1
|
Zhou C, Luo X, Chen N, Zhang L, Gao J. C-P Natural Products as Next-Generation Herbicides: Chemistry and Biology of Glufosinate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3344-3353. [PMID: 32125843 DOI: 10.1021/acs.jafc.0c00052] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In modern agriculture and weed management practices, herbicides have been widely used to control weeds effectively and represent more than 50% of commercial pesticides applied in the world. Herbicides with unique mechanisms of actions (MOA) have historically been discovered and commercialized every two or three years from the 1950s to the 1980s. However, this trend lowered dramatically as no herbicide with a novel MOA has been marketed for more than 30 years. The fast-growing resistance to commercial herbicides has reignited the agricultural chemical industry interest in new structural scaffolds targeting novel sites in plants. Carbon-phosphorus bonds (C-P) containing natural products (NPs) have played an essential role in herbicide discovery as the chemical diversity, and the promising bioactivity of natural C-P phytotoxins can provide exciting opportunities for the discovery of both natural and semisynthetic herbicides with novel targets. Among commercial herbicides, glyphosate (Roundup), a famous C-P containing herbicide, is by far the most universally used herbicide worldwide. Furthermore, glufosinate is one of the most widely used natural herbicides in the world. Therefore, C-P NPs are a treasure for discovering new herbicides with novel mechanisms of actions (MOAs). Here, we present an overview of the chemistry and biology of glufosinate including isolation and characterization, mode of action, herbicidal use, biosynthesis, and chemical synthesis since its discovery in order to not only help scientists reassess the role of this famous herbicide in the field of agrichemical chemistry but also build a new stage for discovering novel C-P herbicides with new MOAs.
Collapse
Affiliation(s)
- Chengzeng Zhou
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoxia Luo
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production & Construction Corps, College of Life Science, Tarim University, Alar 843300, China
| | - Nengyi Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lili Zhang
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production & Construction Corps, College of Life Science, Tarim University, Alar 843300, China
| | - Jiangtao Gao
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
2
|
Abstract
Organophosphonic acids are unique as natural products in terms of stability and mimicry. The C-P bond that defines these compounds resists hydrolytic cleavage, while the phosphonyl group is a versatile mimic of transition-states, intermediates, and primary metabolites. This versatility may explain why a variety of organisms have extensively explored the use organophosphonic acids as bioactive secondary metabolites. Several of these compounds, such as fosfomycin and bialaphos, figure prominently in human health and agriculture. The enzyme reactions that create these molecules are an interesting mix of chemistry that has been adopted from primary metabolism as well as those with no chemical precedent. Additionally, the phosphonate moiety represents a source of inorganic phosphate to microorganisms that live in environments that lack this nutrient; thus, unusual enzyme reactions have also evolved to cleave the C-P bond. This review is a comprehensive summary of the occurrence and function of organophosphonic acids natural products along with the mechanisms of the enzymes that synthesize and catabolize these molecules.
Collapse
Affiliation(s)
- Geoff P Horsman
- Department of Chemistry and Biochemistry, Wilfrid Laurier University , Waterloo, Ontario N2L 3C5, Canada
| | - David L Zechel
- Department of Chemistry, Queen's University , Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
3
|
Wu G, Yuan M, Wei L, Zhang Y, Lin Y, Zhang L, Liu Z. Characterization of a novel cold-adapted phosphinothricin N-acetyltransferase from the marine bacterium Rhodococcus sp. strain YM12. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
4
|
Moody MJ, Young RA, Jones SE, Elliot MA. Comparative analysis of non-coding RNAs in the antibiotic-producing Streptomyces bacteria. BMC Genomics 2013; 14:558. [PMID: 23947565 PMCID: PMC3765725 DOI: 10.1186/1471-2164-14-558] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/13/2013] [Indexed: 12/11/2022] Open
Abstract
Background Non-coding RNAs (ncRNAs) are key regulatory elements that control a wide range of cellular processes in all bacteria in which they have been studied. Taking advantage of recent technological innovations, we set out to fully explore the ncRNA potential of the multicellular, antibiotic-producing Streptomyces bacteria. Results Using a comparative RNA sequencing analysis of three divergent model streptomycetes (S. coelicolor, S. avermitilis and S. venezuelae), we discovered hundreds of novel cis-antisense RNAs and intergenic small RNAs (sRNAs). We identified a ubiquitous antisense RNA species that arose from the overlapping transcription of convergently-oriented genes; we termed these RNA species ‘cutoRNAs’, for convergent untranslated overlapping RNAs. Conservation between different classes of ncRNAs varied greatly, with sRNAs being more conserved than antisense RNAs. Many species-specific ncRNAs, including many distinct cutoRNA pairs, were located within antibiotic biosynthetic clusters, including the actinorhodin, undecylprodigiosin, and coelimycin clusters of S. coelicolor, the chloramphenicol cluster of S. venezuelae, and the avermectin cluster of S. avermitilis. Conclusions These findings indicate that ncRNAs, including a novel class of antisense RNA, may exert a previously unrecognized level of regulatory control over antibiotic production in these bacteria. Collectively, this work has dramatically expanded the ncRNA repertoire of three Streptomyces species and has established a critical foundation from which to investigate ncRNA function in this medically and industrially important bacterial genus.
Collapse
Affiliation(s)
- Matthew J Moody
- Department of Biology and Michael G, DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.
| | | | | | | |
Collapse
|
5
|
Kleter GA, Peijnenburg AACM, Aarts HJM. Health considerations regarding horizontal transfer of microbial transgenes present in genetically modified crops. J Biomed Biotechnol 2010; 2005:326-52. [PMID: 16489267 PMCID: PMC1364539 DOI: 10.1155/jbb.2005.326] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The potential effects of horizontal gene transfer on human health
are an important item in the safety assessment of genetically
modified organisms. Horizontal gene transfer from genetically
modified crops to gut microflora most likely occurs with
transgenes of microbial origin. The characteristics of microbial
transgenes other than antibiotic-resistance genes in
market-approved genetically modified crops are reviewed. These
characteristics include the microbial source, natural function,
function in genetically modified crops, natural prevalence,
geographical distribution, similarity to other microbial genes,
known horizontal transfer activity, selective conditions and
environments for horizontally transferred genes, and potential
contribution to pathogenicity and virulence in humans and animals.
The assessment of this set of data for each of the microbial genes
reviewed does not give rise to health concerns. We recommend
including the above-mentioned items into the premarket safety
assessment of genetically modified crops carrying transgenes other
than those reviewed in the present study.
Collapse
Affiliation(s)
- Gijs A Kleter
- RIKILT, Institute of Food Safety, Wageningen University and Research Center, Wageningen, The Netherlands.
| | | | | |
Collapse
|
6
|
Seipke RF, Loria R. Streptomyces scabies 87-22 possesses a functional tomatinase. J Bacteriol 2008; 190:7684-92. [PMID: 18835993 PMCID: PMC2583622 DOI: 10.1128/jb.01010-08] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 09/22/2008] [Indexed: 11/20/2022] Open
Abstract
The actinomycete Streptomyces scabies 87-22 is the causal agent of common scab, an economically important disease of potato and taproot crops. Sequencing of the S. scabies 87-22 genome revealed the presence of a gene with high homology to the gene encoding the alpha-tomatine-detoxifying enzyme tomatinase found in fungal tomato pathogens. The tomA gene from S. scabies 87-22 was cotranscribed with a putative family 1 glycosyl hydrolase gene, and purified TomA protein was active only on alpha-tomatine and not potato glycoalkaloids or xylans. Tomatinase-null mutants were more sensitive to alpha-tomatine than the wild-type strain in a disk diffusion assay. Interestingly, tomatine affected only aerial mycelium and not vegetative mycelium, suggesting that the target(s) of alpha-tomatine is not present during vegetative growth. Severities of disease for tomato seedlings affected by S. scabies 87-22 wild-type and DeltatomA1 strains were indistinguishable, suggesting that tomatinase is not important in pathogenicity on tomato plants. However, conservation of tomA on a pathogenicity island in S. acidiscabies and S. turgidiscabies suggests a role in plant-microbe interaction.
Collapse
Affiliation(s)
- Ryan F Seipke
- Department of Plant Pathology, Cornell University, 334 Plant Science Building, Ithaca, NY 14853, USA
| | | |
Collapse
|
7
|
Takano E, Chakraburtty R, Nihira T, Yamada Y, Bibb MJ. A complex role for the gamma-butyrolactone SCB1 in regulating antibiotic production in Streptomyces coelicolor A3(2). Mol Microbiol 2001; 41:1015-28. [PMID: 11555283 DOI: 10.1046/j.1365-2958.2001.02562.x] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Many streptomycetes produce extracellular gamma-butyrolactones. In several cases, these have been shown to act as signals for the onset of antibiotic production. Synthesis of these molecules appears to require a member of the AfsA family of proteins (AfsA is required for A-factor synthesis of the gamma-butyrolactone A-factor and consequently for streptomycin production in Streptomyces griseus). An afsA homologue, scbA, was identified in Streptomyces coelicolor A3(2) and was found to lie adjacent to a divergently transcribed gene, scbR, which encodes a gamma-butyrolactone binding protein. Gel retardation assays and DNase I footprinting studies revealed DNA binding sites for ScbR at - 4 to - 33 nt with respect to the scbA transcriptional start site, and at - 42 to - 68 nt with respect to the scbR transcriptional start site. Addition of the gamma-butyrolactone SCB1 of S. coelicolor resulted in loss of the DNA-binding ability of ScbR. A scbA mutant produced no gamma-butyrolactones, yet overproduced two antibiotics, actinorhodin (Act) and undecylprodigiosin (Red), whereas a deletion mutant of scbR also failed to make gamma-butyrolactones and showed delayed Red production. These phenotypes differ markedly from those expected by analogy with the S. griseus A-factor system. Furthermore, transcription of scbR increased, and that of scbA was abolished, in an scbR mutant, indicating that ScbR represses its own expression while activating that of scbA. In the scbA mutant, expression of both genes was greatly reduced. Addition of SCB1 to the scbA mutant induced transcription of scbR, but did not restore scbA expression, indicating that the deficiency in scbA transcription in the scbA mutant is not solely due to the inability to produce SCB1, and that ScbA is a positive autoregulator in addition to being required for gamma-butyrolactone production. Overall, these results indicate a complex mechanism for gamma-butyrolactone-mediated regulation of antibiotic biosynthesis in S. coelicolor.
Collapse
Affiliation(s)
- E Takano
- Department of Molecular Microbiology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK.
| | | | | | | | | |
Collapse
|
8
|
Pöhling S, Piepersberg W, Wehmeier UF. Protein secretion in Streptomyces griseus N2-3-11: characterization of the secA gene and its growth phase-dependent expression. FEMS Microbiol Lett 1997; 156:21-9. [PMID: 9368356 DOI: 10.1111/j.1574-6968.1997.tb12700.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The chromosomal region encoding the secA gene of Streptomyces griseus N2-3-11 was cloned and analyzed. The secA gene encodes a polypeptide of 939 aa with a molecular mass of 105 kDa. The growth defect of temperature sensitive Escherichia coli secA mutants was not restored by the S. griseus SecA. The secA promoter was analyzed and the transcriptional start point of the gene was determined. Northern blot and Western blot analyses revealed a growth phase dependent secA expression. The integration of an additional copy of the S. griseus secA gene into the genome of S. lividans TK23 had no visible effect on the efficiency of protein secretion.
Collapse
Affiliation(s)
- S Pöhling
- Bergische Universität GH Wuppertal, Germany
| | | | | |
Collapse
|
9
|
Wehrmann A, Van Vliet A, Opsomer C, Botterman J, Schulz A. The similarities of bar and pat gene products make them equally applicable for plant engineers. Nat Biotechnol 1996; 14:1274-8. [PMID: 9631092 DOI: 10.1038/nbt1096-1274] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The bar and pat genes, isolated from different Streptomyces species, both encode a phosphinothricin acetyltransferase (PAT) and are widely applied in plant genetic engineering. The genes were expressed in Escherichia coli and the corresponding proteins were purified and used for functional and structural comparison. Both proteins are homodimers regardless of whether they are expressed in microorganisms or in plants. They have comparable molecular weights and show immuno-cross-reactivity to their respective polyclonal antisera. The enzymes have a similar substrate affinity towards L-phosphinothricin and do not acetylate any of the other L-amino acids tested. In model digestion experiments using simulated human gastric fluids, their enzymatic activity is decreased within seconds, accompanied by a rapid and complete breakdown of both proteins. These data demonstrate the structural and functional equivalence of the PAT proteins, which is also reflected in the comparable performance of transgenic plants carrying the bar or pat gene.
Collapse
Affiliation(s)
- A Wehrmann
- Hoechst Schering AgrEvo GmbH, Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
10
|
Marcos AT, Gutiérrez S, Díez B, Fernández FJ, Oguiza JA, Martín JF. Three genes hrdB, hrdD and hrdT of Streptomyces griseus IMRU 3570, encoding sigma factor-like proteins, are differentially expressed under specific nutritional conditions. Gene 1995; 153:41-8. [PMID: 7883183 DOI: 10.1016/0378-1119(94)00759-l] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Three genes (hrd) homologous to the rpoD gene of Escherichia coli, that encode sigma factor-like proteins, have been cloned from DNA of the candicidin-producing strain Streptomyces griseus IMRU 3570. They are located in different regions of the chromosome. Sequence analysis showed that the first one is analogous to the hrdB gene of S. coelicolor. The second showed high similarity to the hrdD gene of S. coelicolor and S. aureofaciens and is linked, as in S. coelicolor, to a N-acetyltransferase-encoding gene (nat) distantly related to the pat and bar genes that encode resistance to bialafos. The third showed no close homology with other known hrd genes from actinomycetes and has been named hrdT. Functional domains in the three S. griseus Hrd proteins are highly conserved in relation to those of the sigma 70 protein family. Northern analysis showed that hrdB is expressed as a 1.9-kb transcript during active growth in phosphate-rich medium, but it is less efficiently transcribed under sporulation conditions (phosphate-starved) or after a heat-shock treatment. Two other shorter transcripts of 1.2 and 0.7 kb were also detected with the same probe. The hrdD gene is transcribed as a single 1.1-kb transcript under sporulation conditions following nutritional shiftdown and, to a lower extent, during growth conditions in phosphate-rich medium. The hrdT gene is weakly transcribed (1.5-kb RNA) under all conditions tested. The hrd-encoded sigma factors probably recognize actinomycetes promoters (SEP type) with E. coli-like consensus sequences.
Collapse
Affiliation(s)
- A T Marcos
- Department of Ecology, Genetics and Microbiology, Faculty of Biology, University of León, Spain
| | | | | | | | | | | |
Collapse
|
11
|
Kormanec J, Farkasovský M, Potúcková L. Four genes in Streptomyces aureofaciens containing a domain characteristic of principal sigma factors. Gene 1992; 122:63-70. [PMID: 1452038 DOI: 10.1016/0378-1119(92)90032-k] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Four genes encoding sigma-factor-like proteins, hrdA, hrdB, hrdD, and hrdE, were identified in a Streptomyces aureofaciens genomic library using an oligodeoxyribonucleotide probe encoding a peptide motif homologous to the core-binding domain in sigma factors. The deduced proteins have M(r) values of 43,363, 57,172, 36,591, and 57,565, respectively, and strongly resemble all known principal sigma factors, including possession of the characteristic 'rpoD box'. Transcription analysis of the hrd genes by Northern blot hybridization indicated only the expression of hrdB and hrdD and weak transcription of hrdA. A repetitive region of a pentapeptide tandemly repeated 6 and 4 times was identified in the N-terminal part of HrdB and HrdE, respectively. No such domain was found in any principal sigma factors.
Collapse
Affiliation(s)
- J Kormanec
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava
| | | | | |
Collapse
|
12
|
Strohl WR. Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucleic Acids Res 1992; 20:961-74. [PMID: 1549509 PMCID: PMC312078 DOI: 10.1093/nar/20.5.961] [Citation(s) in RCA: 390] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The DNA sequences associated with 139 apparent streptomycete transcriptional start sites are compiled and compared. Of these, 29 promoters appeared to belong to a group which are similar to those recognized by eubacterial RNA polymerases containing sigma 70-like subunits. The other 110 putative promoter regions contain a wide diversity of sequences; several of these promoters have obvious sequence similarities in the -10 and/or -35 regions. The apparent Shine-Dalgarno regions of 44 streptomycete genes are also examined and compared. These were found to have a wide range of degree of complementarity to the 3' end of streptomycete 16S rRNA. Eleven streptomycete genes are described and compared in which transcription and translation are proposed to be initiated from the same or nearby nucleotide. An updated consensus sequence for the E sigma 70-like promoters is proposed and a potential group of promoter sequences containing guanine-rich -35 regions also is identified.
Collapse
Affiliation(s)
- W R Strohl
- Department of Microbiology, Ohio State University, Columbus 43210
| |
Collapse
|