1
|
Wang X, Yang JG, Chen L, Wang JL, Cheng Q, Dixon R, Wang YP. Using synthetic biology to distinguish and overcome regulatory and functional barriers related to nitrogen fixation. PLoS One 2013; 8:e68677. [PMID: 23935879 PMCID: PMC3723869 DOI: 10.1371/journal.pone.0068677] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 06/07/2013] [Indexed: 01/14/2023] Open
Abstract
Biological nitrogen fixation is a complex process requiring multiple genes working in concert. To date, the Klebsiella pneumoniae nif gene cluster, divided into seven operons, is one of the most studied systems. Its nitrogen fixation capacity is subject to complex cascade regulation and physiological limitations. In this report, the entire K. pneumoniae nif gene cluster was reassembled as operon-based BioBrick parts in Escherichia coli. It provided ~100% activity of native K. pneumoniae system. Based on the expression levels of these BioBrick parts, a T7 RNA polymerase-LacI expression system was used to replace the σ(54)-dependent promoters located upstream of nif operons. Expression patterns of nif operons were critical for the maximum activity of the recombinant system. By mimicking these expression levels with variable-strength T7-dependent promoters, ~42% of the nitrogenase activity of the σ(54)-dependent nif system was achieved in E. coli. When the newly constructed T7-dependent nif system was challenged with different genetic and physiological conditions, it bypassed the original complex regulatory circuits, with minor physiological limitations. Therefore, we have successfully replaced the nif regulatory elements with a simple expression system that may provide the first step for further research of introducing nif genes into eukaryotic organelles, which has considerable potentials in agro-biotechnology.
Collapse
Affiliation(s)
- Xia Wang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Jian-Guo Yang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Li Chen
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Ji-Long Wang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Qi Cheng
- Biotechnology Research Institute, Chinese Academy of Agriculture Science, Beijing, China
| | - Ray Dixon
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- * E-mail: (RD); (YPW)
| | - Yi-Ping Wang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
- * E-mail: (RD); (YPW)
| |
Collapse
|
2
|
Yakunin AF, Fedorov AS, Laurinavichene TV, Glaser VM, Egorov NS, Tsygankov AA, Zinchenko VV, Hallenbeck PC. Regulation of nitrogenase in the photosynthetic bacteriumRhodobacter sphaeroidescontainingdraTGandnifHDKgenes fromRhodobacter capsulatus. Can J Microbiol 2001. [DOI: 10.1139/w00-144] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The photosynthetic bacteria Rhodobacter capsulatus and Rhodospirillum rubrum regulate their nitrogenase activity by the reversible ADP-ribosylation of nitrogenase Fe-protein in response to ammonium addition or darkness. This regulation is mediated by two enzymes, dinitrogenase reductase ADP-ribosyl transferase (DRAT) and dinitrogenase reductase activating glycohydrolase (DRAG). Recently, we demonstrated that another photosynthetic bacterium, Rhodobacter sphaeroides, appears to have no draTG genes, and no evidence of Fe-protein ADP-ribosylation was found in this bacterium under a variety of growth and incubation conditions. Here we show that four different strains of Rba. sphaeroides are incapable of modifying Fe-protein, whereas four out of five Rba. capsulatus strains possess this ability. Introduction of Rba. capsulatus draTG and nifHDK (structural genes for nitrogenase proteins) into Rba. sphaeroides had no effect on in vivo nitrogenase activity and on nitrogenase switch-off by ammonium. However, transfer of draTG from Rba. capsulatus was sufficient to confer on Rba. sphaeroides the ability to reversibly modify the nitrogenase Fe-protein in response to either ammonium addition or darkness. These data suggest that Rba. sphaeroides, which lacks DRAT and DRAG, possesses all the elements necessary for the transduction of signals generated by ammonium or darkness to these proteins.Key words: nitrogenase regulation, nitrogenase modification, photosynthetic bacteria.
Collapse
|
3
|
Halbleib CM, Zhang Y, Roberts GP, Ludden PW. Effects of perturbations of the nitrogenase electron transfer chain on reversible ADP-ribosylation of nitrogenase Fe protein in Klebsiella pneumoniae strains bearing the Rhodospirillum rubrum dra operon. J Bacteriol 2000; 182:3681-7. [PMID: 10850982 PMCID: PMC94538 DOI: 10.1128/jb.182.13.3681-3687.2000] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The redox state of nitrogenase Fe protein is shown to affect regulation of ADP-ribosylation in Klebsiella pneumoniae strains transformed by plasmids carrying dra genes from Rhodospirillum rubrum. The dra operon encodes dinitrogenase reductase ADP-ribosyltransferase and dinitrogenase reductase-activating glycohydrolase, enzymes responsible for the reversible inactivation, via ADP-ribosylation, of nitrogenase Fe protein in R. rubrum. In bacteria containing the dra operon in their chromosomes, inactivation occurs in response to energy limitation or nitrogen sufficiency. The dra gene products, expressed at a low level in K. pneumoniae, enable transformants to reversibly ADP-ribosylate nitrogenase Fe protein in response to the presence of fixed nitrogen. The activities of both regulatory enzymes are regulated in vivo as described in R. rubrum. Genetic perturbations of the nitrogenase electron transport chain were found to affect the rate of inactivation of Fe protein. Strains lacking the electron donors to Fe protein (NifF or NifJ) were found to inactivate Fe protein more quickly than a strain with wild-type background. Deletion of nifD, which encodes a subunit of nitrogenase MoFe protein, was found to result in a slower inactivation response. No variation was found in the reactivation responses of these strains. It is concluded that the redox state of the Fe protein contributes to the regulation of the ADP-ribosylation of Fe protein.
Collapse
Affiliation(s)
- C M Halbleib
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
4
|
Abstract
Nitrogen metabolism in prokaryotes involves the coordinated expression of a large number of enzymes concerned with both utilization of extracellular nitrogen sources and intracellular biosynthesis of nitrogen-containing compounds. The control of this expression is determined by the availability of fixed nitrogen to the cell and is effected by complex regulatory networks involving regulation at both the transcriptional and posttranslational levels. While the most detailed studies to date have been carried out with enteric bacteria, there is a considerable body of evidence to show that the nitrogen regulation (ntr) systems described in the enterics extend to many other genera. Furthermore, as the range of bacteria in which the phenomenon of nitrogen control is examined is being extended, new regulatory mechanisms are also being discovered. In this review, we have attempted to summarize recent research in prokaryotic nitrogen control; to show the ubiquity of the ntr system, at least in gram-negative organisms; and to identify those areas and groups of organisms about which there is much still to learn.
Collapse
Affiliation(s)
- M J Merrick
- Nitrogen Fixation Laboratory, John Innes Centre, Norwich, United Kingdom
| | | |
Collapse
|
5
|
Grunwald SK, Lies DP, Roberts GP, Ludden PW. Posttranslational regulation of nitrogenase in Rhodospirillum rubrum strains overexpressing the regulatory enzymes dinitrogenase reductase ADP-ribosyltransferase and dinitrogenase reductase activating glycohydrolase. J Bacteriol 1995; 177:628-35. [PMID: 7836296 PMCID: PMC176637 DOI: 10.1128/jb.177.3.628-635.1995] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Rhodospirillum rubrum strains that overexpress the enzymes involved in posttranslational nitrogenase regulation, dinitrogenase reductase ADP-ribosyltransferase (DRAT) and dinitrogenase reductase activating glycohydrolase (DRAG), were constructed, and the effect of this overexpression on in vivo DRAT and DRAG regulation was investigated. Broad-host-range plasmid constructs containing a fusion of the R. rubrum nifH promoter and translation initiation sequences to the second codon of draT, the first gene of the dra operon, were constructed. Overexpression plasmid constructs which overexpressed (i) only functional DRAT, (ii) only functional DRAG and presumably the putative downstream open reading frame (ORF)-encoded protein, or (iii) all three proteins were generated and introduced into wild-type R. rubrum. Overexpression of DRAT still allowed proper regulation of nitrogenase activity, with ADP-ribosylation of dinitrogenase reductase by DRAT occurring only upon dark or ammonium stimuli, suggesting that DRAT is still regulated upon overexpression. However, overexpression of DRAG and the downstream ORF altered nitrogenase regulation such that dinitrogenase reductase did not accumulate in the ADP-ribosylated form under inactivation conditions, suggesting that DRAG was constitutively active and that therefore DRAG regulation is altered upon overexpression. Proper DRAG regulation was observed in a strain overexpressing DRAT, DRAG, and the downstream ORF, suggesting that a proper balance of DRAT and DRAG levels is required for proper DRAG regulation.
Collapse
Affiliation(s)
- S K Grunwald
- Department of Biochemistry, University of Wisconsin-Madison 53706
| | | | | | | |
Collapse
|
6
|
Dierstein R, Gad'on N. Expression study with the Escherichia coli lep gene for leader peptidase in phototrophic purple bacteria. Arch Microbiol 1993; 159:101-8. [PMID: 8439231 DOI: 10.1007/bf00250267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Synthesis and assembly of leader peptidase of Escherichia coli (signal peptidase I), was studied by heterologous expression of its lep gene in three species of phototrophic purple bacteria. Cell extracts of the recipient species showed neither cross reaction with antibodies against E. coli leader peptidase nor cleavage of the model substrate M13-procoat in vitro. The lep gene was transferred via conjugation using the plasmid expression vector for phototrophic bacteria pJAJ9. Plasmid-borne leader peptidase enzyme was identified by immunochemical means. However, extracts of transconjugant cells showed no cleavage function. Trypsin digestion studies revealed that the enzyme was not properly integrated across the host membranes. The data suggest that cleaving enzymes for protein export and/or their assembly pathway in purple bacteria differ from the E. coli type.
Collapse
Affiliation(s)
- R Dierstein
- Institut für Biologie 2-Mikrobiologie, Albert-Ludwigs-Universität, Freiburg, Federal Republic of Germany
| | | |
Collapse
|
7
|
Hallenbeck PC. Mutations affecting nitrogenase switch-off in Rhodobacter capsulatus. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1118:161-8. [PMID: 1730034 DOI: 10.1016/0167-4838(92)90145-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In vivo 'switch-off' and subsequent reactivation of nitrogenase activity in Rhodobacter capsulatus or Rhodospirillum rubrum in response to a variety of environmental stimuli, including the addition of fixed nitrogen, is thought to be due to the action of two nitrogenase Fe protein modifying activities; DRAT (dinitrogenase reductase ADP-ribosyl transferase) and DRAG (dinitrogenase reductase-activating glycohydrolase). Here it is demonstrated that strains, including one mutated in glnB, that constitutively express nif in the presence of fixed nitrogen are never-the-less capable of Fe protein modification. Thus the regulation of Fe protein modification is separate from that of its expression. The observations that Mn-deficient cultures are unable to fix nitrogen and that DRAG activity requires a divalent metal cation, most notably Mn2+, prompted the search for mutants (pseudo-prototrophs) capable of in vivo nitrogen fixation under Mn-deficient conditions. In the present study the isolation and partial characterization of several putative mutants is described. One, AF1, was shown to be altered in the in vivo regulation of N2ase activity in response to fixed nitrogen and to have an altered in vitro activity in glutamate grown cells. However, this strain was shown to possess in vitro DRAT activity and to have a modifiable Fe protein. Two-dimensional gel analysis indicates that this strain is altered in the synthesis of a 48 kDa protein of as yet unknown function. Thus, the mutation in this strain must affect, in an as yet undetermined manner, the response of the modifying system to fixed nitrogen.
Collapse
Affiliation(s)
- P C Hallenbeck
- Département de Microbiologie et Immunologie, Université de Montréal, Canada
| |
Collapse
|
8
|
Fu H, Burris RH, Roberts GP. Reversible ADP-ribosylation is demonstrated to be a regulatory mechanism in prokaryotes by heterologous expression. Proc Natl Acad Sci U S A 1990; 87:1720-4. [PMID: 2106680 PMCID: PMC53554 DOI: 10.1073/pnas.87.5.1720] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The primary product of biological nitrogen fixation, ammonia, reversibly regulates nitrogenase activity in a variety of diazotrophs by a process called "NH4(+)-switch-off/on." Strong correlative evidence from work in Azospirillum lipoferum and Rhodospirillum rubrum indicates that this regulation involves both the inactivation of dinitrogenase reductase by dinitrogenase reductase ADP-ribosyltransferase and the reactivation by dinitrogenase reductase activating glycohydrolase. The genes encoding these two enzymes, draT and draG, have been cloned from these two organisms, so that direct genetic evidence can be marshaled to test this model in vivo. The draT/G system has been transferred to and monitored in the enteric nitrogen-fixing bacterium Klebsiella pneumoniae, an organism normally devoid of such a regulatory mechanism. The expressed draT and draG genes allowed K. pneumoniae to respond to NH4Cl with a reversible regulation of nitrogenase activity that was correlated with the reversible ADP-ribosylation of dinitrogenase reductase in vivo. Thus, the expression of draT and draG genes in K. pneumoniae is necessary and sufficient to support NH4(+)-switch-off/on, and ADP-ribosylation serves as a reversible regulatory mechanism for controlling nitrogenase activity in prokaryotes.
Collapse
Affiliation(s)
- H Fu
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison 53706
| | | | | |
Collapse
|
9
|
Fu HA, Fitzmaurice WP, Roberts GP, Burris RH. Cloning and expression of draTG genes from Azospirillum lipoferum. Gene 1990; 86:95-8. [PMID: 2107127 DOI: 10.1016/0378-1119(90)90118-b] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A genomic library of Azospirillum lipoferum was constructed with phage lambda EMBL4 as vector. From this library, the genes encoding dinitrogenase reductase ADP-ribosyltransferase (DRAT), draT, and dinitrogenase reductase-activating glycohydrolase (DRAG), draG, were cloned by hybridization with the heterologous probes of Rhodospirillum rubrum. As in R. rubrum, draT is located between draG and nifH, the gene encoding dinitrogenase reductase (a substrate for the DRAG/DRAT system). In the crude extract of Escherichia coli harboring the expression vector for this region, DRAT and DRAG enzyme activities were detected, confirming the identity of the cloned genes. Southern hybridization with genomic DNA from different Azospirillum spp., demonstrated a correlation between observable draTG hybridization and the biochemical demonstration of this covalent modification system.
Collapse
Affiliation(s)
- H A Fu
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison 53706
| | | | | | | |
Collapse
|