1
|
Han P, Ma Y, Fu Z, Guo Z, Xie J, Wu Y, Yuan YJ. A DNA Inversion System in Eukaryotes Established via Laboratory Evolution. ACS Synth Biol 2021; 10:2222-2230. [PMID: 34420293 DOI: 10.1021/acssynbio.1c00132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DNA inversion is a type of site-specific recombination system that plays an important role in the generation of genetic diversity and phenotypic adaptation by programmed rearrangements in bacteria. However, no such inversion system exhibiting a strong directionality bias has been identified or developed in eukaryotes yet. Here, using directed evolution of Rci recombinase, a tyrosine recombinase from a bacterial DNA inversion system, we identified a mutant Rci8 with a ratio of inversion/deletion up to ∼4320 in yeast. Based on Rci8 recombinase and sfxa101 sites, we have established a DNA inversion system in yeast and mammalian cells, enabling specificity for DNA inversions between inverted sites over deletions between directly repeated sites. Our results validated that the reversible DNA inversion system can act as an on/off transcriptional switch. Moreover, we demonstrate that the inversion system can also work on linear chromosomes. The eukaryotic DNA inversion system would provide a new tool for fields of genetic circuits, cellular barcoding, and synthetic genomes.
Collapse
Affiliation(s)
- Peiyan Han
- Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yuan Ma
- Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zongheng Fu
- Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhou Guo
- Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jiangnan Xie
- Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yi Wu
- Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Ying-jin Yuan
- Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
2
|
Abstract
Acetylation was initially discovered as a post-translational modification (PTM) on the unstructured, highly basic N-terminal tails of eukaryotic histones in the 1960s. Histone acetylation constitutes part of the "histone code", which regulates chromosome compaction and various DNA processes such as gene expression, recombination, and DNA replication. In bacteria, nucleoid-associated proteins (NAPs) are responsible these functions in that they organize and compact the chromosome and regulate some DNA processes. The highly conserved DNABII family of proteins are considered functional homologues of eukaryotic histones despite having no sequence or structural conservation. Within the past decade, a growing interest in Nε-lysine acetylation led to the discovery that hundreds of bacterial proteins are acetylated with diverse cellular functions, in direct contrast to the original thought that this was a rare phenomenon. Similarly, other previously undiscovered bacterial PTMs, like serine, threonine, and tyrosine phosphorylation, have also been characterized. In this review, the various PTMs that were discovered among DNABII family proteins, specifically histone-like protein (HU) orthologues, from large-scale proteomic studies are discussed. The functional significance of these modifications and the enzymes involved are also addressed. The discovery of novel PTMs on these proteins begs this question: is there a histone-like code in bacteria?
Collapse
Affiliation(s)
- Valerie J Carabetta
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey 08103, United States
| |
Collapse
|
3
|
Dorman CJ, Bogue MM. The interplay between DNA topology and accessory factors in site-specific recombination in bacteria and their bacteriophages. Sci Prog 2016; 99:420-437. [PMID: 28742481 PMCID: PMC10365484 DOI: 10.3184/003685016x14811202974921] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Site-specific recombination is employed widely in bacteria and bacteriophage as a basis for genetic switching events that control phenotypic variation. It plays a vital role in the life cycles of phages and in the replication cycles of chromosomes and plasmids in bacteria. Site-specific recombinases drive these processes using very short segments of identical (or nearly identical) DNA sequences. In some cases, the efficiencies of the recombination reactions are modulated by the topological state of the participating DNA sequences and by the availability of accessory proteins that shape the DNA. These dependencies link the molecular machines that conduct the recombination reactions to the physiological state of the cell. This is because the topological state of bacterial DNA varies constantly during the growth cycle and so does the availability of the accessory factors. In addition, some accessory factors are under allosteric control by metabolic products or second messengers that report the physiological status of the cell. The interplay between DNA topology, accessory factors and site-specific recombination provides a powerful illustration of the connectedness and integration of molecular events in bacterial cells and in viruses that parasitise bacterial cells.
Collapse
Affiliation(s)
| | - Marina M. Bogue
- Natural Science (Microbiology) from Trinity College Dublin, Ireland
| |
Collapse
|
4
|
Abstract
Reversible site-specific DNA inversion reactions are widely distributed in bacteria and their viruses. They control a range of biological reactions that most often involve alterations of molecules on the surface of cells or phage. These programmed DNA rearrangements usually occur at a low frequency, thereby preadapting a small subset of the population to a change in environmental conditions, or in the case of phages, an expanded host range. A dedicated recombinase, sometimes with the aid of additional regulatory or DNA architectural proteins, catalyzes the inversion of DNA. RecA or other components of the general recombination-repair machinery are not involved. This chapter discusses site-specific DNA inversion reactions mediated by the serine recombinase family of enzymes and focuses on the extensively studied serine DNA invertases that are stringently controlled by the Fis-bound enhancer regulatory system. The first section summarizes biological features and general properties of inversion reactions by the Fis/enhancer-dependent serine invertases and the recently described serine DNA invertases in Bacteroides. Mechanistic studies of reactions catalyzed by the Hin and Gin invertases are then discussed in more depth, particularly with regards to recent advances in our understanding of the function of the Fis/enhancer regulatory system, the assembly of the active recombination complex (invertasome) containing the Fis/enhancer, and the process of DNA strand exchange by rotation of synapsed subunit pairs within the invertasome. The role of DNA topological forces that function in concert with the Fis/enhancer controlling element in specifying the overwhelming bias for DNA inversion over deletion and intermolecular recombination is emphasized.
Collapse
Affiliation(s)
- Reid C. Johnson
- Department of Biological Chemistry, UCLA School of Medicine, Los Angeles, CA 90095-1737, Phone: 310 825-7800, Fax: 310 206-5272
| |
Collapse
|
5
|
Horino A, Kenri T, Sasaki Y, Okamura N, Sasaki T. Identification of a site-specific tyrosine recombinase that mediates promoter inversions of phase-variable mpl lipoprotein genes in Mycoplasma penetrans. MICROBIOLOGY-SGM 2009; 155:1241-1249. [PMID: 19332825 DOI: 10.1099/mic.0.025437-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mycoplasma penetrans has the ability to change its surface lipoprotein profiles frequently. The P35 family lipoproteins encoded by the mpl genes are key players in this profile variation. The M. penetrans HF-2 genome has 38 mpl genes that form three gene clusters. Most of these mpl genes have an invertible promoter sequence that is responsible for the ON/OFF switching of individual mpl gene expression. Here, we identified the recombinase that catalyses inversions of the mpl gene promoters. We focused on two open reading frames of the M. penetrans HF-2 genome, namely MYPE2900 and MYPE8180, which show significant homology to the tyrosine site-specific recombinase (Tsr) family proteins. Since genetic tools for M. penetrans are still not developed, we cloned the MYPE2900 and MYPE8180 genes and expressed them in Mycoplasma pneumoniae and Escherichia coli. The promoter regions of the mpl genes [p35 (MYPE6810) or p42 (MYPE6630) genes] were also introduced into M. pneumoniae and E. coli cells expressing MYPE2900 or MYPE8180. Inversion of these promoters occurred in the presence of the MYPE2900 gene but not in the presence of the MYPE8180 gene, indicating that the MYPE2900 gene product is the recombinase that catalyses mpl gene promoter inversions. We used a PCR-based method to detect mpl promoter inversion. This method also enabled us to detect inversions of 10 mpl gene promoters in M. penetrans HF-2 cells. All these promoter inversions occurred at the 12 bp inverted repeat (IR) sequences flanking the promoter sequence. The consensus sequence of these IRs was proposed as TAAYNNNDATTA (Y=C or T; D=A, G or T).
Collapse
Affiliation(s)
- Atsuko Horino
- Laboratory of Microbiology and Immunology, Graduate School of Health Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan.,Department of Bacterial Pathogenesis and Infection Control, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
| | - Tsuyoshi Kenri
- Department of Bacterial Pathogenesis and Infection Control, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
| | - Yuko Sasaki
- Department of Bacterial Pathogenesis and Infection Control, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
| | - Noboru Okamura
- Laboratory of Microbiology and Immunology, Graduate School of Health Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Tsuguo Sasaki
- Department of Bacterial Pathogenesis and Infection Control, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
| |
Collapse
|
6
|
Gyohda A, Zhu S, Furuya N, Komano T. Asymmetry of Shufflon-specific Recombination Sites in Plasmid R64 Inhibits Recombination between Direct sfx Sequences. J Biol Chem 2006; 281:20772-20779. [PMID: 16723350 DOI: 10.1074/jbc.m513654200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The shufflon of plasmid R64 consists of four DNA segments separated and flanked by seven sfx recombination sites. Rci-mediated recombination between any inverted sfx sequences causes inversion of the DNA segments independently or in groups. The R64 shufflon selects one of seven pilV genes encoding type IV pilus adhesins, in which the N-terminal region is constant, while the C-terminal regions are variable. The R64 sfx sequences are asymmetric. The sfx central region and right arm sequences are conserved, but left arm sequences are not. Here we constructed a symmetric sfx sequence, in which the sfx left arm sequence was changed to the inverted repeat of the right arm sequence and made artificial shufflon segments carrying symmetric sfx sequences in inverted or direct orientations. The symmetric sfx sequence exhibited the highest inversion frequency in a shufflon segment flanked by two inverted sfx sequences. Rci-dependent deletion of a shufflon segment flanked by two direct symmetric sfx sequences was observed, suggesting that asymmetry of R64 sfx sequences inhibits recombination between direct sfx sequences. In addition, intermolecular recombination between symmetric sfx sequences was also observed. The extra C-terminal domain of Rci was shown to be essential for inversion of the R64 shufflon using asymmetric sfx sequences but not essential for recombination using symmetric sfx sequences, suggesting that the Rci C-terminal segment helps the binding of Rci to asymmetric sfx sequences. Rci protein lacking the C-terminal domain bound to both arms of symmetric sfx sequence but only to the right arm of asymmetric sfx sequence.
Collapse
Affiliation(s)
- Atsuko Gyohda
- Department of Biology, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Shujuan Zhu
- Department of Biology, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Nobuhisa Furuya
- Department of Biology, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Teruya Komano
- Department of Biology, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan.
| |
Collapse
|
7
|
Kutsukake K, Nakashima H, Tominaga A, Abo T. Two DNA invertases contribute to flagellar phase variation in Salmonella enterica serovar Typhimurium strain LT2. J Bacteriol 2006; 188:950-7. [PMID: 16428399 PMCID: PMC1347348 DOI: 10.1128/jb.188.3.950-957.2006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Salmonella enterica serovar Typhimurium strain LT2 possesses two nonallelic structural genes, fliC and fljB, for flagellin, the component protein of flagellar filaments. Flagellar phase variation occurs by alternative expression of these two genes. This is controlled by the inversion of a DNA segment, called the H segment, containing the fljB promoter. H inversion occurs by site-specific recombination between inverted repetitious sequences flanking the H segment. This recombination has been shown in vivo and in vitro to be mediated by a DNA invertase, Hin, whose gene is located within the H segment. However, a search of the complete genomic sequence revealed that LT2 possesses another DNA invertase gene that is located adjacent to another invertible DNA segment within a resident prophage, Fels-2. Here, we named this gene fin. We constructed hin and fin disruption mutants from LT2 and examined their phase variation abilities. The hin disruption mutant could still undergo flagellar phase variation, indicating that Hin is not the sole DNA invertase responsible for phase variation. Although the fin disruption mutant could undergo phase variation, fin hin double mutants could not. These results clearly indicate that both Hin and Fin contribute to flagellar phase variation in LT2. We further showed that a phase-stable serovar, serovar Abortusequi, which is known to possess a naturally occurring hin mutation, lacks Fels-2, which ensures the phase stability in this serovar.
Collapse
Affiliation(s)
- Kazuhiro Kutsukake
- Department of Biology, Faculty of Science, Okayama University, Tsushima-Naka 3-1-1, Okayama 700-8530, Japan.
| | | | | | | |
Collapse
|
8
|
Li Q, Feng J, Hu HL, Chen XC, Li FQ, Hong GF. A HU-like gene mutation in Rhizobium leguminosarum bv. viciae affects the expression of nodulation genes. Mol Microbiol 2004; 51:861-71. [PMID: 14731285 DOI: 10.1046/j.1365-2958.2003.03873.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
NodD is the major regulator of nod genes expression in rhizobia. Previously, a HU-like protein in Rhizobium leguminosarum bv. viciae has been identified to bind specifically with nod promoters and be involved in in vitro nodD transcription, but its in vivo function remained unknown. In this work we have cloned and sequenced the R. leguminosarum bv. viciae gene, named hurL, for this HU-like protein. Using the E. coli-expressed HurL proteins, we proved that HurL had high affinity to several nod promoters and showed a stimulation effect on in vitro nodD transcription at appropriate concentration. The R. leguminosarum bv. viciae hurL gene was mutated by insertion of a kanamycin resistance cassette. The obtained hurL mutant strain M704 exhibited poor growth under free-living conditions and failed to induce nodules on Pisum sativum cv. Frisson and Vicia hirsuta. Further studies of NodD production and nod genes-lacZ fusions expression in the hurL mutant revealed that inactivation of hurL led to severe impairment in the nodD expression, repression in the inducible expression of nodA and nodF, and slight enhancement in the expression of px2, a gene identified earlier in this lab. These results suggested that hurL might be required for maintaining the normal expression of nod genes in R. leguminosarum bv. viciae.
Collapse
Affiliation(s)
- Qiang Li
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
| | | | | | | | | | | |
Collapse
|
9
|
Ramstein J, Hervouet N, Coste F, Zelwer C, Oberto J, Castaing B. Evidence of a thermal unfolding dimeric intermediate for the Escherichia coli histone-like HU proteins: thermodynamics and structure. J Mol Biol 2003; 331:101-21. [PMID: 12875839 DOI: 10.1016/s0022-2836(03)00725-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The Escherichia coli histone-like HU protein pool is composed of three dimeric forms: two homodimers, EcHUalpha(2) and EcHUbeta(2), and a heterodimer, EcHUalphabeta. The relative abundance of these dimeric forms varies during cell growth and in response to environmental changes, suggesting that each dimer plays different physiological roles. Here, differential scanning calorimetry and circular dichroism (CD) were used to study the thermal stability of the three E.coli HU dimers and show that each of them has its own thermodynamic signature. Unlike the other HU proteins studied so far, which melt through a single step (N(2)<-->2D), this present thermodynamic study shows that the three E.coli dimers melt according to a two-step mechanism (N(2)<-->I(2)<-->2D). The native dimer, N(2), melts partially into a dimeric intermediate, I(2), which in turn yields the unfolded monomers, D. In addition, the crystal structure of the EcHUalpha(2) dimer has been solved. Comparative thermodynamic and structural analysis between EcHUalpha(2) and the HU homodimer from Bacillus stearothermophilus suggests that the E.coli dimer is constituted by two subdomains of different energetic properties. The CD study indicates that the intermediate, I(2), corresponds to an HU dimer having partly lost its alpha-helices. The partially unfolded dimer I(2) is unable to complex with high-affinity, single-stranded break-containing DNA. These structural, thermodynamic and functional results suggest that the N(2)<-->I(2) equilibrium plays a central role in the physiology of E.coli HU. The I(2) molecular species seems to be the EcHUbeta(2) preferential conformation, possibly related to its role in the E.coli cold-shock adaptation. Besides, I(2) might be required in E.coli for the HU chain exchange, which allows the heterodimer formation from homodimers.
Collapse
Affiliation(s)
- Jean Ramstein
- Centre de Biophysique Moléculaire, CNRS, affiliated to the University of Orléans, rue Charles Sadron, 45071 Orléans cedex 02, France
| | | | | | | | | | | |
Collapse
|
10
|
Horino A, Sasaki Y, Sasaki T, Kenri T. Multiple promoter inversions generate surface antigenic variation in Mycoplasma penetrans. J Bacteriol 2003; 185:231-42. [PMID: 12486060 PMCID: PMC141813 DOI: 10.1128/jb.185.1.231-242.2003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma penetrans is a newly identified species of the genus MYCOPLASMA: It was first isolated from a urine sample from a human immunodeficiency virus (HIV)-infected patient. M. penetrans changes its surface antigen profile with high frequency. The changes originate from ON<==>OFF phase variations of the P35 family of surface membrane lipoproteins. The P35 family lipoproteins are major antigens recognized by the human immune system during M. penetrans infection and are encoded by the mpl genes. Phase variations of P35 family lipoproteins occur at the transcriptional level of mpl genes; however, the precise genetic mechanisms are unknown. In this study, the molecular mechanisms of surface antigen profile change in M. penetrans were investigated. The focus was on the 46-kDa protein that is present in M. penetrans strain HF-2 but not in the type strain, GTU. The 46-kDa protein was the product of a previously reported mpl gene, pepIMP13, with an amino-terminal sequence identical to that of the P35 family lipoproteins. Nucleotide sequencing analysis of the pepIMP13 gene region revealed that the promoter-containing 135-bp DNA of this gene had the structure of an invertible element that functioned as a switch for gene expression. In addition, all of the mpl genes of M. penetrans HF-2 were identified using the whole-genome sequence data that has recently become available for this bacterium. There are at least 38 mpl genes in the M. penetrans HF-2 genome. Interestingly, most of these mpl genes possess invertible promoter-like sequences, similar to those of the pepIMP13 gene promoter. A model for the generation of surface antigenic variation by multiple promoter inversions is proposed.
Collapse
Affiliation(s)
- Atsuko Horino
- Department of Bacterial Pathogenesis and Infection Control, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | | | | | | |
Collapse
|
11
|
Gyohda A, Furuya N, Kogure N, Komano T. Sequence-specific and non-specific binding of the Rci protein to the asymmetric recombination sites of the R64 shufflon. J Mol Biol 2002; 318:975-83. [PMID: 12054795 DOI: 10.1016/s0022-2836(02)00195-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Specific cleavages within the shufflon-specific recombination site of plasmid R64 were detected by primer extension when a DNA fragment carrying the recombination site was incubated with the shufflon-specific Rci recombinase. Rci-dependent cleavages occurred in the form of a 5' protruding 7 bp staggered cut, suggesting that DNA cleavage and rejoining in the shufflon system take place at these positions. As a result, shufflon crossover sites were designated as sfx sequences consisting of a central 7 bp spacer sequence, and left and right 12 bp arms. R64 sfx sequences are unique among various site-specific recombination sites, since only the spacer sequence and the right arm sequence are conserved among various R64 sfxs, whereas the left arm sequence is not conserved and is not related to the right arm sequence. From nuclease protection analyses, Rci protein was shown to bind to entire R64 and artificial sfx sequences, suggesting that one Rci molecule binds to the conserved sfx right arm in a sequence-specific manner and the second to the sfx left arm in a non-specific manner. The sfx left arm sequences as well as the right arm sequences were shown to determine affinity to Rci and subsequently inversion frequency. Asymmetry of the sfx sequence may be the reason why Rci protein acts only on the inverted sfx sequences.
Collapse
Affiliation(s)
- Atsuko Gyohda
- Department of Biology, Tokyo Metropolitan University, Minamiohsawa, Hachioji, 192-0397, Japan
| | | | | | | |
Collapse
|
12
|
Abstract
The shufflon, a multiple DNA inversion system in plasmid R64, consists of four invertible DNA segments which are separated and flanked by seven 19-bp repeat sequences. The product of a site-specific recombinase gene, rci, promotes site-specific recombination between any two of the inverted 19-bp repeat sequences of the shufflon. To analyze the molecular mechanism of this recombination reaction, Rci protein was overproduced and purified. The purified Rci protein promoted the in vitro recombination reaction between the inverted 19-bp repeats of supercoiled DNA of a plasmid carrying segment A of the R64 shufflon. The recombination reaction was enhanced by the bacterial host factor HU. Gel electrophoretic analysis indicated that the Rci protein specifically binds to the DNA segments carrying the 19-bp sequences. The binding affinity of the Rci protein to the four shufflon segments as well as four synthetic 19-bp sequences differed greatly: among the four 19-bp repeat sequences, the repeat-a and -d sequences displayed higher affinity to Rci protein. These results suggest that the differences in the affinity of Rci protein for the 19-bp repeat sequences determine the inversion frequencies of the four segments.
Collapse
Affiliation(s)
- A Gyohda
- Department of Biology, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | | |
Collapse
|
13
|
Abstract
Conservative site-specific recombination functions to create biological diversity in prokaryotes. Simple site-specific recombination systems consist of two recombination sites and a recombinase gene. The plasmid R64 shufflon contains seven recombination sites, which flank and separate four DNA segments. Site-specific recombinations mediated by the product of the rci gene between any two inverted recombination sites result in the inversion of four DNA segments independently or in groups. The shufflon functions as a biological switch to select one of seven C-terminal segments of the PilV proteins, which is a minor component of R64 thin pilus. The shufflon determines the recipient specificity in liquid matings of plasmid R64. Other multiple inversion systems as well as integrons, which are multiple insertion systems, are also described in this review.
Collapse
Affiliation(s)
- T Komano
- Department of Biology, Tokyo Metropolitan University, Japan.
| |
Collapse
|
14
|
Saitoh F, Kawamura S, Yamasaki N, Tanaka I, Kimura M. Arginine-55 in the beta-arm is essential for the activity of DNA-binding protein HU from Bacillus stearothermophilus. Biosci Biotechnol Biochem 1999; 63:2232-5. [PMID: 10664859 DOI: 10.1271/bbb.63.2232] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
DNA-binding protein HU (BstHU) from Bacillus stearothermophilus is a homodimeric protein which binds to DNA in a sequence-nonspecific manner. In order to identify the Arg residues essential for DNA binding, four Arg residues (Arg-53, Arg-55, Arg-58, and Arg-61) within the beta-arm structure were replaced either by Gln, Lys, or Glu residues, and the resulting mutants were characterized with respect to their DNA-binding activity by a filter-binding analysis and surface plasmon resonance analysis. The results indicate that three Arg residues (Arg-55, Arg-58, and Arg-61) play a crucial role in DNA binding as positively charged recognition groups in the order of Arg-55 > Arg-58 > Arg-61 and that these are required to decrease the dissociation rate constant for BstHU-DNA interaction. In contrast, the Arg-53 residue was found to make no contribution to the binding activity of BstHU.
Collapse
Affiliation(s)
- F Saitoh
- Laboratory of Biochemistry, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
15
|
Pinson V, Takahashi M, Rouviere-Yaniv J. Differential binding of the Escherichia coli HU, homodimeric forms and heterodimeric form to linear, gapped and cruciform DNA. J Mol Biol 1999; 287:485-97. [PMID: 10092454 DOI: 10.1006/jmbi.1999.2631] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have shown recently that the relative abundance of the three dimeric forms (alpha2, alphabeta and beta2) of the HU protein from Escherichia coli varies during growth and in response to environmental changes. Using gel retardation assays we have compared the DNA binding properties of the three dimers with different DNA substrates. The determination of their DNA binding parameters shows that the relative affinities of HUalphabeta and HUalpha2 are comparable. Both recognize, with a high degree of affinity under stringent conditions, cruciform structures or DNA molecules with a nick or a gap, whereas they bind to linear DNA only at low salt. DNA containing a gap of two nucleotides is in fact the substrate recognized with the highest degree of affinity by these two forms under all conditions. Conversely, HUbeta2 binds very poorly to duplex DNA and shows a much lower affinity for nicked or gapped DNAs. However, HUbeta2 binds to cruciform DNA structures almost as well as HUalphabeta and HUalpha2. This almost exclusive binding of HUbeta2 to a unique substrate is surprising in regards of the quasi identity, in the three forms, of the flexible arms considered as the DNA-binding domains of the three forms of HU. Cruciform DNA may stabilize HUbeta2 structure which could be structurally defective.
Collapse
Affiliation(s)
- V Pinson
- Laboratoire de Physiologie Bactérienne, CNRS, UPR 9073, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, Paris, 75005, France
| | | | | |
Collapse
|
16
|
Kawamura S, Abe Y, Ueda T, Masumoto K, Imoto T, Yamasaki N, Kimura M. Investigation of the structural basis for thermostability of DNA-binding protein HU from Bacillus stearothermophilus. J Biol Chem 1998; 273:19982-7. [PMID: 9685334 DOI: 10.1074/jbc.273.32.19982] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Site-directed mutagenesis was used to identify amino acid residues essential for the thermostability of the DNA-binding protein HU from the thermophile Bacillus stearothermophilus (BstHU). Two mutants, BstHU-A27S and BstHU-V42I, in which Ala27 and Val42 in BstHU were replaced by the corresponding amino acids Ser27 and Ile42, respectively, in the homologue from a mesophile B. subtilis (BsuHU), were less stable than the wild-type BstHU (63.9 degreesC), showing Tm values of 58.4 degreesC and 60.1 degreesC, respectively, as estimated by circular dichroism (CD) analysis at pH 7.0. The denaturation of two mutants was further characterized using differential scanning calorimetry; the Tm values obtained by calorimetric analysis were in good agreement with those estimated by CD analysis. The results suggest that Ala27 and Val42 are partly responsible for enhancing the thermostability of BstHU. When considered together with previous results, it is revealed that Gly15, Ala27, Glu34, Lys38, and Val42 are essential for the thermostability of thermophilic protein BstHU. Moreover, five thermostabilizing mutations were simultaneously introduced into BsuHU, which resulted in a quintuple mutant with a Tm value of 71.3 degreesC, which is higher than that of BstHU, and also resulted in insusceptibility to proteinase digestion.
Collapse
Affiliation(s)
- S Kawamura
- Laboratory of Biochemistry, Faculty of Agriculture, Kyushu University, Fukuoka 812-81, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Transcription from two overlapping gal promoters is repressed by Gal repressor binding to bipartite gal operators, O(E) and O(I), which flank the promoters. Concurrent repression of the gal promoters also requires the bacterial histone-like protein HU which acts as a co-factor. Footprinting experiments using iron-EDTA-coupled HU show that HU binding to gal DNA is orientation specific and is specifically dependent upon binding of GalR to both O(E) and O(I). We propose that HU, in concert with GalR, forms a specific nucleoprotein higher order complex containing a DNA loop. This way, HU deforms the promoter to make the latter inactive for transcription initiation while remaining sensitive to inducer. The example of gal repression provides a model for studying how a 'condensed' DNA becomes available for transcription.
Collapse
Affiliation(s)
- T Aki
- Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | | |
Collapse
|
18
|
Jaffe A, Vinella D, D'Ari R. The Escherichia coli histone-like protein HU affects DNA initiation, chromosome partitioning via MukB, and cell division via MinCDE. J Bacteriol 1997; 179:3494-9. [PMID: 9171392 PMCID: PMC179140 DOI: 10.1128/jb.179.11.3494-3499.1997] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Escherichia coli hupA hupB double mutants, lacking both subunits (HU1 and HU2) of the histone-like protein HU, accumulate secondary mutations. In some genetic backgrounds, these include mutations in the minCDE operon, inactivating this system of septation control and resulting in the formation of minicells. In the course of the characterization of hupA hupB mutants, we observed that the simultaneous absence of the HU2 subunit and the MukB protein, implicated in chromosome partitioning, is lethal for the bacteria; the integrity of either HU or MukB thus seems to be essential for bacterial growth. The HU protein has been shown to be involved in DNA replication in vitro; we show here that its inactivation in the hupA hupB double mutant disturbs the synchrony of replication initiation in vivo, as evaluated by flow cytometry. Our results suggest that global nucleoid structure, determined in part by the histone-like protein HU, plays a role in DNA replication initiation, in proper chromosome partitioning directed by the MukFEB proteins, and in correct septum placement directed by the MinCDE proteins.
Collapse
Affiliation(s)
- A Jaffe
- Institut Jacques Monod (Centre National de la Recherche Scientifique, Universite Paris 7), France
| | | | | |
Collapse
|
19
|
Abstract
The shufflon, a multiple DNA inversion system in the plasmid R64, consists of four DNA segments flanked and separated by seven 19-bp repeat sequences. Site-specific recombinations mediated by the rci product occur between each inverted repeat sequence, resulting in inversions of the four segments independently or in groups. The seven 19-bp repeat sequences are classified into four types (repeat-a, -b, -c, and -d), according to their 3-bp variable sequences. We individually cloned A, B, and C segments of the R64 shufflon and determined the in vivo inversion frequency of each segment. The inversion frequencies of three segments differed greatly. The inversion frequency declined in the following order: segments A, B, and C. Synthetic 19-mer oligonucleotides corresponding to both strands of repeat-a, -b, -c, and -d sequences were inserted into appropriate sites of pBR322. The rci-mediated DNA inversion occurred between two synthetic inverted repeats, indicating that the 19-bp inverted repeat sequences are the sole elements required in cis for the shufflon system. The inversion frequencies of DNA segments flanked by various sequences indicate that the four types of repeat sequences determine the inversion frequency of the four DNA segments of the R64 shufflon. Deletion of a DNA segment flanked by direct repeat sequences could not be detected.
Collapse
Affiliation(s)
- A Gyohda
- Department of Biology, Tokyo Metropolitan University, Japan
| | | | | |
Collapse
|
20
|
Yokoyama E, Doi K, Kimura M, Ogata S. Detection of the single-stranded DNA of Streptomyces plasmid pSA1.1 and a binding histone-like protein. FEMS Microbiol Lett 1996; 138:197-200. [PMID: 9026445 DOI: 10.1111/j.1574-6968.1996.tb08156.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Streptomyces plasmid pSA1.1 accumulated single-stranded DNA as replication intermediates in S. lividans; therefore, this plasmid was considered to replicate by a rolling-circle mechanism. A DNA-binding protein (pI > 9.7 and about 10 kDa) was purified on a denatured DNA-Cellulose column, then on a native DNA-Cellulose column. The N-terminal amino acid sequence of this protein has a high homology with bacterial histone-like proteins. In the gel retardation assay, this protein bound with the single-stranded DNA of pSA1.1. We propose that this protein may participate in the replication of pSA1.1.
Collapse
Affiliation(s)
- E Yokoyama
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | | | | | | |
Collapse
|
21
|
Castaing B, Zelwer C, Laval J, Boiteux S. HU protein of Escherichia coli binds specifically to DNA that contains single-strand breaks or gaps. J Biol Chem 1995; 270:10291-6. [PMID: 7730334 DOI: 10.1074/jbc.270.17.10291] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In this study, we have identified a protein in Escherichia coli that specifically binds to double-stranded DNA containing a single-stranded gap of one nucleotide. The gap-DNA binding (GDB) protein was purified to apparent homogeneity. The analysis of the amino-terminal sequencing of the GDB protein shows two closely related sequences we identify as the alpha and beta subunits of the HU protein. Furthermore, the GDB protein is not detected in the crude extract of an E. coli double mutant strain hupA hupB that has no functional HU protein. These results led us to identify the GDB protein as the HU protein. HU binds strongly to double-stranded 30-mer oligonucleotides containing a nick or a single-stranded gap of one or two nucleotides. Apparent dissociation constants were measured for these various DNA duplexes using a gel retardation assay. The KD(app) values were 8 nM for the 30-mer duplex that contains a nick and 4 and 2 nM for those that contain a 1-or a 2-nucleotide gap, respectively. The affinity of HU for these ligands is at least 100-fold higher than for the same 30-mer DNA duplex without nick or gap. Other single-stranded breaks or gaps, which are intermediate products in the repair of abasic sites after incision by the Fpg, Nth, or Nfo proteins, are also preferentially bound by the HU protein. Due to specific binding to DNA strand breaks, HU may play a role in replication, recombination, and repair.
Collapse
Affiliation(s)
- B Castaing
- Groupe Réparation des Lésions Radio- et Chimio-Induites, URA 147, CNRS, Institut Gustave Roussy, Villejuif, France
| | | | | | | |
Collapse
|
22
|
Komano T, Kim SR, Yoshida T. Mating variation by DNA inversions of shufflon in plasmid R64. ADVANCES IN BIOPHYSICS 1995; 31:181-93. [PMID: 7625273 DOI: 10.1016/0065-227x(95)99391-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Gene organization of the 54-kb transfer region of IncI1 plasmid R64 was deduced from the DNA sequence. Forty-eight ORFs were found in this region. A unique DNA rearrangement designated shufflon is located at the downstream region of an operon responsible for synthesis of thin pilus. The shufflon of R64 consists of four DNA segments, designated as A, B, C, and D, which are flanked and separated by seven 19-bp repeat sequences. Site-specific recombination mediated by the product of the rci gene between any two inverted repeats results in a complex DNA rearrangement. An analysis of open reading frames revealed that the shufflon is a biological switch to select one of seven C-terminal segments of the pilV genes. The products of pilV genes were shown to be components of thin pilus which was required for liquid mating. Seven R64 derivatives where the pilV genes were fixed in the seven C-terminal segments were constructed and their transfer frequencies in liquid mating were measured using various bacterial strains as recipients. Transfer frequencies of R64 in liquid mating strongly depended on the combination of C-terminal segments of the pilV genes in donor cells and bacterial strains of recipient cells, suggesting that the shufflon determines the recipient specificity in liquid mating of plasmid R64.
Collapse
Affiliation(s)
- T Komano
- Department of Biology, Tokyo Metropolitan University, Japan
| | | | | |
Collapse
|
23
|
Preobrajenskaya O, Boullard A, Boubrik F, Schnarr M, Rouvière-Yaniv J. The protein HU can displace the LexA repressor from its DNA-binding sites. Mol Microbiol 1994; 13:459-67. [PMID: 7997162 DOI: 10.1111/j.1365-2958.1994.tb00440.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The major bacterial histone-like protein HU is a small, basic, dimeric protein composed of two closely related subunits. HU is involved in several processes in the bacterial cell such as the initiation of replication, transposition, gene inversion and cell division. It has been suggested that HU could introduce structural changes to the DNA which would facilitate or inhibit the binding of regulatory proteins to their specific sites. In this study we investigated the effect of HU on the binding of LexA protein, the regulator of SOS functions, to three of its specific binding sites. We show that HU can displace LexA from its binding sites on the operators of the lexA, recA and sfiA genes. The lexA operator was the most sensitive while the higher affinity sfiA operator was the least sensitive. Since HU, like its homologue IHF, probably binds DNA in the minor groove we tested the effect of distamycin, a drug which binds to the minor groove, on LexA binding. Like HU, this drug disrupted LexA-operator complexes. These results suggest that distortion of the minor groove of the lexA operators excludes the binding of the repressor to the major groove.
Collapse
|
24
|
Goshima N, Kano Y, Tanaka H, Kohno K, Iwaki T, Imamoto F. IHF supresses the inhibitory effect of H-NS on HU function in the hin inversion system. Gene X 1994; 141:17-23. [PMID: 7512937 DOI: 10.1016/0378-1119(94)90122-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In the hin-mediated DNA inversion system, HU facilitates formation of the synaptic complex composed of two recombination sites spaced 996 bp apart and of the enhancer situated between them, by looping the DNA as to promote interaction of Hin invertase with the Fis enhancer factor [Johnson et al., Nature 329 (1987) 462-465]. The HU requirement for the in vivo hin-mediated inversion was demonstrated previously [Wada et al., Gene 76 (1989) 345-352; Hillyard et al., J. Bacteriol. 172 (1990) 5402-5407; Haykinson and Johnson, EMBO J. 12 (1993) 2503-2512] and in the current experiments. This HU action, however, required IHF when H-NS was present in the cell; i.e., the inversion reaction of the hin-invertible DNA fragment carried by the pKK1202R plasmid proceeded efficiently in host cells either deficient in H-NS or in the presence of both H-NS and IHF, but not in the cells depleted for IHF alone. The level of hin mRNA in mutant cells lacking HU or IHF, in which hin inversion did not occur, was normal or slightly increased. When IHF was absent, the stimulating effect of HU on in vitro DNA circle formation of a 125-bp hin fragment between hixL and the enhancer where Fis binds was inhibited by H-NS. The present study provides an example of a multi-component interaction between HU, H-NS and IHF on the hin DNA region, which contains three characteristic sites, a d(A/T)4 stretch and bent DNA site, and two putative IHF-binding sites.
Collapse
Affiliation(s)
- N Goshima
- Department of Molecular Genetics, Kyoto Pharmaceutical University, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
In this review article we present a compilation of the proteins homologous to Escherichia coli HU: the HU-like family. Two of these, HU and IHF from E coli have been extensively characterized genetically and biochemically. Due to their DNA binding activities, these proteins confer a condensed shape to the chromosome and regulate the transcription of selected sets of its genes. The parallel between the dual function of the HU-like proteins and the roles described for eukaryotic histone and HMG proteins is striking, especially in the view that they are evolutionary unrelated.
Collapse
Affiliation(s)
- J Oberto
- Institut de Biologie Physico-Chimique, Paris, France
| | | | | |
Collapse
|
26
|
Abstract
We have purified the main four-way junction DNA-binding protein of Escherichia coli, and have found it to be the well-known HU protein. HU protein recognizes with high-affinity one of the angles present in the junction, a molecule with the shape of an X. Other DNA structures characterized by sharp bends or kinks, like bulged duplex DNAs containing unpaired bases, are also bound. HU protein appears to inhibit cruciform extrusion from supercoiled inverted repeat (palindromic) DNA, either by constraining supercoiling or by trapping a metastable interconversion intermediate. All these properties are analogous to the properties of the mammalian chromatin protein HMG1. We suggest that HU is a prokaryotic HMG1-like protein rather than a histone-like protein.
Collapse
Affiliation(s)
- A Pontiggia
- Istituto Scientifico Ospedale San Raffaele, Milano, Italy
| | | | | | | |
Collapse
|
27
|
Yasuzawa K, Hayashi N, Goshima N, Kohno K, Imamoto F, Kano Y. Histone-like proteins are required for cell growth and constraint of supercoils in DNA. Gene 1992; 122:9-15. [PMID: 1452042 DOI: 10.1016/0378-1119(92)90026-l] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The gene hns of Escherichia coli K-12, which encodes the histone-like protein H-NS, was inactivated by insertion of a DNA (gene hph) encoding hygromycin phosphotransferase. The growth rates of two mutants lacking either one or the other of the histone-like proteins, HU and IHF, were not affected by introduction of the hns mutation. However, cells depleted of HU, IHF and H-NS simultaneously, could not be constructed by P1 phage-mediated transduction. These results, together with our previous finding that cells deficient in both HU and IHF are viable at 30-37 degrees C [Kano and Imamoto, Gene 89 (1990) 133-137] showed that E. coli cells deficient in any two of these three histone-like proteins are viable at 30-37 degrees C, and suggested that simultaneous deficiency of all three of the proteins is lethal. There were no detectable differences in the levels of superhelicity of the reporter plasmids isolated from cells deficient in either IHF or H-NS, or from wild-type cells, but about 15% decrease in negative superhelicity was detected for the reporter plasmid isolated from cells lacking HU and lacking both HU and H-NS. However, the cryptic bgl operon, whose expression was reported to be regulated through topological changes of cellular DNA, could not be activated in cells depleted of HU or IHF. The bgl operon was expressed in cells depleted of both HU and H-NS as well as in cells depleted of H-NS.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K Yasuzawa
- Department of Molecular Genetics, Kyoto Pharmaceutical University, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Goshima N, Kano Y, Tanaka H, Tanaka H, Kohno K, Yasuzawa K, Imamoto F. Amino acid substitution in the C-terminal arm domain of HU-2 results in an enhanced affinity for DNA. Gene 1992; 121:121-6. [PMID: 1427084 DOI: 10.1016/0378-1119(92)90169-p] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Three mutants of the Escherichia coli hupA gene, encoding the HU-2 protein, were constructed by synthetic oligodeoxyribonucleotide-directed, site-specific mutagenesis on M13mp18 vectors. The resulting HupAN10, HupAN11 and HupAN12 proteins contained Thr59-->Lys, Gln64-->Lys and Asn53-->Arg substitutions, respectively. These amino acid (aa) changes increased the positive charge of the N-terminal half of the two-strand, antiparallel beta-ribbon of the arm structure, which is believed to be a domain for DNA binding. The three mutant proteins bound to DNA more tightly than wild-type HU-2, and their affinities for DNA increased in the order of HupAN10, HupAN11, HupAN12. The mutant proteins showed a slightly increased HU activity for supporting Mu phage development. A mutant HU-2 protein with increased basicity, but with an altered aa sequence in the arm region due to a frameshift mutation, was also constructed. This mutant protein showed a reduced affinity to DNA and was unable to support Mu growth, suggesting that a unique aa sequence of the arm domain, rather than mere basicity of this domain, is required for efficient binding to DNA.
Collapse
Affiliation(s)
- N Goshima
- Department of Molecular Genetics, Kyoto Pharmaceutical University, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Dri AM, Moreau PL, Rouvière-Yaniv J. Role of the histone-like proteins OsmZ and HU in homologous recombination. Gene 1992; 120:11-6. [PMID: 1327969 DOI: 10.1016/0378-1119(92)90003-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The HU protein of Escherichia coli has been implicated in various site-specific recombination reactions. Moreover, recent data suggest that HU may also participate in homologous recombination. In particular, it has been shown that P1 transduction is inhibited in the absence of HU [Kano and Imamoto, Gene 89 (1990) 133-137]. In contrast, we found that transductional recombination and conjugational recombination were almost normal in hupA hupB mutants. However, it appeared that the recombination proficiency of hupA hupB mutant bacteria was reduced tenfold in an intrachromosomal recombination assay. Moreover, we found that intrachromosomal recombination was reduced tenfold in a gyrB226 strain and by more than 100-fold in an osmZ205 strain. The gyrB226 mutation affects the DNA gyrase activity, while mutations in osmZ are highly pleiotropic, affecting the expression of a variety of genes and increasing the frequency of site-specific inversion events. Since it has been shown that the hupA hupB mutations, like the gyrB226 mutation, decrease the level of DNA supercoiling, whereas the osmZ205 mutation increases the level of DNA supercoiling, it appears that the histone-like proteins HU and OsmZ may play a key role in intrachromosomal recombination by affecting the DNA topology.
Collapse
Affiliation(s)
- A M Dri
- CNRS, Laboratoire d'Enzymologie, Gif-sur-Yvette, France
| | | | | |
Collapse
|
30
|
Goshima N, Inagaki Y, Otaki H, Tanaka H, Hayashi N, Imamoto F, Kano Y. Chimeric HU-IHF proteins that alter DNA-binding ability. Gene 1992; 118:97-102. [PMID: 1387378 DOI: 10.1016/0378-1119(92)90254-m] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chimeric proteins between Escherichia coli histone-like HU and IHF were constructed by genetic engineering, in which part of the arm region was replaced by the corresponding region of IHF alpha (designated as HupANhimA) or IHF beta (HupANhimD); alternatively, an alpha-helix 2-beta 1 region was replaced by the corresponding region of IHF alpha (HupAXhimA) or IHF beta (HupAXhimD) (symbols N and X indicate NotI and XhoI junctions). These proteins were synthesized in a hupA-hupB double-deletion mutant. HupANhimA exhibited marked reduction in nonspecific DNA binding in vitro, and a drastic loss of HU activity in replicative transposition of Mu phage in vivo. HupANhimD also showed a significant reduction in the ability for DNA binding, though this protein supported Mu phage development. In contrast, the other two chimeric HU proteins showed only slight changes in nonspecific DNA-binding ability: they retained activities for transposition of Mu phage in vivo. These observations confirm that the flexible arm of HU-2, a domain proposed for DNA binding [Tanaka et al., Nature 310 (1984) 376-381; Goshima et al., Gene 96 (1990) 141-145], plays an important role in the physiological function of this protein. The results indicate that a unique conformation of the arm structure of HU protein, particularly the N-terminal half of a two-strand antiparallel beta-ribbon of the structure, is important for the DNA-binding ability of this protein.
Collapse
Affiliation(s)
- N Goshima
- Department of Molecular Genetics, Kyoto Pharmaceutical University, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Two DNA topoisomerases control the level of negative supercoiling in bacterial cells. DNA gyrase introduces supercoils, and DNA topoisomerase I prevents supercoiling from reaching unacceptably high levels. Perturbations of supercoiling are corrected by the substrate preferences of these topoisomerases with respect to DNA topology and by changes in expression of the genes encoding the enzymes. However, supercoiling changes when the growth environment is altered in ways that also affect cellular energetics. The ratio of [ATP] to [ADP], to which gyrase is sensitive, may be involved in the response of supercoiling to growth conditions. Inside cells, supercoiling is partitioned into two components, superhelical tension and restrained supercoils. Shifts in superhelical tension elicited by nicking or by salt shock do not rapidly change the level of restrained supercoiling. However, a steady-state change in supercoiling caused by mutation of topA does alter both tension and restrained supercoils. This communication between the two compartments may play a role in the control of supercoiling.
Collapse
Affiliation(s)
- K Drlica
- Public Health Research Institute, New York, New York 10016
| |
Collapse
|
32
|
|
33
|
Kawula TH, Orndorff PE. Rapid site-specific DNA inversion in Escherichia coli mutants lacking the histonelike protein H-NS. J Bacteriol 1991; 173:4116-23. [PMID: 1648076 PMCID: PMC208061 DOI: 10.1128/jb.173.13.4116-4123.1991] [Citation(s) in RCA: 96] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Escherichia coli pilG mutants are thought to have a dramatically higher DNA inversion rate as measured by the site-specific DNA inversion of the type 1 pili pilA promoter. DNA sequence of the pilG gene confirmed its identity to the gene encoding the bacterial histonelike protein H-NS. Unlike other histonelike protein complexes that enhance site-specific DNA recombination, the H-NS protein inhibited this process. This inhibition was indicated by the increased inversion rate of the pilA promoter region effected by two different mutant pilG alleles. One of these alleles, pilG1, conferred a mutant phenotype only at low temperature attributable to a T-to-G transversion in the -35 sequence of the pilG promoter. The other allele, pilG2-tetR, was an insertion mutation in the pilG coding region that conferred the mutant phenotype independent of temperature. We measured an approximately 100-fold-increased pilA promoter inversion rate in the mutant by exploiting the temperature-dependent expression of pilG1 and using a novel rapid-population-sampling method. Contrary to one current view on how the H-NS protein might act to increase DNA inversion rate, we found no evidence to support the hypothesis that DNA supercoiling affected pilA promoter inversion.
Collapse
Affiliation(s)
- T H Kawula
- Department of Microbiology, Pathology and Parasitology, NCSU College of Veterinary Medicine, North Carolina State University, Raleigh 27606
| | | |
Collapse
|
34
|
Abstract
Recent progress in studies on the bacterial chromosome is summarized. Although the greatest amount of information comes from studies on Escherichia coli, reports on studies of many other bacteria are also included. A compilation of the sizes of chromosomal DNAs as determined by pulsed-field electrophoresis is given, as well as a discussion of factors that affect gene dosage, including redundancy of chromosomes on the one hand and inactivation of chromosomes on the other hand. The distinction between a large plasmid and a second chromosome is discussed. Recent information on repeated sequences and chromosomal rearrangements is presented. The growing understanding of limitations on the rearrangements that can be tolerated by bacteria and those that cannot is summarized, and the sensitive region flanking the terminator loci is described. Sources and types of genetic variation in bacteria are listed, from simple single nucleotide mutations to intragenic and intergenic recombinations. A model depicting the dynamics of the evolution and genetic activity of the bacterial chromosome is described which entails acquisition by recombination of clonal segments within the chromosome. The model is consistent with the existence of only a few genetic types of E. coli worldwide. Finally, there is a summary of recent reports on lateral genetic exchange across great taxonomic distances, yet another source of genetic variation and innovation.
Collapse
Affiliation(s)
- S Krawiec
- Department of Biology, Lehigh University, Bethlehem, Pennsylvania 18015
| | | |
Collapse
|
35
|
Abstract
We constructed four mutants of the Escherichia coli hupB gene, encoding HU-1 protein, by synthetic oligodeoxyribonucleotide-directed, site-specific mutagenesis on M13mp18 vectors. The HupBR45 protein contained alterations of Arg58----Gly and Arg61----Gly, and the HupBF3, HupBK2 and HupBA1 proteins contained Phe47----Thr, Lys37----Gln and Ala30----Asp alterations, respectively. HupBF3 and HupBR45 were unable to maintain normal cell growth in a hupA-hupB-himA triple mutant at 42 degrees C, mini-F or RSF1010 proliferation, or Mu phage development in a hupA-hupB double mutant, whereas HupBA1 and HupBK2 supported these cellular activities. DNA-affinity column chromatography showed that the HupBF3 and HupBR45 had reduced affinities to DNA. These observations indicate that two highly conserved Arg residues in the arm structure of the C-terminal half of the HU-1 molecule and a Phe residue in the short beta-sheet connecting the two halves of the molecule are important for the DNA-binding ability and biological functions of this protein.
Collapse
Affiliation(s)
- N Goshima
- Department of Molecular Genetics, Kyoto Pharmaceutical University, Japan
| | | | | | | |
Collapse
|
36
|
Kohno K, Wada M, Kano Y, Imamoto F. Promoters and autogenous control of the Escherichia coli hupA and hupB genes. J Mol Biol 1990; 213:27-36. [PMID: 2187099 DOI: 10.1016/s0022-2836(05)80119-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Three start sites and a single start site for transcription of the hupB and hupA genes, respectively, have been identified in Escherichia coli. Preceding the RNA start sites are DNA sequences that conform to canonical promoter consensus sequences. The two most upstream promoters of the hupB gene function in vivo at comparable efficiency, while the third is not expressed significantly. Both hupB and hupA genes possess a DNA sequence with a rho-independent transcriptional terminator in their respective regions downstream from the coding regions. The hup genes are both transcribed in vivo into monocistronic mRNA molecules. Upon introduction of an HU-overproducing plasmid carrying either the hupB or the hupA gene into the wild-type and hup single deletion mutants, the intracellular levels of mRNA from the chromosomal hup genes are reduced. The HU-1 and HU-2 proteins both repress both hup genes, repression of the hupB gene being less efficient. The HU protein selectively represses mRNA synthesis starting at the hup promoters in the hupB promoter-CmR and hupA promoter-KmR fusion genes, but does not have a negative regulatory effect on mRNA synthesis from the true CmR and KmR promoters. These findings suggest that the signals for the actions of HU proteins are located in the DNA regions upstream from the sites near the 5' extremities of the coding regions of the hupB and hupA genes.
Collapse
Affiliation(s)
- K Kohno
- Department of Molecular Genetics, Kyoto Pharmaceutical University, Japan
| | | | | | | |
Collapse
|
37
|
Kano Y, Imamoto F. Requirement of integration host factor (IHF) for growth of Escherichia coli deficient in HU protein. Gene 1990; 89:133-7. [PMID: 2197178 DOI: 10.1016/0378-1119(90)90216-e] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Escherichia coli mutants deficient in histone-like protein, HU, and integration host factor (IHF) were constructed and their growth characteristics were examined. Mutants deficient in both HU and IHF grew slowly and were filamentous at both 30 degrees C and 37 degrees C. These mutants scarcely grew in LB broth at 42 degrees C. They formed minute colonies on LB plates at 42 degrees C and no colonies at 46 degrees C, indicating temperature-sensitive (ts) growth. On the contrary, mutants deficient in either HU or IHF were not ts for growth. These results indicate that IHF compensates for the absence of HU and permits normal cell growth; this suggests functional similarity between HU and IHF.
Collapse
Affiliation(s)
- Y Kano
- Department of Molecular Genetics, Kyoto Pharmaceutical University, Japan
| | | |
Collapse
|
38
|
Abstract
A HU-like protein (HBl) of Bifidobacterium longum was purified and characterized. HBl is heat-stable and acid-resistant, and has a molecular weight of about 9.1 kDa as estimated by its mobility on electrophoresis. HBl is intermediate in basicity (pI 9.8) between the HU-1 and HU-2 proteins of Escherichia coli, and is dissociated from a calf thymus DNA-cellulose column at 300-400 mM NaCl. Its amino acid composition shows many similarities with that of E coli HU. The NH2-terminal amino acid sequence of HBl also shows significant similarities to the consensus sequence deduced from the sequences of eleven HU-like proteins from prokaryotic sources. Chemical crosslinking analysis indicated that the HBl protein predominantly forms a homotypic dimer.
Collapse
Affiliation(s)
- N Goshima
- Department of Molecular Genetics, Kyoto Pharmaceutical University, Japan
| | | | | |
Collapse
|
39
|
Ogura T, Niki H, Kano Y, Imamoto F, Hiraga S. Maintenance of plasmids in HU and IHF mutants of Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1990; 220:197-203. [PMID: 2183003 DOI: 10.1007/bf00260482] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Complementation and sequencing analyses revealed that the hopD mutants, which could not support stable maintenance of mini-F plasmids (Niki et al. 1988), had mutations in the hupB gene, and that the hopD410 mutation was an ochre mutation at the 5th Gln position of HU-1. Maintenance and stability of various plasmids, mini-P1 plasmids, mini-F plasmids, and oriC plasmids, were studied in the hupA and hupB mutants (HU mutants), and himA and hip mutants (IHF mutants). Mini-P1 plasmids and mini-F plasmids could not be introduced into the delta hupA-delta hupB double deletion mutant. Replication of mini-F plasmids was partially inhibited in the hupB mutants, including the delta hupB and hopD(hupB) mutants, whereas replication of oriC plasmids was not significantly affected even in the delta hupA-delta hupB double deletion mutant. The mini-P1 plasmid was slightly unstable in the himA-hip mutant, whereas the mini-F plasmid was stable.
Collapse
Affiliation(s)
- T Ogura
- Department of Molecular Genetics, Kumamoto University Medical School, Japan
| | | | | | | | | |
Collapse
|
40
|
Abstract
The R64 shufflon is a novel type of DNA rearrangement in which four DNA segments invert independently or in groups. The related plasmid ColIb carries a variant shufflon. The present sequence analysis shows that the ColIb shufflon consists of three DNA segments that are highly homologous to the A, B, and C segments of the R64 shufflon. The 329-bp D segment of R64 is not present in the ColIb shufflon. As in the case of R64, the ColIb shufflon may act as a biological switch to select one of the six open reading frames in which the N-terminal region is constant while the C-terminal region is variable.
Collapse
Affiliation(s)
- S R Kim
- Department of Biology, Tokyo Metropolitan University, Japan
| | | |
Collapse
|