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A new lacZ transcriptional fusion vector, pHRP309, based on the IncQ plasmid RSF1010, was constructed and shown to be easily mobilized into a variety of Gram- eubacteria. We also developed a two-step cloning procedure to facilitate the cloning of small promoter fragments into the fusion vector. A set of 'cohort' vectors was constructed which allowed directed cloning of fragments downstream from an omega streptomycin/spectinomycin-resistance cassette while maintaining multiple flanking restriction sites. The omega cassette provides a selectable antibiotic-resistance marker for cloning promoters into the fusion vector and makes mapping to determine fragment orientation unnecessary. The presence of the omega cassette also decreases background beta-galactosidase activity by decreasing readthrough transcription from plasmid sequences. The fusion vector carries a gentamicin-resistance-encoding gene as the selectable marker and can therefore be used in Tn5 (kanamycin-resistant) and Tn10 (tetracycline-resistant) mutant strains. Since pHRP309 is a member of the IncQ incompatibility group, it is compatible with IncP cloning vectors and can be used in strains carrying cloned regulatory genes. Using this system, we cloned the positively regulated Pseudomonas putida pcaI promoter and studied its regulation.
Collapse
Affiliation(s)
- R E Parales
- Department of Microbiology, University of Iowa, Iowa City 52242
| | | |
Collapse
|
35
|
Venturi V, Ottevanger C, Leong J, Weisbeek PJ. Identification and characterization of a siderophore regulatory gene (pfrA) of Pseudomonas putida WCS358: homology to the alginate regulatory gene algQ of Pseudomonas aeruginosa. Mol Microbiol 1993; 10:63-73. [PMID: 7968519 DOI: 10.1111/j.1365-2958.1993.tb00904.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Genes encoding biosynthesis of pseudobactin 358 (a microbial iron transport agent) and its cognate outer membrane receptor protein, PupA, are transcribed only under iron limitation in plant growth-promoting Pseudomonas putida WCS358. Two cosmid clones were identified from a gene bank of WCS358 DNA which could independently and in an iron-dependent manner activate transcription from a WCS358 siderophore gene promoter in heterologous Pseudomonas strain A225. The functional region of one of the clones was localized by subcloning, transposon Tn3Gus mutagenesis, and DNA sequencing. Genomic transposon insertion mutants in the functional region lost the capacity to activate a siderophore gene promoter fusion transcriptionally; furthermore, these mutants no longer produced pseudobactin 358. The activating region consisted of a single gene designated pfrA (Pseudomonas ferric regulator). The pfrA gene codes for a single polypeptide, PfrA, of approximately 18 kDa, which has 58% identity to AlgQ (also known as AlgR2), a positive regulator involved in transcriptionally regulating alginate biosynthesis in Pseudomonas aeruginosa. Cross-complementation studies between the pfrA gene of P. putida and the algQ gene of P. aeruginosa revealed that pfrA can restore mucoidy (alginate production) in an algQ mutant and that algQ could poorly complement a pfrA genomic mutant. It is concluded that PfrA is involved in the positive regulation of siderophore biosynthetic genes in response to iron limitation; furthermore, pfrA and algQ appeared to be interchangeable between P. putida and P. aeruginosa.
Collapse
Affiliation(s)
- V Venturi
- Department of Molecular Cell Biology, University of Utrecht, The Netherlands
| | | | | | | |
Collapse
|
36
|
Martin DW, Schurr MJ, Mudd MH, Deretic V. Differentiation of Pseudomonas aeruginosa into the alginate-producing form: inactivation of mucB causes conversion to mucoidy. Mol Microbiol 1993; 9:497-506. [PMID: 8412698 DOI: 10.1111/j.1365-2958.1993.tb01711.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Mucoidy in Pseudomonas aeruginosa is a critical virulence factor associated with chronic respiratory infections in cystic fibrosis. A cluster of three tightly linked genes, algU, mucA and mucB located at 67.5 min, controls development of mucoid phenotype. This locus is allelic with a group of mutations (muc) associated with conversion into constitutively mucoid forms. One of the genes previously characterized in this region, algU, is absolutely required for the transcriptional activation of algD, a critical event in the establishment of mucoidy. AlgU is homologous to the alternative sigma factor sigma H (Spo0H) controlling sporulation and competence in Bacillus. Two genes downstream of algU, mucA and mucB were further characterized in this study. Previous complementation studies have demonstrated that mucA is required for suppression of mucoidy in the muc-2 strain PAO568. In this work, complementation analysis indicated that, in addition, mucB was required for suppression of mucoidy in the muc-25 strain PAO581, and for enhanced complementation of the muc-2 mutation in PAO568. The complete nucleotide sequence of mucA and mucB was determined. Insertional inactivation of mucB on the chromosome of the standard genetic strain PAO resulted in mucoid phenotype, and in a strong transcriptional activation of algD. Thus, a loss of mucB function is sufficient to cause conversion of P. aeruginosa into the mucoid phenotype. Since the algU-mucA-mucB region is a general site where muc mutations have been mapped, it is likely that mucB participates in the emergence of mucoid forms. Both mucA and mucB play a regulatory role in concert with the sigma-like factor AlgU; all three genes, along with signal transduction and histone-like elements, control differentiation of P. aeruginosa into the mucoid phenotype.
Collapse
Affiliation(s)
- D W Martin
- Department of Microbiology, University of Texas Health Science Center, San Antonio 78284-7758
| | | | | | | |
Collapse
|
37
|
Martin DW, Holloway BW, Deretic V. Characterization of a locus determining the mucoid status of Pseudomonas aeruginosa: AlgU shows sequence similarities with a Bacillus sigma factor. J Bacteriol 1993; 175:1153-64. [PMID: 8432708 PMCID: PMC193032 DOI: 10.1128/jb.175.4.1153-1164.1993] [Citation(s) in RCA: 157] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Overproduction of the exopolysaccharide alginate by Pseudomonas aeruginosa results in mucoid colony morphology and is an important virulence determinant expressed by this organism in cystic fibrosis. Mucoidy is transcriptionally regulated by signal transduction systems and histone-like elements. One point of convergence of regulatory elements controlling mucoidy is the algD promoter. A newly described genetic locus required for algD transcription was characterized in this study. This DNA region, cloned from a nonmucoid PAO strain, was initially isolated on the basis of its ability to suppress mucoidy when present on a plasmid. The suppressing activity was observed in several mucoid PAO derivatives, including strain PAO568, in which the mapped muc-2 mutation is responsible for its mucoid phenotype, and in close to 40% of cystic fibrosis strains tested. Protein expression studies detected two polypeptides with apparent molecular masses of 27.5 and 20 kDa encoded by the region required for the suppression activity. The gene encoding the polypeptide with an apparent molecular mass of 27.5 kDa, termed algU, was further characterized. A functional chromosomal copy of algU was found to be necessary for the expression of mucoidy. Insertional inactivation of algU on the chromosome of the mucoid strain PAO568 abrogated alginate production and algD transcription. DNA sequence analysis revealed sequence similarity of the predicted algU gene product with sigma H (Spo0H), a sigma factor involved in the control of sporulation and competence in Bacillus spp. Physical mapping revealed that algU resided on the same SpeI fragment (F) as did the pruAB locus, known to be tightly linked with genetic determinants (muc) which can confer mucoidy in genetic crosses. When the chromosomal algU copy was tagged with a Tcr cassette (algU::Tcr), a tight genetic linkage of algU with pruAB was demonstrated by F116L-mediated generalized transduction. Moreover, algU::Tcr derivatives of PAO568 (originally carrying the muc-2 marker) lost the ability to transfer mucoidy in genetic crosses. These results suggest that algU, a regulator of algD transcription showing sequence similarity to an alternative sigma factor, and the genes immediately downstream of algU may be associated with a locus participating in the differentiation into the mucoid phenotype.
Collapse
Affiliation(s)
- D W Martin
- Department of Microbiology, University of Texas Health Science Center, San Antonio 78284-7758
| | | | | |
Collapse
|
38
|
Mohr CD, Deretic V. In vitro interactions of the histone-like protein IHF with the algD promoter, a critical site for control of mucoidy in Pseudomonas aeruginosa. Biochem Biophys Res Commun 1992; 189:837-44. [PMID: 1472055 DOI: 10.1016/0006-291x(92)92279-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The ability of the histone-like element Integration Host Factor (IHF) to interact with the algD promoter was investigated. IHF from Escherichia coli was found to bind to the algD promoter and to form multiple protein-DNA complexes in gel mobility shift DNA binding assay. The highest affinity binding site for IHF was mapped by DNaseI footprinting analysis. This site spanned nucleotides -50 to -85 relative to the algD mRNA start site and overlapped a sequence matching the IHF consensus sequence WATCAANNNNTTR in 12 out of 13 base pairs. Previous studies have shown that deletion of sequences including a portion of this site adversely affects algD promoter activity. IHF binding to the algD promoter induced DNA bending. Western blot analysis with antibodies against E. coli IHF detected a cross-reactive protein of a similar molecular mass in Pseudomonas aeruginosa, suggesting the presence of an analogous factor in this organism.
Collapse
Affiliation(s)
- C D Mohr
- Department of Microbiology, University of Texas Health Science Center, San Antonio 78284-7758
| | | |
Collapse
|
39
|
Neuwald AF, Berg DE, Stauffer GV. Mutational analysis of the Escherichia coli serB promoter region reveals transcriptional linkage to a downstream gene. Gene 1992; 120:1-9. [PMID: 1327967 DOI: 10.1016/0378-1119(92)90002-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Genes encoding proteins with unrelated functions can be cotranscribed, and this may be used by cells to coordinate different metabolic pathways during growth. We describe a gene, designated sms, which is downstream from the serine biosynthetic gene serB in Escherichia coli but does not appear to be involved in amino acid (aa) biosynthesis. The sms gene is 1380 bp long. The Sms product migrates at 55 kDa on sodium dodecyl sulfate(SDS)-polyacrylamide gels and has a M(r) of 49472 (460 aa residues) calculated from the nucleotide sequence. The deduced Sms aa sequence shares regions of similarity with two ATP-dependent proteases, Lon and RecA, and contains two motifs: a C-x(2)-C-x(n)-C-x(2)-C motif, which is found in some nucleic acid binding proteins, and an ATP/GTP binding site motif. Insertional inactivation of sms led to increased sensitivity to the alkylating agent methylmethane sulfonate, but not to a requirement for serine or other metabolites. Several promoter mutations were isolated and characterized, which suggest that serB has a typical promoter recognized by sigma 70. After the serB coding sequence there is a 48-bp region with no obvious promoter sequence preceding the sms translation start codon. Analyses using sms'-lacZ fusions cloned downstream from wild-type and mutant serB promoters showed that sms is cotranscribed with serB.
Collapse
Affiliation(s)
- A F Neuwald
- Department of Microbiology, University of Iowa, Iowa City 52242
| | | | | |
Collapse
|
40
|
Mohr CD, Leveau JH, Krieg DP, Hibler NS, Deretic V. AlgR-binding sites within the algD promoter make up a set of inverted repeats separated by a large intervening segment of DNA. J Bacteriol 1992; 174:6624-33. [PMID: 1400214 PMCID: PMC207638 DOI: 10.1128/jb.174.20.6624-6633.1992] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Activation of algD by AlgR is essential for mucoidy, a virulence factor expressed by Pseudomonas aeruginosa in cystic fibrosis. Two AlgR-binding sites, RB1 and RB2, located far upstream from the algD mRNA start site, are essential for the high-level activity of algD. However, the removal of RB1 and RB2 does not completely abolish inducibility of algD in response to environmental signals. In this work, a third binding site for AlgR, termed RB3, near the algD mRNA start site was characterized. Deletion of RB3 abrogated both the AlgR-binding ability and the residual inducibility of the algD promoter. DNase I footprinting analysis of RB3 resulted in a protection pattern spanning nucleotides -50 to -30. Eight of 10 residues encompassing a continuous region of protection within RB3 (positions -45 to -36) matched in the inverted orientation the conserved core sequence (ACCGTTCGTC) of RB1 and RB2. Quantitative binding measurements of AlgR association with RB1, RB2, and RB3 indicated that AlgR had significantly lower affinity for RB3 than for RB1 and RB2, with differences in the free energy of binding of 1.05 and 0.93 kcal/mol (4.39 and 3.89 kJ/mmol), respectively. Altering the core of RB2 to match the core of RB3 significantly reduced AlgR binding. Conversely, changing the core of RB3 to perfectly match the core of RB2 (mutant site termed RB3*) improved AlgR binding, approximating the affinity of RB2. RB3*, in the absence of the far upstream sites, showed an increase in activity, approaching the levels observed with the full-size algD promoter. Changing 4 nucleotides in two different combinations within the core of RB3 abolished the binding of AlgR to this site and resulted in a significant reduction of promoter activity in the presence of the far upstream sites. Thus, (i) the core sequence is essential for AlgR binding; (ii) the three binding sites, RB1, RB2, and RB3, are organized as an uneven palindrome with symmetrical sequences separated by 341 and 417 bp; and (iii) all three sites participate in algD activation.
Collapse
Affiliation(s)
- C D Mohr
- Department of Microbiology, University of Texas Health Science Center, San Antonio 78284-7758
| | | | | | | | | |
Collapse
|
41
|
Abstract
Two new vectors containing the xylE gene (encoding catechol-2,3-dioxygenase) of Pseudomonas putida were constructed that serve as the source of the xylE cassette. These vectors are based on the kanamycin-resistance-encoding plasmid, pKAN18. The promoter-less xylE gene is flanked by several restriction enzyme sites that allow for easy excision of this gene in the form of a cassette containing a ribosome-binding site, 7 bp upstream from the start codon. These cassettes lack any transcriptional termination signals downstream from the stop codon.
Collapse
Affiliation(s)
- D C Stein
- Department of Microbiology, University of Maryland, College Park 20742
| |
Collapse
|
42
|
Drolet M, Lau PC. Mobilization protein-DNA binding and divergent transcription at the transfer origin of the Thiobacillus ferrooxidans pTF1 plasmid. Mol Microbiol 1992; 6:1061-71. [PMID: 1584023 DOI: 10.1111/j.1365-2958.1992.tb02171.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The possible interaction of the trans-acting mobilization proteins, MobL and MobS, at the cognate origin of transfer (oriT) region of the Thiobacillus ferrooxidans plasmid pTF1 has been investigated. In gel retardation assays with crude protein extracts from overproducing strains, a truncated MobL (c. 28 kDa) as well as its native protein (42 kDa), but not the 11 kDa MobS protein, were found to bind specifically to a 42-mer oligonucleotide which represents the transferred DNA strand of the minimal oriT fragment of pTF1. In vivo, the binding of MobL was studied by monitoring catechol 2,3-dioxygenase (xylE) activities driven by promoters of the divergently transcribed mobL and mobS genes. The mob promoter sequences were found to resemble the Escherichia coli sigma 70-dependent consensus promoter elements. The '-10' recognition sequences of mobL and one of the two mobS promoters overlap except for one base and they are positioned within the putative 'hairpin' structure in the minimal oriT sequence. In accordance with the twin supercoil-domain model of Liu and Wang (1987) which suggests that transcription can generate local variations in DNA superhelicity, we propose a possible physiological role of DNA supercoiling in the transfer origin with reference to divergent transcription of mobL and mobS genes.
Collapse
Affiliation(s)
- M Drolet
- Molecular Biology Sector, Biotechnology Research Institute, National Research Council of Canada, Montréal, Québec
| | | |
Collapse
|
43
|
Mohr CD, Hibler NS, Deretic V. AlgR, a response regulator controlling mucoidy in Pseudomonas aeruginosa, binds to the FUS sites of the algD promoter located unusually far upstream from the mRNA start site. J Bacteriol 1991; 173:5136-43. [PMID: 1907266 PMCID: PMC208205 DOI: 10.1128/jb.173.16.5136-5143.1991] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Strong transcriptional activation of algD, a key event in the overproduction of alginate and establishment of mucoidy in Pseudomonas aeruginosa, depends on the functional algR gene. The predicted gene product of algR shows homologies to response regulators from bacterial signal transduction systems. The algR gene was overexpressed in Escherichia coli, its product (AlgR) was purified by utilizing its apparent affinity for heparin, and its sequence was verified by partial amino acid sequence analysis. AlgR was found to interact directly with the algD promoter. Deletion mapping analysis, in conjunction with mobility shift DNA-binding assays, indicated the presence of three regions within the algD promoter capable of specifically binding AlgR. A relatively weak interaction was observed with the algD promoter fragment containing the region immediately upstream of the algD mRNA start site (-144 to +11). However, when fragments spanning regions located very far upstream from the algD mRNA initiation site (-533 and -332) were used, strong specific binding was observed. These regions were separated by a DNA segment not binding AlgR and spanning positions -332 to -144. DNase I footprinting analysis further established the presence of discrete AlgR binding sites overlapping with FUS, the far-upstream sites required for full induction of algD transcription and its environmental modulation. There were two distinct binding sites: RB1, spanning nucleotides -479 to -457, and RB2, spanning nucleotides -400 to -380. Both of these sequences shared a highly conserved core region, ACCGTTCGTC. These results established a direct interaction of AlgR with the algD promoter and revealed an arrangement of binding sites highly unusual for response regulators of the AlgR type.
Collapse
Affiliation(s)
- C D Mohr
- Department of Microbiology, University of Texas Health Science Center, San Antonio, Texas 78284-7758
| | | | | |
Collapse
|
44
|
Han CY, Crawford IP, Harwood CS. Up-promoter mutations in the trpBA operon of Pseudomonas aeruginosa. J Bacteriol 1991; 173:3756-62. [PMID: 1904857 PMCID: PMC208005 DOI: 10.1128/jb.173.12.3756-3762.1991] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In Pseudomonas aeruginosa, the operon encoding tryptophan synthase (trpBA) is positively regulated by the TrpI protein and an intermediate in tryptophan biosynthesis, indoleglycerol phosphate (InGP). A gene fusion in which the trpBA promoter directs expression of the Pseudomonas putida xylE gene was constructed. By using a P. putida F1 todE mutant carrying this fusion on a plasmid, three cis-acting mutations that increased xylE expression enough to allow the todE strain to grow on toluene were isolated. The level of xylE transcript from the trpBA promoter was increased in all three mutants. All three mutations are base substitutions located in the -10 region of the trpBA promoter; two of these mutations make the promoter sequence more like the Escherichia coli RNA polymerase sigma 70 promoter consensus sequence. The activities of the wild-type and mutant trpBA promoters, as monitored by xylE expression, were assayed in P. putida PpG1 and in E. coli. The up-regulatory phenotypes of the mutants were maintained in the heterologous backgrounds, as was trpI and InGP dependence. These results indicate that the P. aeruginosa trpBA promoter has the key characteristics of a typical E. coli positively regulated promoter. The results also show that the P. aeruginosa and P. putida trpI activator gene products are functionally interchangeable.
Collapse
Affiliation(s)
- C Y Han
- Department of Microbiology, University of Iowa, Iowa City 52242
| | | | | |
Collapse
|
45
|
Gao JG, Gussin GN. Activation of the trpBA promoter of Pseudomonas aeruginosa by TrpI protein in vitro. J Bacteriol 1991; 173:3763-9. [PMID: 1904858 PMCID: PMC208006 DOI: 10.1128/jb.173.12.3763-3769.1991] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have developed an in vitro transcription system in which purified TrpI protein and indoleglycerol phosphate (InGP) activate transcription initiation at the trpBA promoter (trpPB) and repress initiation at the trpI promoter (trpPI) of Pseudomonas aeruginosa. The phenotypes resulting from mutations in the -10 region of both promoters indicate that the -10 region consensus sequence in P. aeruginosa is probably the same as that in Escherichia coli. Furthermore, in the absence of TrpI and InGP, the activities of the two promoters are inversely correlated: down mutations in trpPI lead to increased activity of trpPB, and up mutations in trpPB cause a decrease in trpPI activity. These results are a consequence of the fact that the two promoters overlap, so that RNA polymerase cannot form open complexes with both promoters simultaneously. Thus, in theory, by preventing RNA polymerase from binding at trpPI, TrpI protein could indirectly activate trpPB. However, oligonucleotide-induced mutations that completely inactivate trpPI do not relieve the requirement for TrpI and InGP to activate trpPB. Therefore, activation of trpPB is mediated by a direct effect of TrpI on transcription initiation at trpPB. In addition, the oligonucleotide-induced mutations in trpPI alter site II, the weaker of two TrpI binding sites identified in DNase I and hydroxyl radical footprinting studies (M. Chang and I. P. Crawford, Nucleic Acids Res. 18:979-988, 1990). Since these mutations prevent full activation of trpPB, we conclude that specific base pairs in site II are required for activation.
Collapse
Affiliation(s)
- J G Gao
- Department of Biology, University of Iowa, Iowa City 52242
| | | |
Collapse
|
46
|
|
47
|
Mohr CD, Rust L, Albus AM, Iglewski BH, Deretic V. Expression patterns of genes encoding elastase and controlling mucoidy: co-ordinate regulation of two virulence factors in Pseudomonas aeruginosa isolates from cystic fibrosis. Mol Microbiol 1990; 4:2103-10. [PMID: 2128528 DOI: 10.1111/j.1365-2958.1990.tb00571.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Transcriptional patterns of lasB and algD were compared in isogenic mucoid and non-mucoid Pseudomonas aeruginosa isolates from cystic fibrosis patients. The lasB gene encodes elastase, a major proteolytic enzyme secreted by P. aeruginosa, while algD is required for the synthesis of alginate, an exopolysaccharide frequently overproduced by strains infecting cystic fibrosis patients. A possible coregulation at the transcriptional level of these major virulence determinants was analysed. The lasB and algD genes showed inverse levels of promoter activity. The lasB promoter was active in non-mucoid cells and inactive in mucoid cells (in four out of five tested pairs), while the algD promoter was active in mucoid cells and silent in non-mucoid cells in all cases. When PAO568, a model strain for the analysis of control of the alginate system, was grown under conditions promoting mucoidy, the algD promoter was activated, whereas lasB mRNA could not be detected. This effect was reversed when the cells were grown in a medium suppressing mucoidy. Insertional inactivation of algR, a member of the signal-transduction systems regulating algD transcription, although abolishing algD expression and rendering cells non-mucoid, did not alter the nature of the induction and repression patterns of lasB seen in the parental strain PAO568. These results suggest that the lasB gene and the alginate system are co-ordinately regulated at a level parallel to or above the algR gene.
Collapse
Affiliation(s)
- C D Mohr
- Department of Microbiology, University of Texas Health Science Center, San Antonio 78284-7758
| | | | | | | | | |
Collapse
|
48
|
Mohr CD, Martin DW, Konyecsni WM, Govan JR, Lory S, Deretic V. Role of the far-upstream sites of the algD promoter and the algR and rpoN genes in environmental modulation of mucoidy in Pseudomonas aeruginosa. J Bacteriol 1990; 172:6576-80. [PMID: 2121718 PMCID: PMC526848 DOI: 10.1128/jb.172.11.6576-6580.1990] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The role of several regulatory elements in environmental modulation of mucoidy in Pseudomonas aeruginosa was studied. Transcriptional activation of algD, necessary for the mucoid phenotype, was found to depend on FUS, the newly identified far-upstream sites of the algD promoter. The FUS were delimited to a region spanning nucleotides -432 to -332 relative to the algD mRNA start site. Insertional inactivation of algR in PAO568 abolished the algD promoter response to nitrogen availability and greatly diminished but did not completely eliminate reactivity to changes in salt concentration. Insertional inactivation of rpoN (ntrA) in PAO568 did not affect algR and algD transcription.
Collapse
Affiliation(s)
- C D Mohr
- Department of Microbiology, University of Texas Health Science Center, San Antonio 78284-7758
| | | | | | | | | | | |
Collapse
|
49
|
Deretic V, Konyecsni WM. A procaryotic regulatory factor with a histone H1-like carboxy-terminal domain: clonal variation of repeats within algP, a gene involved in regulation of mucoidy in Pseudomonas aeruginosa. J Bacteriol 1990; 172:5544-54. [PMID: 1698761 PMCID: PMC526865 DOI: 10.1128/jb.172.10.5544-5554.1990] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A novel procaryotic transcriptional regulatory element, AlgP, with a histone H1-like carboxy-terminal domain was identified in Pseudomonas aeruginosa. AlgP is required for transcription of the key biosynthetic gene algD, which is necessary for production of the exopolysaccharide alginate causing mucoidy in P. aeruginosa. Mucoidy is a critical virulence determinant of P. aeruginosa invariably associated with the respiratory infections causing high mortality in cystic fibrosis. Here we show that AlgP and histones H1 both have repeated units of the Lys-Pro-Ala-Ala motif (KPAA) and its variations within their long (over 100 amino acids) carboxy-terminal domains. This region of histone H1 tails has been shown to bind to the linker DNA in eucaryotic chromatin fibers. A synthetic 50-mer peptide consisting of repeats from the AlgP carboxy-terminal domain was found to bind DNA in a mobility shift DNA-binding assay. AlgP is encoded by a gene that contains multiple direct repeats organized as tandem, head-to-tail, 12-base-pair (bp) units overlapping with six highly conserved 75-bp units. The repetitive structure of the algP gene appears to participate in the processes underlying the metastable character of mucoidy in P. aeruginosa. Relatively large DNA rearrangements spanning the region with tandem direct repeats encoding the carboxy-terminal histone H1-like structure of AlgP were detected in several strains upon conversion from the mucoid to the nonmucoid phenotype. The frequency of the detectable algP rearrangements associated with the transition into the nonmucoid state varied from strain to strain and ranged from 0 to 50%. The nonmucoid derivatives with the clearly rearranged chromosomal copy of algP were complemented to mucoidy with plasmids containing algP from P. aeruginosa PAO. When a random collection of mucoid strains, isolated from different cystic fibrosis patients, was analyzed by using polymerase chain reaction, an additional level of strain-dependent sequence variation in algP was observed. Variations in the number of the 12-bp repeats were found; however, they did not appear to influence the mucoid status of the strains examined. Thus, the repeated region of algP appears to be a hot spot for DNA rearrangements and strain-dependent variability.
Collapse
Affiliation(s)
- V Deretic
- Department of Microbiology, University of Texas Health Science Center, San Antonio 78284-7758
| | | |
Collapse
|
50
|
Dikshit KL, Dikshit RP, Webster DA. Study of Vitreoscilla globin (vgb) gene expression and promoter activity in E. coli through transcriptional fusion. Nucleic Acids Res 1990; 18:4149-55. [PMID: 2198533 PMCID: PMC331172 DOI: 10.1093/nar/18.14.4149] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Bacterial hemoglobin (VtHb) is produced by the gram-negative bacterium, Vitreoscilla, in large quantity in response to hypoxic environmental conditions. The vgb gene coding for VtHb has been cloned in E. coli where it is expressed strongly by its natural promoter. The expression of the vgb gene in Vitreoscilla is transcriptionally regulated by oxygen. When E. coli cells were shifted from 20% to 5% oxygen, vgb specific transcript increased. In E. coli cells with plasmids carrying transcriptional fusions of the vgb gene promoter to either CAT (chloramphenicol acetyl transferase) or xylE (catechol-2,3-dioxygenase) genes, the promoter activity depended on the oxygen level. The concentration of CAT and xylE gene products in cells grown under 5% oxygen was 5-7 times that of aerobically (20% oxygen) grown cells. When the vgb gene promoter was deleted, VtHb was not produced under any conditions. When the promoter was replaced by the E. coli tac promoter, hypoxic oxygen did not affect the level of expression of vgb, but adding IPTG did increase the expression of this gene. These results indicate that the vgb gene promoter is transcriptionally regulated by oxygen even in E. coli, and that microaerobiosis is sufficient to induce vgb expression. The size of S1 nuclease-resistant hybrids, prepared using RNA transcripts protected with restriction enzyme fragments containing the promoter proximal region of vgb, was the same for both Vitreoscilla and E. coli, further evidence that the same promoter is used in both organisms. Transcriptional fusion of the vgb gene promoter to the xylE reporter gene on the broad host range plasmid, pKD-49, was used to demonstrate that the vgb promoter can be expressed in other gram-negative organisms, including Pseudomonas, Azotobacter, and Rhizobium.
Collapse
Affiliation(s)
- K L Dikshit
- Department of Biology, Illinois Institute of Technology, Chicago 60616
| | | | | |
Collapse
|