1
|
Andriiash GS, Sekan OS, Tigunova OO, Blume YB, Shulga SM. Metabolic Engineering of Lysine Producing Corynebacterium glutamicum Strains. CYTOL GENET+ 2020. [DOI: 10.3103/s0095452720020024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
2
|
Hou Y, Chen S, Wang J, Liu G, Wu S, Tao Y. Isolating promoters from Corynebacterium ammoniagenes ATCC 6871 and application in CoA synthesis. BMC Biotechnol 2019; 19:76. [PMID: 31718625 PMCID: PMC6849255 DOI: 10.1186/s12896-019-0568-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/10/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Corynebacterium ammoniagenes is an important industrial organism that is widely used to produce nucleotides and the potential for industrial production of coenzyme A by C. ammoniagenes ATCC 6871 has been shown. However, the yield of coenzyme A needs to be improved, and the available constitutive promoters are rather limited in this strain. RESULTS In this study, 20 putative DNA promoters derived from genes with high transcription levels and 6 promoters from molecular chaperone genes were identified. To evaluate the activity of each promoter, red fluorescence protein (RFP) was used as a reporter. We successfully isolated a range of promoters with different activity levels, and among these a fragment derived from the upstream sequence of the 50S ribosomal protein L21 (Prpl21) exhibited the strongest activity among the 26 identified promoters. Furthermore, type III pantothenate kinase from Pseudomonas putida (PpcoaA) was overexpressed in C. ammoniagenes under the control of Prpl21, CoA yield increased approximately 4.4 times. CONCLUSIONS This study provides a paradigm for rational isolation of promoters with different activities and their application in metabolic engineering. These promoters will enrich the available promoter toolkit for C. ammoniagenes and should be valuable in current platforms for metabolic engineering and synthetic biology for the optimization of pathways to extend the product spectrum or improve the productivity in C. ammoniagenes ATCC 6871 for industrial applications.
Collapse
Affiliation(s)
- Yingshuo Hou
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Siyu Chen
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Jianjun Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Guizhen Liu
- Kaiping Genuine Biochemical Pharmaceutical Co. Ltd, Kaiping, People's Republic of China
| | - Sheng Wu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
| | - Yong Tao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
| |
Collapse
|
3
|
High copy number mutants derived from Corynebacterium glutamicum cryptic plasmid pAM330 and copy number control. J Biosci Bioeng 2019; 127:529-538. [DOI: 10.1016/j.jbiosc.2018.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/02/2018] [Accepted: 10/11/2018] [Indexed: 11/21/2022]
|
4
|
Hashiro S, Yasueda H. Plasmid copy number mutation in repA gene encoding RepA replication initiator of cryptic plasmid pHM1519 in Corynebacterium glutamicum. Biosci Biotechnol Biochem 2018; 82:2212-2224. [PMID: 30122124 DOI: 10.1080/09168451.2018.1508986] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Cryptic plasmid pHM1519 is a rolling-circular replication mode plasmid of the pCG1 plasmid family in coryneform bacteria. The derived shuttle vector pPK4 is maintained at about 40-50 copies per chromosome in Corynebacterium glutamicum 2256 (ATCC 13869). We found that a mutation (designated copA1) within the repA gene encoding essential initiator protein RepA of the pHM1519-replicon increased the copy number of the mutant plasmid to about 800 copies per chromosome. The mutation was a single G to A base transition, which changed Gly to Glu at position 429 of the amino acid sequence of RepA. In silico secondary structure prediction of RepA suggested that Gly429 is situated in a disordered region in a helix-turn-helix motif, which is a typical DNA-binding domain. This study shows the first example of a high copy number of a C. glutamicum cryptic plasmid caused by an altered replication initiator protein.
Collapse
Affiliation(s)
- Shuhei Hashiro
- a Institute for Innovation , Ajinomoto Co., Inc ., Kawasaki , Japan
| | - Hisashi Yasueda
- a Institute for Innovation , Ajinomoto Co., Inc ., Kawasaki , Japan
| |
Collapse
|
5
|
Becker J, Wittmann C. Industrial Microorganisms: Corynebacterium glutamicum. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Judith Becker
- Saarland University; Institute of Systems Biotechnology; Campus A 15 66123 Saarbrücken Germany
| | - Christoph Wittmann
- Saarland University; Institute of Systems Biotechnology; Campus A 15 66123 Saarbrücken Germany
| |
Collapse
|
6
|
Pátek M, Nešvera J. Promoters and Plasmid Vectors of Corynebacterium glutamicum. CORYNEBACTERIUM GLUTAMICUM 2013. [DOI: 10.1007/978-3-642-29857-8_2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Schröder J, Maus I, Meyer K, Wördemann S, Blom J, Jaenicke S, Schneider J, Trost E, Tauch A. Complete genome sequence, lifestyle, and multi-drug resistance of the human pathogen Corynebacterium resistens DSM 45100 isolated from blood samples of a leukemia patient. BMC Genomics 2012; 13:141. [PMID: 22524407 PMCID: PMC3350403 DOI: 10.1186/1471-2164-13-141] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 04/23/2012] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Corynebacterium resistens was initially recovered from human infections and recognized as a new coryneform species that is highly resistant to antimicrobial agents. Bacteremia associated with this organism in immunocompromised patients was rapidly fatal as standard minocycline therapies failed. C. resistens DSM 45100 was isolated from a blood culture of samples taken from a patient with acute myelocytic leukemia. The complete genome sequence of C. resistens DSM 45100 was determined by pyrosequencing to identify genes contributing to multi-drug resistance, virulence, and the lipophilic lifestyle of this newly described human pathogen. RESULTS The genome of C. resistens DSM 45100 consists of a circular chromosome of 2,601,311 bp in size and the 28,312-bp plasmid pJA144188. Metabolic analysis showed that the genome of C. resistens DSM 45100 lacks genes for typical sugar uptake systems, anaplerotic functions, and a fatty acid synthase, explaining the strict lipophilic lifestyle of this species. The genome encodes a broad spectrum of enzymes ensuring the availability of exogenous fatty acids for growth, including predicted virulence factors that probably contribute to fatty acid metabolism by damaging host tissue. C. resistens DSM 45100 is able to use external L-histidine as a combined carbon and nitrogen source, presumably as a result of adaptation to the hitherto unknown habitat on the human skin. Plasmid pJA144188 harbors several genes contributing to antibiotic resistance of C. resistens DSM 45100, including a tetracycline resistance region of the Tet W type known from Lactobacillus reuteri and Streptococcus suis. The tet(W) gene of pJA144188 was cloned in Corynebacterium glutamicum and was shown to confer high levels of resistance to tetracycline, doxycycline, and minocycline in vitro. CONCLUSIONS The detected gene repertoire of C. resistens DSM 45100 provides insights into the lipophilic lifestyle and virulence functions of this newly recognized pathogen. Plasmid pJA144188 revealed a modular architecture of gene regions that contribute to the multi-drug resistance of C. resistens DSM 45100. The tet(W) gene encoding a ribosomal protection protein is reported here for the first time in corynebacteria. Cloning of the tet(W) gene mediated resistance to second generation tetracyclines in C. glutamicum, indicating that it might be responsible for the failure of minocycline therapies in patients with C. resistens bacteremia.
Collapse
Affiliation(s)
- Jasmin Schröder
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Tools for genetic manipulations in Corynebacterium glutamicum and their applications. Appl Microbiol Biotechnol 2011; 90:1641-54. [DOI: 10.1007/s00253-011-3272-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 03/21/2011] [Accepted: 03/23/2011] [Indexed: 01/26/2023]
|
9
|
Okibe N, Suzuki N, Inui M, Yukawa H. Antisense-RNA-mediated plasmid copy number control in pCG1-family plasmids, pCGR2 and pCG1, in Corynebacterium glutamicum. Microbiology (Reading) 2010; 156:3609-3623. [DOI: 10.1099/mic.0.043745-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
pCGR2 and pCG1 belong to different subfamilies of the pCG1 family of Corynebacterium glutamicum plasmids. Nonetheless, they harbour homologous putative antisense RNA genes, crrI and cgrI, respectively. The genes in turn share identical positions complementary to the leader region of their respective repA (encoding plasmid replication initiator) genes. Determination of their precise transcriptional start- and end-points revealed the presence of short antisense RNA molecules (72 bp, CrrI; and 73 bp, CgrI). These short RNAs and their target mRNAs were predicted to form highly structured molecules comprising stem–loops with known U-turn motifs. Abolishing synthesis of CrrI and CgrI by promoter mutagenesis resulted in about sevenfold increase in plasmid copy number on top of an 11-fold (CrrI) and 32-fold (CgrI) increase in repA mRNA, suggesting that CrrI and CgrI negatively control plasmid replication. This control is accentuated by parB, a gene that encodes a small centromere-binding plasmid-partitioning protein, and is located upstream of repA. Simultaneous deactivation of CrrI and parB led to a drastic 87-fold increase in copy number of a pCGR2-derived shuttle vector. Moreover, the fact that changes in the structure of the terminal loops of CrrI and CgrI affected plasmid copy number buttressed the important role of the loop structure in formation of the initial interaction complexes between antisense RNAs and their target mRNAs. Similar antisense RNA control systems are likely to exist not only in the two C. glutamicum pCG1 subfamilies but also in related plasmids across Corynebacterium species.
Collapse
Affiliation(s)
- Naoko Okibe
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto 619-0292, Japan
| | - Nobuaki Suzuki
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto 619-0292, Japan
| | - Masayuki Inui
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto 619-0292, Japan
| | - Hideaki Yukawa
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto 619-0292, Japan
| |
Collapse
|
10
|
Tsuchida Y, Kimura S, Suzuki N, Inui M, Yukawa H. Characterization of a new 2.4-kb plasmid of Corynebacterium casei and development of stable corynebacterial cloning vector. Appl Microbiol Biotechnol 2008; 81:1107-15. [PMID: 18936936 DOI: 10.1007/s00253-008-1746-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 10/02/2008] [Accepted: 10/02/2008] [Indexed: 10/21/2022]
Abstract
A new plasmid pCASE1 was isolated from Gram-positive Corynebacterium casei JCM 12072. It comprised a 2.4-kb nucleotide sequence with three ORFs, two of which were indispensable for autonomous replication in Corynebacterium glutamicum. Homology search identified these two ORFs as repA and repB, areas coding proteins involved in plasmid replication. repA sequence showed high similarity to theta-replicating Escherichia coli ColE2-P9 plasmids and even higher similarity to plasmids derived from Gram-positive bacteria belonging to a subfamily of this ColE2-P9 group. An E. coli-C. glutamicum shuttle vector was constructed with pCASE1 fragment including repA and repB to transform C. glutamicum and showed compatibility with corynebacterial plasmids from different plasmid families. The copy number of the shuttle vector in C. glutamicum was 13 and the vector showed stability for 102 generations with no selective pressure.
Collapse
Affiliation(s)
- Yoshiki Tsuchida
- Research Institute of Innovative Technology for the Earth, 9-2 Kizugawadai, Kizugawa, Kyoto 619-0292, Japan
| | | | | | | | | |
Collapse
|
11
|
Srivastava P, Nath N, Deb JK. Characterization of broad host range cryptic plasmid pCR1 from Corynebacterium renale. Plasmid 2006; 56:24-34. [PMID: 16545871 DOI: 10.1016/j.plasmid.2006.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Revised: 01/25/2006] [Accepted: 01/27/2006] [Indexed: 11/24/2022]
Abstract
Plasmid pCR1 is a cryptic plasmid harboured by Corynebacterium renale. It is the smallest corynebacterial plasmid known to date. Although its natural host is animal corynebacteria, it can replicate in several strains of soil corynebacteria. It can also replicate in Escherichia coli, in which it is stably maintained. The copy number of pCR1 in this host is higher than that of pUC19, with which it shows unidirectional incompatibility. It is also incompatible with pBK2, a plasmid bearing the common corynebacterial replicon pBL1. Its size is 1488bp, as revealed by DNA sequencing. A total of eight open reading frames (ORF) were detected in this plasmid, the largest of which codes for a putative Rep protein of predicted molecular mass of 21kDa. The plasmid pCR1 can be mobilized by the plasmid R6K from E. coli to other corynebacteria. Sequence analysis revealed the presence of an oriT homologous to that of R64. An E. coli plasmid pKL1 shows more than 90% identity with pCR1. Like many coryenbacterial plasmids, pCR1 also replicates by rolling circle mode.
Collapse
Affiliation(s)
- Preeti Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi 110 016, India
| | | | | |
Collapse
|
12
|
Seibold G, Auchter M, Berens S, Kalinowski J, Eikmanns BJ. Utilization of soluble starch by a recombinant Corynebacterium glutamicum strain: Growth and lysine production. J Biotechnol 2006; 124:381-91. [PMID: 16488498 DOI: 10.1016/j.jbiotec.2005.12.027] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 12/05/2005] [Accepted: 12/23/2005] [Indexed: 11/22/2022]
Abstract
Corynebacterium glutamicum, well known for the industrial production of amino acids, grows aerobically on a variety of mono- and disaccharides and on alcohols and organic acids as single or combined sources of carbon and energy. Members of the genera Corynebacterium and Brevibacterium were here tested for their ability to use the homopolysaccharide starch as a substrate for growth. None of the 24 type strains tested showed growth on or degradation of this substrate, indicating that none of the strains synthesized and secreted starch-degrading enzymes. Introducing the Streptomyces griseus amy gene on an expression vector into the lysine-producer C. glutamicum DM1730, we constructed a C. glutamicum strain synthesizing and secreting alpha-amylase into the culture broth. Although some high-molecular-weight degradation products remained in the culture broth, this recombinant strain effectively used soluble starch as carbon and energy substrate for growth and also for lysine production. Thus, employment of our construct allows avoidance of the cost-intensive enzymatic hydrolysis of the starch, which commercially is used as a substrate in industrial amino acid fermentations.
Collapse
Affiliation(s)
- Gerd Seibold
- Department of Microbiology and Biotechnology, University of Ulm, Germany
| | | | | | | | | |
Collapse
|
13
|
Hansmeier N, Bartels FW, Ros R, Anselmetti D, Tauch A, Pühler A, Kalinowski J. Classification of hyper-variable Corynebacterium glutamicum surface-layer proteins by sequence analyses and atomic force microscopy. J Biotechnol 2005; 112:177-93. [PMID: 15288952 DOI: 10.1016/j.jbiotec.2004.03.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Revised: 02/19/2004] [Accepted: 03/19/2004] [Indexed: 11/26/2022]
Abstract
The structural S-layer proteins of 28 different Corynebacterium glutamicum isolates have been analyzed systematically. Treatment of whole C. glutamicum cells with detergents resulted in the isolation of S-layer proteins with different apparent molecular masses, ranging in size from 55 to 66 kDa. The S-layer genes analyzed were characterized by coding regions ranging from 1,473 to 1,533 nucleotides coding for S-layer proteins with a size of 490-510 amino acids. Using PCR techniques, the corresponding S-layer genes of the 28 C. glutamicum isolates were all cloned and sequenced. The deduced amino acid sequences of the S-layer proteins showed identities between 69 and 98% and could be grouped into five phylogenetic classes. Furthermore, sequence analyses indicated that the S-layer proteins of the analyzed C. glutamicum isolates exhibit a mosaic structure of highly conserved and highly variable regions. Several conserved regions were assumed to play a key role in the formation of the C. glutamicum S-layers. Especially the N-terminal signal peptides and the C-terminal anchor sequences of the S-layer proteins showed a nearly perfect amino acid sequence conservation. Analyses by atomic force microscopy revealed a committed hexagonal structure. Morphological diversity of the C. glutamicum S-layers was observed in a class-specific unit cell dimension (ranging from 15.2 to 17.4 nm), which correlates with the sequence similarity-based classification. It could be demonstrated that differences in the primary structure of the S-layer proteins were reflected by the S-layer morphology.
Collapse
Affiliation(s)
- Nicole Hansmeier
- Lehrstuhl für Genetik, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Tauch A, Pühler A, Kalinowski J, Thierbach G. Plasmids in Corynebacterium glutamicum and their molecular classification by comparative genomics. J Biotechnol 2003; 104:27-40. [PMID: 12948627 DOI: 10.1016/s0168-1656(03)00157-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Endogenous plasmids and selectable resistance markers are a fundamental prerequisite for the development of efficient recombinant DNA techniques in industrial microorganisms. In this article, we therefore summarize the current knowledge about endogenous plasmids in amino acid-producing Corynebacterium glutamicum isolates. Screening studies identified a total of 24 different plasmids ranging in size from 2.4 to 95 kb. Although most of the C. glutamicum plasmids were cryptic, four plasmids carried resistance determinants against the antibiotics chloramphenicol, tetracycline, streptomycin-spectinomycin, and sulfonamides. Considerable information is now available on the molecular genetic organization of 12 completely sequenced plasmid genomes from C. glutamicum. The deduced mechanism of plasmid DNA replication and the degree of amino acid sequence similarity among replication initiator proteins was the basis for performing a classification of the plasmids into four distinct C. glutamicum plasmid families.
Collapse
Affiliation(s)
- Andreas Tauch
- Institut für Genomforschung, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany.
| | | | | | | |
Collapse
|
15
|
Venkova-Canova T, Pátek M, Nesvera J. Control of rep gene expression in plasmid pGA1 from Corynebacterium glutamicum. J Bacteriol 2003; 185:2402-9. [PMID: 12670963 PMCID: PMC152619 DOI: 10.1128/jb.185.8.2402-2409.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cryptic multicopy plasmid pGA1 (4,826 bp) from Corynebacterium glutamicum LP-6 belongs to the fifth group of rolling-circle-replicating plasmids. A determinant, which negatively controls pGA1 replication, was localized in the leader region of the rep gene coding for the initiator of plasmid replication. This region, when cloned into the compatible vector pEC6, was found to cause decrease of segregational stability of the pGA1 derivative pKG48. A promoter and a single transcriptional start site were found in the rep leader region in orientation opposite to the rep gene. These results suggest that a small countertranscribed RNA (ctRNA) (ca. 89 nucleotides in length), which might inhibit translation of pGA1 rep gene, is formed. Analysis of predicted secondary structure of the pGA1-encoded ctRNA revealed features common with the known ctRNAs in bacteria. Inactivation of the promoter P-ctRNA caused a dramatic increase of copies of the respective plasmid, which proved a negative role of the ctRNA in control of pGA1 copy number. A region between the promoters Prep and P-ctRNA with a potential to form secondary structures on both ctRNA and rep mRNA was found to cause low activity of the rep promoter even when promoter P-ctRNA was deleted. Thus, the sequence within the rep leader region itself seems to act, in addition to the ctRNA, as a second regulatory element of a novel type, negatively influencing expression of the pGA1 rep gene.
Collapse
Affiliation(s)
- Tatiana Venkova-Canova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, CZ-14220 Prague 4, Czech Republic
| | | | | |
Collapse
|
16
|
Abrhámová Z, Pátek M, Nesvera J. Atypical location of double-strand origin of replication (nic site) on the plasmid pGA1 from Corynebacterium glutamicum. Folia Microbiol (Praha) 2002; 47:307-10. [PMID: 12422507 DOI: 10.1007/bf02818687] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The double-strand origin of replication (dso) of the rolling-circle-replicating (RC) plasmid pGA1 from Corynebacterium glutamicum was analyzed using the runoff DNA synthesis assay. The site- and strand-specific breakage of double-stranded plasmid DNA, representing the nic site of dso, was localized precisely within the sequence 5'-CTGG decreases AT-3' in the distal part of the pGA1 rep gene. This location of dso differs from the dso positions found on other RC plasmids and is in agreement with the classification of the plasmid pGA1 into a new group of RC plasmids.
Collapse
Affiliation(s)
- Z Abrhámová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, 142 20 Prague, Czechia
| | | | | |
Collapse
|
17
|
Tauch A, Götker S, Pühler A, Kalinowski J, Thierbach G. The alanine racemase gene alr is an alternative to antibiotic resistance genes in cloning systems for industrial Corynebacterium glutamicum strains. J Biotechnol 2002; 99:79-91. [PMID: 12204559 DOI: 10.1016/s0168-1656(02)00159-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The potential of the alanine racemase gene alr from Corynebacterium glutamicum ATCC 13032 to substitute for antibiotic resistance determinants in cloning systems has been investigated. The alr gene was identified by a PCR technique and its nucleotide sequence was determined. The deduced protein revealed the highest amino acid sequence similarity to the Alr protein from Mycobacterium smegmatis with 45% identical and 58% similar amino acids. A defined alr deletion mutant of C. glutamicum displayed a strict dependence on the presence of D-alanine for growth on complex and minimal medium. The alr gene was placed on a novel C. glutamicum vector which is completely free of antibiotic resistance genes. In vivo complementation of the chromosomal alr deletion with alr-carrying vectors permitted growth of the mutant strain in the absence of external D-alanine and provided strong selective pressure to maintain the plasmid. The alr gene enabled the selection of C. glutamicum transformants with a similar efficiency as the tetracycline resistance gene tetA(33). These data provided experimental evidence that the alr gene can be applied as an alternative selection marker to antibiotic resistance genes in industrial C. glutamicum strains. In an application example, the novel deltaalr host-alr(+) vector-system for C. glutamicum was used to overproduce the vitamin D-pantothenic acid.
Collapse
Affiliation(s)
- Andreas Tauch
- Degussa AG, Kantstrasse 2, D-33788 Halle-Künsebeck, Germany.
| | | | | | | | | |
Collapse
|
18
|
Tauch A, Götker S, Pühler A, Kalinowski J, Thierbach G. The 27.8-kb R-plasmid pTET3 from Corynebacterium glutamicum encodes the aminoglycoside adenyltransferase gene cassette aadA9 and the regulated tetracycline efflux system Tet 33 flanked by active copies of the widespread insertion sequence IS6100. Plasmid 2002; 48:117-29. [PMID: 12383729 DOI: 10.1016/s0147-619x(02)00120-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We determined the complete nucleotide sequence of the 27.8-kb R-plasmid pTET3 from Corynebacterium glutamicum LP-6 which encodes streptomycin, spectinomycin, and tetracycline resistance. The antibiotic resistance determinant of pTET3 comprises an intI1-like gene, which was truncated by the insertion sequence IS6100, and the novel aminoglycoside adenyltransferase gene cassette aadA9. The deduced AADA9 protein showed 61% identity and 71% similarity to AADA6 of integron In51 from Pseudomonas aeruginosa. In addition, pTET3 carries the novel repressor-regulated tetracycline resistance determinant Tet 33 which revealed amino acid sequence homology to group 1 tetracycline efflux systems. The highest level of similarity was observed to the tetracycline efflux protein TetA(Z) from the C. glutamicum plasmid pAG1 with 65% identical and 77% similar amino acids. Each antibiotic resistance region of pTET3 is flanked by identical copies of the widespread insertion sequence IS6100 initially identified in Mycobacterium fortuitum. Transposition assays with a cloned copy of IS6100 revealed that this element is transpositionally active in C. glutamicum. These data suggest a central role of IS6100 in the evolutionary history of pTET3 by mediating the cointegrative assembly of resistance gene-carrying DNA segments.
Collapse
Affiliation(s)
- Andreas Tauch
- Degussa AG, Kantstrasse 2, D-33790 Halle-Künsebeck, Germany.
| | | | | | | | | |
Collapse
|
19
|
Venkova T, Pátek M, Nesvera J. Identification of a novel gene involved in stable maintenance of plasmid pGA1 from Corynebacterium glutamicum. Plasmid 2001; 46:153-62. [PMID: 11735365 DOI: 10.1006/plas.2001.1536] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cryptic plasmid pGA1 (4.8 kb) from Corynebacterium glutamicum, replicating in the rolling-circle mode, has been reported to contain four open reading frames longer than 200 bp (ORFA/per, ORFA2, ORFB, ORFC/rep). Here we present another pGA1 gene, ORFE (174 bp), located in the region downstream of the per-ORFA2 gene cluster. The ORFE is transcribed into two RNA species in a direction opposite to that of the per-ORFA2 RNA. Introduction of ORFE in trans into the cells harboring the pGA1 derivatives carrying the main stability determinant, the per gene coding for a product that positively influences the pGA1 copy number and maintenance, increased their segregational stability. Mutation of the putative translational start of the ORFE abolished this observed positive effect in trans. ORFE thus codes for a protein acting as an accessory element involved in stable maintenance of plasmid pGA1 and was hence designated the aes gene (accessory effector of stable maintenance).
Collapse
Affiliation(s)
- T Venkova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Praha 4, CZ-14220, Czech Republic
| | | | | |
Collapse
|
20
|
Abstract
Corynebacteria are pleomorphic, asporogenous, Gram-positive bacteria. Included in this group are nonpathogenic soil corynebacteria, which are widely used for the industrial production of amino acids and detergents, and in biotransformation of steroids. Other members of this group are plant and animal pathogens. This review summarizes the current information available about the plasmids of corynebacteria. The emphasis is mainly on the small plasmids, which have been used for construction of vectors for expression of genes in these bacteria. Moreover, considerable information is now available on their nucleotide sequence, gene organization and modes of replication, which would make it possible to further manipulate these plasmids. Other plasmid properties, such as incompatibility and host range, are also discussed. Finally, use of these plasmids as cloning vectors for the expression of heterologous proteins using corynebacteria as hosts is also summarized to highlight the potential of these bacteria as hosts for recombinant DNA.
Collapse
Affiliation(s)
- J K Deb
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India.
| | | |
Collapse
|
21
|
|
22
|
Nesvera J, Pátek M, Hochmannová J, Abrhámová Z, Becvárová V, Jelínkova M, Vohradský J. Plasmid pGA1 from Corynebacterium glutamicum codes for a gene product that positively influences plasmid copy number. J Bacteriol 1997; 179:1525-32. [PMID: 9045809 PMCID: PMC178862 DOI: 10.1128/jb.179.5.1525-1532.1997] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The complete nucleotide sequence (4,826 bp) of the cryptic plasmid pGA1 from Corynebacterium glutamicum was determined. DNA sequence analysis revealed four putative coding regions (open reading frame A [ORFA], ORFA2, ORFB, and ORFC). ORFC was identified as a rep gene coding for an initiator of plasmid replication (Rep) according to the high level of homology of its deduced amino acid sequence with the Rep proteins of plasmids pSR1 (from C. glutamicum) and pNG2 (from Corynebacterium diphtheriae). This function was confirmed by deletion mapping of the minimal replicon of pGA1 (1.7 kb) which contains only ORFC. Deletion derivatives of pGA1 devoid of ORFA exhibited significant decreases in the copy number in C. glutamicum cells and displayed segregational instability. Introduction of ORFA in trans into the cells harboring these deletion plasmids dramatically increased their copy number and segregational stability. The ORFA gene product thus positively influences plasmid copy number. This is the first report on such activity associated with a nonintegrating bacterial plasmid. The related plasmids pGA1, pSR1, and pNG2 lacking significant homology with any other plasmid seem to be representatives of a new group of plasmids replicating in the rolling-circle mode.
Collapse
Affiliation(s)
- J Nesvera
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague.
| | | | | | | | | | | | | |
Collapse
|
23
|
Schweizer HP, Hoang TT. An improved system for gene replacement and xylE fusion analysis in Pseudomonas aeruginosa. Gene 1995; 158:15-22. [PMID: 7789804 DOI: 10.1016/0378-1119(95)00055-b] [Citation(s) in RCA: 310] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A novel pUC19-based gene replacement vector has been developed. This vector incorporates (i) the counterselectable sacB marker, (ii) a lacZ alpha allele for blue-white screening, (iii) an oriT for conjugation-mediated plasmid transfer and (iv) unique cloning sites for SmaI and the rare-cutting meganuclease I-SceI. These rare restriction sites are also present on the helper plasmid pUC19Sce. The replacement vector is engineered to contain few restriction sites to gain greater access to restriction sites within cloned DNA fragments, thus facilitating their genetic manipulation. The usefulness of the system was demonstrated by chromosomal integration of a newly constructed xylE::GmR fusion cassette into the glpD gene of Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- H P Schweizer
- Department of Microbiology and Infectious Diseases, University of Calgary Health Sciences Center, Alberta, Canada
| | | |
Collapse
|
24
|
Jetten MS, Sinskey AJ. Recent advances in the physiology and genetics of amino acid-producing bacteria. Crit Rev Biotechnol 1995; 15:73-103. [PMID: 7736600 DOI: 10.3109/07388559509150532] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Corynebacterium glutamicum and its close relatives, C. flavum and C. lactofermentum, have been used for over 3 decades in the industrial production of amino acids by fermentation. Since 1984, several research groups have started programs to develop metabolic engineering principles for amino acid-producing Corynebacterium strains. Initially, the programs concentrated on the isolation of genes encoding (deregulated) biosynthetic enzymes and the development of general molecular biology tools such as cloning vectors and DNA transfer methods. With most of the genes and tools now available, recombinant DNA technology can be applied in strain improvement. To accomplish these improvements, it is critical and advantageous to understand the mechanisms of gene expression and regulation as well as the biochemistry and physiology of the species being engineered. This review explores the advances made in the understanding and application of amino acid-producing bacteria in the early 1990s.
Collapse
Affiliation(s)
- M S Jetten
- Department of Microbiology and Enzymology, Kluyyer Laboratory for Biotechnology, Delft University of Technology, The Netherlands
| | | |
Collapse
|
25
|
Quandt J, Hynes MF. Versatile suicide vectors which allow direct selection for gene replacement in gram-negative bacteria. Gene 1993; 127:15-21. [PMID: 8486283 DOI: 10.1016/0378-1119(93)90611-6] [Citation(s) in RCA: 800] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A set of vector plasmids which greatly facilitate gene replacement and reverse genetics in many Gram-negative bacteria was constructed. These vectors are based on the P15A origin of replication (ori) and incorporate sacB from Bacillus subtilis, which is inducible by sucrose and is lethal when expressed in Gram-negative bacteria. The vectors also have a convenient antibiotic-resistance marker (gentamicin resistance) and the lacZ alpha system which allows blue/white selection of cloned fragments. Three different multiple cloning sites, allowing several distinct cloning and gene replacement strategies, are available in the 5' end of lacZ on different vectors. One of these cloning sites, which we synthesised, contains only a NotI-SmaI-NotI sequence; this allows access to most of the restriction sites within the cloned fragment for the purpose of insertion of various cassettes and interposons. The vectors carry the mob region from the broad-host-range plasmid RP4 and are thus mobilizable by conjugation into a wide range of Gram-negative bacteria; since they will not replicate in bacteria other than enterobacteria, they function as 'suicide' vectors. Variants of the vectors carrying the phage lambda cos site were also constructed. We have used these vectors to carry out gene replacement experiments in the fixN region of Rhizobium leguminosarum and have demonstrated that they are extremely useful in eliminating long and tedious screening procedures.
Collapse
Affiliation(s)
- J Quandt
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | |
Collapse
|