1
|
Mücke M, Pingoud V, Grelle G, Kraft R, Krüger DH, Reuter M. Asymmetric photocross-linking pattern of restriction endonuclease EcoRII to the DNA recognition sequence. J Biol Chem 2002; 277:14288-93. [PMID: 11832480 DOI: 10.1074/jbc.m109311200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The EcoRII homodimer engages two of its recognition sequences (5'-CCWGG) simultaneously and is therefore a type IIE restriction endonuclease. To identify the amino acids of EcoRII that interact specifically with the recognition sequence, we photocross-linked EcoRII with oligonucleotide substrates that contained only one recognition sequence for EcoRII. In this recognition sequence, we substituted either 5-iododeoxycytidine for each C or 5-iododeoxyuridine for A, G, or T. These iodo-pyrimidine bases were excited using a UV laser to result in covalent cross-linking products. The yield of EcoRII photocross-linked to the 5'-C of the 5'-CCAGG strand of the recognition sequence was 45%. However, we could not photocross-link EcoRII to the 5'-C of the 5'-CCTGG strand. Thus, the contact of EcoRII to the bases of the recognition sequence appears to be asymmetric, unlike that expected for most type II restriction endonucleases. Tryptic digestion of free and of cross-linked EcoRII, followed by high performance liquid chromatography (HPLC) separation of the individual peptides and Edman degradation, identified amino acids 25-49 of EcoRII as the cross-linking peptide. Mutational analysis of the electron-rich amino acids His(36) and Tyr(41) of this peptide indicates that Tyr(41) is the amino acid involved in the cross-link and that it therefore contributes to specific DNA recognition by EcoRII.
Collapse
Affiliation(s)
- Merlind Mücke
- Institut für Virologie, Medizinische Fakultät der Humboldt-Universität zu Berlin (Charité), D-10098 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
2
|
Chinen A, Naito Y, Handa N, Kobayashi I. Evolution of sequence recognition by restriction-modification enzymes: selective pressure for specificity decrease. Mol Biol Evol 2000; 17:1610-9. [PMID: 11070049 DOI: 10.1093/oxfordjournals.molbev.a026260] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Several type II restriction-modification (RM) gene complexes kill host bacterial cells that have lost them, through attack on the chromosomal recognition sites of these cells. Two RM gene complexes recognizing the same sequence cannot simultaneously enjoy such stabilization through postsegregational host killing, because one will defend chromosomal sites from attack by the other. In the present work, we analyzed intrahost competition between two RM gene complexes when the recognition sequence of one was included in that of the other. When the EcoRII gene complex, recognizing 5'-CCWGG (W = A, T), is lost from the host, the SsoII gene complex, which recognizes 5'-CCNGG (N = A, T, G, C), will prevent host death by protecting CCWGG sites on the chromosome. However, when the SsoII (CCNGG) gene complex is lost, the EcoRII (CCWGG) gene complex will be unable to prevent host death through attack by SsoII on 5'-CCSGG (S = C, G) sites. These predictions were verified in our experiments, in which we analyzed plasmid maintenance, cell growth, cell shape, and chromosomal DNA. Our results demonstrate the presence of selective pressure for decrease in the specificity of recognition sequence of RM systems in the absence of invading DNA.
Collapse
Affiliation(s)
- A Chinen
- Department of Molecular Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
3
|
Shilov I, Tashlitsky V, Khodoun M, Vasil'ev S, Alekseev Y, Kuzubov A, Kubareva E, Karyagina A. DNA-methyltransferase SsoII interaction with own promoter region binding site. Nucleic Acids Res 1998; 26:2659-64. [PMID: 9592151 PMCID: PMC147609 DOI: 10.1093/nar/26.11.2659] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The investigation of Sso II DNA-methyltransferase (M.Sso II) interaction with the intergenic region of Sso II restriction-modification system was carried out. Seven guanine residues protected by M. Sso II from methylation with dimethylsulfate and thus probably involved in enzyme-DNA recognition were identified. Six of them are located symmetrically within the 15 bp inverted repeat inside the Sso II promoter region. The crosslinking of Sso II methyltransferase with DNA duplexes containing 5-bromo-2'-deoxyuridine (br5dU) instead of thymidine was performed. The crosslinked products were obtained in all cases, thus proving that tested thymines were in proximity with enzyme. The ability to produce the crosslinked products in one case was 2-5-fold higher than in other ones. This allowed us to imply that thymine residue in this position of the inverted repeat could be in contact with M. Sso II. Based on the experimental data, two symmetrical 4 bp clusters (GGAC), which could be involved in the interaction with M. Sso II in the DNA-protein complex, were identified. The model of M. Sso II interaction with its own promoter region was proposed.
Collapse
Affiliation(s)
- I Shilov
- Institute of Agricultural Biotechnology, 42 Timiryazevskaya Street, Moscow 127550, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Ibáñez M, Alvarez I, Rodríguez-Peña JM, Rotger R. A ColE1-type plasmid from Salmonella enteritidis encodes a DNA cytosine methyltransferase. Gene X 1997; 196:145-58. [PMID: 9322752 DOI: 10.1016/s0378-1119(97)00220-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The multicopy plasmid pFM366 was isolated from a virulent Salmonella enteritidis strain and was found to code for DNA methylase activity (Ibáñez and Rotger, 1993). The present work was aimed at characterizing the genetic organization and functional features of this 5.6 kb plasmid. We found pFM366 almost identical to the plasmid P4 isolated from Shigella sonnei, that encodes the SsoII restriction-modification system (Karyagina et al., 1993), and related to other ColE1-type plasmids. Examination of these plasmids revealed a common organization which suggests they were the result of similar recombinational events. The cytosine methylase of pFM366 is nearly identical to M. SsoII, whereas the gene encoding the restrictase homologous to R. SsoII is truncated and its product is inactive. The expression of the cytosine methylase encoded by pFM366 is strongly affected by deletion of regions located upstream and downstream of its ORF, and is negatively controlled by the rpoS gene in Escherichia coli. The methylase activity encoded by pFM366 induces the SOS response, which could be responsible for the observed delay in the growth of E. coli.
Collapse
Affiliation(s)
- M Ibáñez
- Departamento de Microbiologia II, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | | | | | | |
Collapse
|
5
|
Karyagina A, Shilov I, Tashlitskii V, Khodoun M, Vasil'ev S, Lau PC, Nikolskaya I. Specific binding of sso II DNA methyltransferase to its promoter region provides the regulation of sso II restriction-modification gene expression. Nucleic Acids Res 1997; 25:2114-20. [PMID: 9153310 PMCID: PMC146720 DOI: 10.1093/nar/25.11.2114] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The regulation of the Sso II restriction-modification system from Shigella sonnei was studied in vivo and in vitro . In lacZ fusion experiments, Sso II methyltransferase (M. Sso II) was found to repress its own synthesis but stimulate expression of the cognate restriction endonuclease (ENase). The N-terminal 72 amino acids of M. Sso II, predicted to form a helix-turn-helix (HTH) motif, was found to be responsible for the specific DNA-binding and regulatory function of M. Sso II. Similar HTH motifs are predicted in the N-terminus of a number of 5-methylcytosine methyltransferases, particularly M. Eco RII, M.dcm and M. Msp I, of which the ability to regulate autogenously has been proposed. In vitro, the binding of M. Sso II to its target DNA was investigated using a mobility shift assay. M. Sso II forms a specific and stable complex with a 140 bp DNA fragment containing the promoter region of Sso II R-M system. The dissociation constant (Kd) was determined to be 1.5x10(-8) M. DNaseI footprinting experiments demonstrated that M. Sso II protects a 48-52 bp region immediately upstream of the M. Sso II coding sequence which includes the predicted -10 promoter sequence of M. Sso II and the -10 and -35 sequences of R. Sso II.
Collapse
Affiliation(s)
- A Karyagina
- Institute of BioMedical Chemistry, 10 Pogodinskaya st., Moscow 119832, Russia.
| | | | | | | | | | | | | |
Collapse
|
6
|
Bandaru B, Gopal J, Bhagwat AS. Overproduction of DNA cytosine methyltransferases causes methylation and C --> T mutations at non-canonical sites. J Biol Chem 1996; 271:7851-9. [PMID: 8631830 DOI: 10.1074/jbc.271.13.7851] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Multicopy clones of Escherichia coli cytosine methyltransferases Dcm and EcoRII methylase (M. EcoRII) cause an approximately 50-fold increase in C --> T mutations at their canonical site of methylation, 5'-CmeCAGG (meC is 5-methylcytosine). These plasmids also cause transition mutations at the second cytosine in the sequences CCGGG at approximately 10-fold lower frequency. Similarly, M. HpaII was found to cause a significant increase in C --> T mutations at a CCAG site, in addition to causing mutations at its canonical site of methylation, CCGG. Using a plasmid that substantially overproduces M. EcoRII, in vivo methylation at CCSGG (S is C or G) and other non-canonical sites could be detected using a gel electrophoretic assay. There is a direct correlation between the level of M. EcoRII activity in cells, the extent of methylation at non-canonical sites and frequency of mutations at these same sites. Overproduction of M. EcoRII in cells also causes degradation of DNA and induction of the SOS response. In vitro, M. EcoRII methylates an oligonucleotide duplex containing a CCGGG site at a slow rate, suggesting that overproduction of the enzyme is essential for significant amounts of such methylation to occur. Together these results show that cytosine methyltransferases occasionally methylate cellular DNA at non-canonical sites and suggest that in E. coli, methylation-specific restriction systems and sequence specificity of the DNA mismatch correction systems may have evolved to accommodate this fact. These results also suggest that mutational effects of cytosine methyltransferases may be much broader than previously imagined.
Collapse
Affiliation(s)
- B Bandaru
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | | | | |
Collapse
|
7
|
Karyagina AS, Lunin VG, Labbé D, Brousseau R, Lau PC, Nikolskaya II. The SsoII and NlaX DNA methyltransferases: overproduction and functional analysis. Gene X 1995; 157:93-6. [PMID: 7607533 DOI: 10.1016/0378-1119(94)00667-h] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Overproduction of the NlaX DNA methyltransferase (M.NlaX) in an Escherichia coli host conferred resistance to SsoII restriction endonuclease (R.SsoII) digestion. This suggested an overlap of sequence specificity between M.NlaX and M.SsoII, the latter of which modifies the internal cytosine of the target sequence 5'-CCNGG-3'. A variant of M.NlaX (M.Sso/Nla), containing an N-terminal extension from M.SsoII, was also enzymatically active. Using deletion analysis, the N-terminal 71 amino-acid residues of M.SsoII were shown to be essential for modification activity.
Collapse
|
8
|
Gopal J, Bhagwat AS. Determination of methylation specificity of DsaV methyltransferase by a simple biochemical method. Nucleic Acids Res 1995; 23:29-35. [PMID: 7870587 PMCID: PMC306626 DOI: 10.1093/nar/23.1.29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have developed a simple new method that can identify the base methylated by a sequence-specific DNA methyltransferase and have used it to identify the cytosine that is methylated by DsaV methyltransferase (M. DsaV) within its recognition sequence 5'-CCNGG. The method utilizes the fact that exonuclease III of E. coli does not degrade DNA ends with 3' overhangs and cannot hydrolyze a phosphorothioate linkage. DNA duplexes containing phosphorothioate linkages at specific positions were methylated with M. DsaV in the presence of [methyl-3H] S-adenosylmethionine and were subjected to exonuclease III digestion. The pattern of [methyl-3H] dCMP release from the duplexes was consistent with the methylation of the internal cytosine in CCNGG, but not of the outer cytosine. To establish the accuracy of this method, we confirmed the known specificity of EcoRII methyltransferase by the method. We also confirmed the specificity of M. DsaV using an established biochemical method that involves the use of a type IIS restriction enzyme. Methylation of CCWGG (W = A or T) sequences at the internal cytosines is native to E. coli and is not restricted by the modified cytosine restriction (Mcr) systems. Surprisingly, the gene for M. DsaV was significantly restricted by the McrBC system. We interpret this to mean that M. DsaV may occasionally methylate at sequences other than CCNGG or may occasionally methylate the outer cytosine in its recognition sequence.
Collapse
Affiliation(s)
- J Gopal
- Department of Chemistry, Wayne State University, Detroit, MI 48202
| | | |
Collapse
|
9
|
Gopal J, Yebra MJ, Bhagwat AS. DsaV methyltransferase and its isoschizomers contain a conserved segment that is similar to the segment in Hhai methyltransferase that is in contact with DNA bases. Nucleic Acids Res 1994; 22:4482-8. [PMID: 7971279 PMCID: PMC308483 DOI: 10.1093/nar/22.21.4482] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The methyltransferase (MTase) in the DsaV restriction--modification system methylates within 5'-CCNGG sequences. We have cloned the gene for this MTase and determined its sequence. The predicted sequence of the MTase protein contains sequence motifs conserved among all cytosine-5 MTases and is most similar to other MTases that methylate CCNGG sequences, namely M.ScrFI and M.SsoII. All three MTases methylate the internal cytosine within their recognition sequence. The 'variable' region within the three enzymes that methylate CCNGG can be aligned with the sequences of two enzymes that methylate CCWGG sequences. Remarkably, two segments within this region contain significant similarity with the region of M.HhaI that is known to contact DNA bases. These alignments suggest that many cytosine-5 MTases are likely to interact with DNA using a similar structural framework.
Collapse
Affiliation(s)
- J Gopal
- Department of Chemistry, Wayne State University, Detroit, MI 48202
| | | | | |
Collapse
|
10
|
Nelson M, Raschke E, McClelland M. Effect of site-specific methylation on restriction endonucleases and DNA modification methyltransferases. Nucleic Acids Res 1993; 21:3139-54. [PMID: 8392715 PMCID: PMC309743 DOI: 10.1093/nar/21.13.3139] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- M Nelson
- California Institute of Biological Research, La Jolla 92037
| | | | | |
Collapse
|
11
|
Karyagina AS, Lunin VG, Degtyarenko KN, Uvarov VY, Nikolskaya II. Analysis of the nucleotide and derived amino acid sequences of the SsoII restriction endonuclease and methyltransferase. Gene X 1993; 124:13-9. [PMID: 7916706 DOI: 10.1016/0378-1119(93)90756-s] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A 2648-bp fragment from the P4 plasmid of Shigella sonnei strain 47 coding for the SsoII restriction endonuclease (ENase) and methyltransferase (MTase) (recognition sequence 5'-CCNGG) was sequenced. Two divergently arranged open reading frames of 905 bp for the SsoII ENase (R.SsoII) and 1137 bp for the MTase (M.SsoII) were identified. The coding regions are separated by 110 bp. The calculated M(r) of R.SsoII (35937) and M.SsoII (42887) are in good agreement with values previously obtained by in vitro transcription-translation experiments, i.e., 35 and 43 kDa for the ENase and MTase, respectively. The M.SsoII amino acid (aa) sequence revealed a considerable similarity to m5C-MTases recognizing the related sequences--M.EcoRII, M.dcm, M.MspI, M.BsuFI, M.HpaII, and M.HhaI. Surprisingly, the greatest degree of homology has been observed between the aa sequences of M.SsoII and M.NlaX, with an unidentified recognition sequence. The multiple alignment of aa sequences helps to identify the blocks of conserved aa in variable regions of MTases. These conserved aa can play a key role in target recognition. Some aspects of evolution of m5C-MTases are discussed.
Collapse
Affiliation(s)
- A S Karyagina
- Institute of Biological and Medical Chemistry, Moscow, Russia
| | | | | | | | | |
Collapse
|
12
|
McClelland M, Nelson M. Effect of site-specific methylation on DNA modification methyltransferases and restriction endonucleases. Nucleic Acids Res 1992; 20 Suppl:2145-57. [PMID: 1317957 PMCID: PMC333989 DOI: 10.1093/nar/20.suppl.2145] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- M McClelland
- California Institute of Biological Research, La Jolla, CA 92037
| | | |
Collapse
|
13
|
Nelson M, McClelland M. Site-specific methylation: effect on DNA modification methyltransferases and restriction endonucleases. Nucleic Acids Res 1991; 19 Suppl:2045-71. [PMID: 1645875 PMCID: PMC331346 DOI: 10.1093/nar/19.suppl.2045] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- M Nelson
- California Institute of Biological Research, La Jolla 92037
| | | |
Collapse
|