1
|
In Situ Random Microseeding and Streak Seeding Used for Growth of Crystals of Cold-Adapted β-d-Galactosidases: Crystal Structure of βDG from Arthrobacter sp. 32cB. CRYSTALS 2018. [DOI: 10.3390/cryst8010013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
2
|
Wheatley RW, Lo S, Jancewicz LJ, Dugdale ML, Huber RE. Structural explanation for allolactose (lac operon inducer) synthesis by lacZ β-galactosidase and the evolutionary relationship between allolactose synthesis and the lac repressor. J Biol Chem 2013; 288:12993-3005. [PMID: 23486479 DOI: 10.1074/jbc.m113.455436] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
β-Galactosidase (lacZ) has bifunctional activity. It hydrolyzes lactose to galactose and glucose and catalyzes the intramolecular isomerization of lactose to allolactose, the lac operon inducer. β-Galactosidase promotes the isomerization by means of an acceptor site that binds glucose after its cleavage from lactose and thus delays its exit from the site. However, because of its relatively low affinity for glucose, details of this site have remained elusive. We present structural data mapping the glucose site based on a substituted enzyme (G794A-β-galactosidase) that traps allolactose. Various lines of evidence indicate that the glucose of the trapped allolactose is in the acceptor position. The evidence includes structures with Bis-Tris (2,2-bis(hydroxymethyl)-2,2',2″-nitrilotriethanol) and L-ribose in the site and kinetic binding studies with substituted β-galactosidases. The site is composed of Asn-102, His-418, Lys-517, Ser-796, Glu-797, and Trp-999. Ser-796 and Glu-797 are part of a loop (residues 795-803) that closes over the active site. This loop appears essential for the bifunctional nature of the enzyme because it helps form the glucose binding site. In addition, because the loop is mobile, glucose binding is transient, allowing the release of some glucose. Bioinformatics studies showed that the residues important for interacting with glucose are only conserved in a subset of related enzymes. Thus, intramolecular isomerization is not a universal feature of β-galactosidases. Genomic analyses indicated that lac repressors were co-selected only within the conserved subset. This shows that the glucose binding site of β-galactosidase played an important role in lac operon evolution.
Collapse
Affiliation(s)
- Robert W Wheatley
- Division of Biochemistry, Faculty of Science, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | | | | | | |
Collapse
|
3
|
Activity of abrB310 promoter in wild type and spo0A-deficient strains of Clostridium acetobutylicum. J Ind Microbiol Biotechnol 2008; 35:743-50. [DOI: 10.1007/s10295-008-0341-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 03/03/2008] [Indexed: 10/22/2022]
|
4
|
Volkov IY, Lunina NA, Berezina OV, Velikodvorskaya GA, Zverlov VV. Thermoanaerobacter ethanolicus Gene Cluster Containing the α- and β-Galactosidase Genes melA and lacA and Properties of Recombinant LacA. Mol Biol 2005. [DOI: 10.1007/s11008-005-0098-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Scotcher MC, Bennett GN. SpoIIE regulates sporulation but does not directly affect solventogenesis in Clostridium acetobutylicum ATCC 824. J Bacteriol 2005; 187:1930-6. [PMID: 15743939 PMCID: PMC1064033 DOI: 10.1128/jb.187.6.1930-1936.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using gene expression reporter vectors, we examined the activity of the spoIIE promoter in wild-type and spo0A-deleted strains of Clostridium acetobutylicum ATCC 824. In wild-type cells, the spoIIE promoter is active in a transient manner during late solventogenesis, but in strain SKO1, where the sporulation initiator spo0A is disrupted, no spoIIE promoter activity is detectable at any stage of growth. Strains 824(pMSpo) and 824(pASspo) were created to overexpress spoIIE and to decrease spoIIE expression via antisense RNA targeted against spoIIE, respectively. Some cultures of strains 824(pMSpo) degenerated during fermentations by losing the pSOL1 megaplasmid and hence did not produce the solvents ethanol, acetone, and butanol. The frequent degeneration event was shown to require an intact copy of spoIIE. Nondegenerate cultures of 824(pMSpo) exhibited normal growth and solvent production. Strain 824(pASspo) exhibited prolonged solventogenesis characterized by increased production of ethanol (225%), acetone (43%), and butanol (110%). Sporulation in strains harboring pASspo was significantly delayed, with sporulating cells exhibiting altered morphology. These results suggest that SpoIIE has no direct effect on the control of solventogenesis and that the changes in solvent production in spoIIE-downregulated cells are mediated by effects on the cell during sporulation.
Collapse
Affiliation(s)
- Miles C Scotcher
- Department of Biochemistry & Cell Biology, Rice University, 6100 Main St., Houston, TX 77005, USA
| | | |
Collapse
|
6
|
Feustel L, Nakotte S, Dürre P. Characterization and development of two reporter gene systems for Clostridium acetobutylicum. Appl Environ Microbiol 2004; 70:798-803. [PMID: 14766557 PMCID: PMC348925 DOI: 10.1128/aem.70.2.798-803.2004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The use of lacZ from Thermoanaerobacterium thermosulfurigenes (encoding beta-galactosidase) and lucB from Photinus pyralis (encoding luciferase) as reporter genes in Clostridium acetobutylicum was analyzed with promoters of genes required for solventogenesis and acidogenesis. Both systems proved to be well suited and allowed the detection of differences in promoter strength at least up to 100-fold. The luciferase assay could be performed much faster and comes close to online measurement. Resequencing of lacZ revealed a sequence error in the original database entry, which resulted in beta-galactosidase with an additional 31 amino acids. Cutting off part of the gene encoding this C terminus resulted in decreased enzyme activity. The lacZ reporter data showed that bdhA (encoding butanol dehydrogenase A) is expressed during the early growth phase, followed by sol (encoding butyraldehyde/butanol dehydrogenase E and coenzyme A transferase) and bdhB (encoding butanol dehydrogenase B) expression. adc (encoding acetoacetate decarboxylase) was also induced early. There is about a 100-fold difference in expression between adc and bdhB (higher) and bdhA and the sol operon (lower). The lucB reporter activity could be increased 10-fold by the addition of ATP to the assay. Washing of the cells proved to be important in order to prevent a red shift of bioluminescence in an acidic environment (for reliable data). lucB reporter measurements confirmed the expression pattern of the sol and ptb-buk (encoding phosphotransbutyrylase and butyrate kinase) operons as determined by the lacZ reporter and showed that the expression level from the ptb promoter is 59-fold higher than that from the sol operon promoter.
Collapse
Affiliation(s)
- Lothar Feustel
- Mikrobiologie und Biotechnologie, Universität Ulm, 89069 Ulm, Germany
| | | | | |
Collapse
|
7
|
Roth NJ, Penner RM, Huber RE. Beta-galactosidases (Escherichia coli) with double substitutions show that Tyr-503 acts independently of Glu-461 but cooperatively with Glu-537. JOURNAL OF PROTEIN CHEMISTRY 2003; 22:663-8. [PMID: 14714733 DOI: 10.1023/b:jopc.0000008731.16884.22] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Beta-galactosidases with single substitutions for Tyr-503, Glu-461, and Glu-537 and with double substitutions for Tyr-503 and either Glu-461 or Glu-537 were constructed. Control experiments showed that the very low kcat values obtained for the double-substituted enzymes were not a result of contamination, reversion, or nonactive site activity catalyzed on the surface of the proteins. Circular dichroism studies showed that the structures of the enzymes were intact. E461Q/Y503F-beta-galactosidase was inactivated in an "additive" manner. This indicated that Glu-461 and Tyr-503 act independently in catalysis. Because these residues are at opposite sides of the active site and act in different steps, this is expected. E537D/Y503F-beta-galactosidase was only inactivated a few-fold more than the most inactive of its two single-substituted constituent beta-galactosidases. This showed that Glu-537 and Tyr-503 interact cooperatively on the same step. This correlates well with the proposed role of Tyr-503 as an acid catalyst for the breakage of the covalent bond between Glu-537 and galactose.
Collapse
Affiliation(s)
- Nathan J Roth
- Division of Biochemistry, Faculty of Science, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | | | | |
Collapse
|
8
|
Coker JA, Sheridan PP, Loveland-Curtze J, Gutshall KR, Auman AJ, Brenchley JE. Biochemical characterization of a beta-galactosidase with a low temperature optimum obtained from an Antarctic arthrobacter isolate. J Bacteriol 2003; 185:5473-82. [PMID: 12949099 PMCID: PMC193751 DOI: 10.1128/jb.185.18.5473-5482.2003] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A psychrophilic gram-positive isolate was obtained from Antarctic Dry Valley soil. It utilized lactose, had a rod-coccus cycle, and contained lysine as the diamino acid in its cell wall. Consistent with these physiological traits, the 16S ribosomal DNA sequence showed that it was phylogenetically related to other Arthrobacter species. A gene (bgaS) encoding a family 2 beta-galactosidase was cloned from this organism into an Escherichia coli host. Preliminary results showed that the enzyme was cold active (optimal activity at 18 degrees C and 50% activity remaining at 0 degrees C) and heat labile (inactivated within 10 min at 37 degrees C). To enable rapid purification, vectors were constructed adding histidine residues to the BgaS enzyme and its E. coli LacZ counterpart, which was purified for comparison. The His tag additions reduced the specific activities of both beta-galactosidases but did not alter the other characteristics of the enzymes. Kinetic studies using o-nitrophenyl-beta-D-galactopyranoside showed that BgaS with and without a His tag had greater catalytic activity at and below 20 degrees C than the comparable LacZ beta-galactosidases. The BgaS heat lability was investigated by ultracentrifugation, where the active enzyme was a homotetramer at 4 degrees C but dissociated into inactive monomers at 25 degrees C. Comparisons of family 2 beta-galactosidase amino acid compositions and modeling studies with the LacZ structure did not mimic suggested trends for conferring enzyme flexibility at low temperatures, consistent with the changes affecting thermal adaptation being localized and subtle. Mutation studies of the BgaS enzyme should aid our understanding of such specific, localized changes affecting enzyme thermal properties.
Collapse
Affiliation(s)
- James A Coker
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Thormann K, Feustel L, Lorenz K, Nakotte S, Dürre P. Control of butanol formation in Clostridium acetobutylicum by transcriptional activation. J Bacteriol 2002; 184:1966-73. [PMID: 11889105 PMCID: PMC134926 DOI: 10.1128/jb.184.7.1966-1973.2002] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sol operon of Clostridium acetobutylicum is the essential transcription unit for formation of the solvents butanol and acetone. The recent proposal that transcriptional regulation of this operon is controlled by the repressor Orf5/SolR (R. V. Nair, E. M. Green, D. E. Watson, G. N. Bennett, and E. T. Papoutsakis, J. Bacteriol. 181:319-330, 1999) was found to be incorrect. Instead, regulation depends on activation, most probably by the multivalent transcription factor Spo0A. The operon is transcribed from a single promoter. A second signal identified in primer extension studies results from mRNA processing and can be observed only in the natural host, not in a heterologous host. The first structural gene in the operon (adhE, encoding a bifunctional butyraldehyde/butanol dehydrogenase) is translated into two different proteins, the mature AdhE enzyme and the separate butanol dehydrogenase domain. The promoter of the sol operon is preceded by three imperfect repeats and a putative Spo0A-binding motif, which partially overlaps with repeat 3 (R3). Reporter gene analysis performed with the lacZ gene of Thermoanaerobacterium thermosulfurigenes and targeted mutations of the regulatory region revealed that the putative Spo0A-binding motif, R3, and R1 are essential for control. The data obtained also indicate that an additional activator protein is involved.
Collapse
Affiliation(s)
- Kai Thormann
- Mikrobiologie und Biotechnologie, Universität Ulm, 89069 Ulm, Germany
| | | | | | | | | |
Collapse
|
10
|
Huber RE, Hlede IY, Roth NJ, McKenzie KC, Ghumman KK. His-391 of beta-galactosidase (Escherichia coli) promotes catalyses by strong interactions with the transition state. Biochem Cell Biol 2001; 79:183-93. [PMID: 11310566 DOI: 10.1139/o00-101] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
His-391 of beta-galactosidase (Escherichia coli) was substituted by Phe, Glu, and Lys. Homogeneous preparations of the substituted enzymes were essentially inactive unless very rapid purifications were performed, and the assays were done immediately. The inactive enzymes were tetrameric, just like wild-type beta-galactosidase and their fluorescence spectra were identical to the fluorescence spectrum of wild-type enzyme. Analyses of two of the substituted enzymes that were very rapidly purified to homogeneity and rapidly assayed while they were still active (at only a few substrate concentrations so that the data could be rapidly obtained), showed that the kinetic values were very similar to the values obtained with the same enzymes that were only partially purified. This showed that the kinetics were not affected by the degree of purity and allowed kinetic analyses with partially purified enzymes so that large numbers of points could be used for accuracy. The data showed that His-391 is a very important residue. It interacts strongly with the transition state and promotes catalysis by stabilizing the transition state. Activation energy differences (deltadelta G(S) double dagger), as determined by differences in the kcat/Km values, indicated that substitutions for His-391 caused very large destabilizations (22.8-35.9 kJ/mol) of the transition state. The importance of His-391 for transition state stabilization was confirmed by studies that showed that transition state analogs are very poor inhibitors of the substituted enzymes, while inhibition by substrate analogs was only affected in a small way by substituting for His-391. The poor stabilities of the transition states caused significant decreases of the rates of the glycolytic cleavage steps (galactosylation, k2). Degalactosylation (k3) was not decreased to the same extent.
Collapse
Affiliation(s)
- R E Huber
- Division of Biochemistry, Faculty of Science, University of Calgary, AB, Canada.
| | | | | | | | | |
Collapse
|
11
|
Nuyts S, Van Mellaert L, Theys J, Landuyt W, Lambin P, Anné J. The use of radiation-induced bacterial promoters in anaerobic conditions: a means to control gene expression in clostridium-mediated therapy for cancer. Radiat Res 2001; 155:716-23. [PMID: 11302769 DOI: 10.1667/0033-7587(2001)155[0716:tuorib]2.0.co;2] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Nuyts, S., Van Mellaert, L., Theys, J., Landuyt, W., Lambin, P. and Anné, J. The Use of Radiation-Induced Bacterial Promoters in Anaerobic Conditions: A Means to Control Gene Expression in Clostridium-Mediated Therapy for Cancer. Radiat. Res. 155, 716-723 (2001). Apathogenic clostridia, which have been genetically engineered to express therapeutic genes, will specifically target hypoxic and necrotic regions in tumors. This specificity can be improved further if the expression of these genes is controlled by a radiation-induced promoter, leading to spatial and temporal control of gene expression. We isolated two radiation-inducible genes of the SOS repair system of Clostridium. Northern blot experiments confirmed radiation activation of the recA and recN genes at a dose of 2 Gy. The promoter region of these genes was isolated and used to regulate expression of the lacZ gene under anaerobic conditions. For the recA promoter, a significant increase of beta-galactosidase activity of 20-30% was seen after 2 Gy irradiation. The recN promoter did not show a significant induction and had a 50-100 times lower basal expression. Treatment of the recombinant clostridial cultures with the cytostatic agent mitomycin C also resulted in a significant increase of beta-galactosidase activity that was under the control of recA or recN promoter. Oxygen does not appear to be necessary in the activation of the SOS repair system by irradiation as tested with Escherichia coli since recA-deficient and recA-containing strains showed similar survival after treatment with UV and ionizing radiation in the presence or absence of oxygen.
Collapse
Affiliation(s)
- S Nuyts
- Department of Experimental Radiobiology/Bacteriology, Laboratory of Bacteriology, Rega Institute, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
12
|
Penner RM, Roth NJ, Rob B, Lay H, Huber RE. Tyr-503 of beta-galactosidase (Escherichia coli) plays an important role in degalactosylation. Biochem Cell Biol 1999; 77:229-36. [PMID: 10505794 DOI: 10.1139/o99-042] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Substitutions for Tyr-503 of beta-galactosidase caused large decreases of the activity. Both the galactosylation (k2) and degalactosylation (k3) rates were decreased. Substitutions by residues without transferable protons, caused k3 to decrease much more than k2 while substitutions with residues having transferable protons, caused approximately equal decreases of k2 and k3. Several lines of evidence showed this. The Km values of the substituted enzymes were much smaller than those for the wild type if the substituted amino acid residues did not have transferable protons; this was not the case when the substituted residues had transferable protons. Inhibition studies showed that the Km values were not small because of small Ks values but were small because of relatively small k3 values (compared with the k2 values). The conclusion that the k3 values are small relative to k2 upon substitution with residues without transferable protons is also based upon other studies: studies indicating that the reaction rates were similar with different substrates, studies in the presence of alcohol acceptors, studies showing that the rate of inactivation by 2,4-dinitrophenyl-2-deoxy-2-F-beta-D-galactopyranoside decreased much less than the rate of reactivation; studies on burst kinetics, and pH studies. The data suggest that Tyr-503 may be important for the degalactosylation reaction because of its ability to transfer protons and thereby facilitate cleavage of the transient covalent bond between galactose and Glu-537.
Collapse
Affiliation(s)
- R M Penner
- Division of Biochemistry, Faculty of Science, University of Calgary, AB, Canada
| | | | | | | | | |
Collapse
|
13
|
Tummala SB, Welker NE, Papoutsakis ET. Development and characterization of a gene expression reporter system for Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 1999; 65:3793-9. [PMID: 10473377 PMCID: PMC99702 DOI: 10.1128/aem.65.9.3793-3799.1999] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A gene expression reporter system (pHT3) for Clostridium acetobutylicum ATCC 824 was developed by using the lacZ gene from Thermoanaerobacterium thermosulfurogenes EM1 as the reporter gene. In order to test the reporter system, promoters of three key metabolic pathway genes, ptb (coding for phosphotransbutyrylase), thl (coding for thiolase), and adc (coding for acetoacetate decarboxylase), were cloned upstream of the reporter gene in pHT3 in order to construct vectors pHT4, pHT5, and pHTA, respectively. Detection of beta-galactosidase activity in time course studies performed with strains ATCC 824(pHT4), ATCC 824(pHT5), and ATCC 824(pHTA) demonstrated that the reporter gene produced a functional beta-galactosidase in C. acetobutylicum. In addition, time course studies revealed differences in the beta-galactosidase specific activity profiles of strains ATCC 824(pHT4), ATCC 824(pHT5), and ATCC 824(pHTA), suggesting that the reporter system developed in this study is able to effectively distinguish between different promoters. The stability of the beta-galactosidase produced by the reporter gene was also examined with strains ATCC 824(pHT4) and ATCC 824(pHT5) by using chloramphenicol treatment to inhibit protein synthesis. The data indicated that the beta-galactosidase produced by the lacZ gene from T. thermosulfurogenes EM1 was stable in the exponential phase of growth. In pH-controlled fermentations of ATCC 824(pHT4), the kinetics of beta-galactosidase formation from the ptb promoter and phosphotransbutyrylase formation from its own autologous promoter were found to be similar.
Collapse
Affiliation(s)
- S B Tummala
- Department of Chemical Engineering, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois 60208, USA
| | | | | |
Collapse
|
14
|
Roth NJ, Rob B, Huber RE. His-357 of beta-galactosidase (Escherichia coli) interacts with the C3 hydroxyl in the transition state and helps to mediate catalysis. Biochemistry 1998; 37:10099-107. [PMID: 9665715 DOI: 10.1021/bi972796t] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The His at position 357 of beta-galactosidase (Escherichia coli) was substituted by an Asp, an Asn, a Leu, and a Phe, and studies done with the substituted enzymes showed that the main role of His-357 is to stabilize the transition state by interacting with the C3 hydroxyl. The substituted enzymes were less stable to heat than was wild-type enzyme (40-90% of the activity was lost in 10 min at 52 degreesC compared to wild-type beta-galactosidase which lost no activity), but the gross physical properties of the substituted enzymes at normal temperatures were not changed. There were also no differences in the ability to bind or to be activated by Mg2+. The substitutions (except Asp) did not affect the pKa for binding substrate in the ground state, but the pKa of the kcat was altered as would be expected for a residue important for binding the transition state. Substitution by Asp may cause a conformational change at high pH values. Activation energy differences (Delta DeltaGS), as determined by differences in kcat/Km values, indicated that substitutions for His-357 caused significant destabilizations of the first transition state (for the step in which the galactoside bond is cleaved and the covalent reaction intermediate is formed). This resulted in decreases of up to 900-fold in k2 for the mononitrophenyl substrates. In contrast, the k3 values (which depend on the energy level of the second transition state) were not decreased as much (<90-fold). In some cases, the k3 values even increased (when Asn was substituted for His-357). The importance of His-357 for stabilization of the transition state was confirmed by studies with transition state analogue inhibitors that showed that His-357 forms strong specific interactions with the C3 hydroxyl of the galactose moiety of the transition state. Studies with substrate analogue inhibitors indicated that His-357 is probably not important for the binding of the substrates themselves.
Collapse
Affiliation(s)
- N J Roth
- Division of Biochemistry, Faculty of Science, University of Calgary, Alberta, Canada
| | | | | |
Collapse
|
15
|
Huber RE, Roth NJ, Bahl H. Quaternary structure, Mg2+ interactions, and some kinetic properties of the beta-galactosidase from Thermoanaerobacterium thermosulfurigenes EM1. JOURNAL OF PROTEIN CHEMISTRY 1996; 15:621-9. [PMID: 8968953 DOI: 10.1007/bf01886744] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The beta-galactosidase from Thermoanaerobacterium thermosulfurigenes EM1 was found to be a dimer with a monomer molecular weight of about 85,000. It lacks the alpha-peptide and an important alpha-helix that are both needed for dimer-dimer interaction and there is no homology in other important dimer-dimer interaction areas. These differences in structure probably account for the dimeric (rather than tetrameric) structure. Only 0.19 Mg2+ bound per monomer and Mg2+ had only small effects on the activity and heat stability. The absence of residues equivalent to Glu-416 and His-418 (two of the three ligands to Mg2+ in the beta-galactosidase from Escherichia coli) probably accounts for the low level of Mg2+ binding and the consequent lack of response to Mg2+. Both Na+ and K+ also had no effect on the activity. The enzyme activity with o-nitrophenyl-beta-D-galactopyanoside (ONPG) was very similar to that with p-nitrophenyl-beta-D-beta-D-galactopyranoside (PNPG) and the ONPG pH profile was very similar to the PNPG pH profile. These differences are in contrast to the E.coli beta-galactosidase, which dramatically discriminates between these two substrates. The lack of discrimination by the T. thermosulfurigenes beta-galactosidase could be due to the absence of the sequence equivalent to residues 910-1023 of the E. coli beta-galactosidase. Trp-999 is probably of the most importance. Trp-999 of the E. coli beta-galactosidase is important for aglycone binding and ONPG and PNPG differ only in their aglycones. The suggestion that the aglycone site of the T. thermosulfurigenes beta-galactosidase is different was strengthened by competitive inhibition studies. Compared to E. coli beta-galactosidase, D-galactonolactone was a very good inhibitor of the T. thermosulfurigenes enzyme, while L-ribose inhibited poorly. These are transition-state analogs and the results indicate that T. thermosulfurigenes beta-galactosidase binds the transition state differently than does E. coli beta-galactosidase. Methanol and glucose were good acceptors of galactose, and allolactose was formed when glucose was the acceptor. Allolactose could not, however, be detected by TLC when lactose was the substrate. The differences noted may be due to the thermophilic nature of T. thermosulfurigenes.
Collapse
Affiliation(s)
- R E Huber
- Division of Biochemistry, Faculty of Science, University of Calgary, Canada.
| | | | | |
Collapse
|
16
|
Roth NJ, Huber RE. The beta-galactosidase (Escherichia coli) reaction is partly facilitated by interactions of His-540 with the C6 hydroxyl of galactose. J Biol Chem 1996; 271:14296-301. [PMID: 8662937 DOI: 10.1074/jbc.271.24.14296] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
beta-Galactosidases with substitutions for His-540 were only poorly reactive with galactosyl substrates. However, the activity with substrates that were like galactose but did not have a C6 hydroxyl group was not decreased much as a result of such substitutions. The loss of transition state stabilization for galactosyl substrates as a result of substitution was between -15.4 and -22.8 kJ/mol but only between +0.34 and -6.5 for substrates that were identical to galactose but lacked the C6 hydroxyl. These findings indicate that an important function of His-540 is to aid in the stabilization of the transition state by forming a stable interaction with the C6 hydroxyl group. This suggestion was strengthened by the results of competitive inhibition studies showing that L-arabinolactone (a transition state analog inhibitor of beta-galactosidase without a C6 hydroxymethyl group) was bound as well by the substituted enzymes as by wild type, whereas transition state analog inhibitors that contain C6 hydroxyls (L-ribose and D-galactonolactone) were bound much more poorly by the substituted enzymes than by the wild type enzyme. Substrate analog inhibitor studies showed that His-540 was also important for binding interactions with the C6 hydroxyl group of the ground (substrate) state. The activation by Mg2+ was the same for the substituted enzymes as for the wild type, and equilibrium dialysis showed that H540F-beta-galactosidase bound Mg2+ as well as did normal beta-galactosidase. The k2 and Ks values seem to have the same pH interactions as wild type enzyme, whereas the k3 interactions are affected differently by pH in the substituted enzymes than in the wild type enzyme. The rate of the "degalactosylation" reaction was affected more by substitutions for His-540 than was the rate of the "galactosylation" reaction. All three substituted beta-galactosidases were less stable to heat than was wild type, but H540N-beta-galactosidase was somewhat more stable than the other two substituted enzymes. There were some differences in activity and inhibitory properties that resulted from the different substitutions.
Collapse
Affiliation(s)
- N J Roth
- Division of Biochemistry, Faculty of Science, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | |
Collapse
|
17
|
Griffin HG, MacCormick CA, Gasson MJ. Cloning, DNA sequence, and regulation of expression of a gene encoding beta-galactosidase from Lactococcus lactis. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 1996; 6:337-46. [PMID: 8988372 DOI: 10.3109/10425179609047572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The beta-galactosidase from Escherichia coli is one of the most important enzymes in molecular biology. Here we report the cloning and sequencing of a gene encoding beta-galactosidase from Lactococcus lactis and compare the predicted amino acid sequence to that from other organisms. The beta-galactosidase from L. lactis was found to be a protein of 996 residues with 68.7% similarity to the E. coli enzyme and 65.8% similarity to the enzyme from Klebsiella pneumoniae. The lactococcal beta-galactosidase has lower similarity (approx 55%) to the enzymes from other lactic acid bacteria and no significant similarity to the beta-galactosidase enzymes from Agrobacterium radiobacter, Bacillus stearothermophilus, or Clostridium thermosulfurogenes. Expression of the lacZ gene from L. lactis was found to be higher when cells were grown in medium containing lactose than when grown in glucose, and expression was higher when cells were grown at 30 degrees C than at 35 degrees C.
Collapse
Affiliation(s)
- H G Griffin
- Institute of Food Research, Colney, Norwich, UK.
| | | | | |
Collapse
|
18
|
Dürre P, Fischer RJ, Kuhn A, Lorenz K, Schreiber W, Stürzenhofecker B, Ullmann S, Winzer K, Sauer U. Solventogenic enzymes of Clostridium acetobutylicum: catalytic properties, genetic organization, and transcriptional regulation. FEMS Microbiol Rev 1995; 17:251-62. [PMID: 7576767 DOI: 10.1111/j.1574-6976.1995.tb00209.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The enzymes acetoacetate decarboxylase and coenzyme A transferase catalyse acetone production from acetoacetyl-CoA in Clostridium acetobutylicum. The adc gene encoding the former enzyme is organized in a monocistronic operon, while the ctf genes form a common transcription unit with the gene (adhE) encoding a probable polyfunctional aldehyde/alcohol dehydrogenase. This genetic arrangement could reflect physiological requirements at the onset of solventogenesis. In addition to AdhE, two butanol dehydrogenase isozymes and a thiolase are involved in butanol synthesis. RNA analyses showed a sequential order of induction for the different butanol dehydrogenase genes, indicating an in vivo function of BdhI in low level butanol formation. The physiological roles of AdhE and BdhII most likely involve high level butanol formation, with AdhE being responsible for the onset of solventogenesis and BdhII ensuring continued butanol production. Addition of methyl viologen results in artificially induced butanol synthesis which seems to be mediated by a still unknown set of enzymes. Although the signal that triggers the shift to solventogenesis has not yet been elucidated, recent investigations suggest a possible function of DNA supercoiling as a transcriptional sensor of the respective environmental stimuli.
Collapse
Affiliation(s)
- P Dürre
- Institut für Mikrobiologie, Georg-August-Universität Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Moore JB, Markiewicz P, Miller JH. Identification and sequencing of the Thermotoga maritima lacZ gene, part of a divergently transcribed operon. Gene 1994; 147:101-6. [PMID: 8088532 DOI: 10.1016/0378-1119(94)90046-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The lacZ gene encoding a beta-galactosidase (beta Gal) from the hyperthermophile Thermotoga maritima was cloned on an 11-kb fragment by complementation of an Escherichia coli lacZ deletion stain. The nucleotide sequence of the structural gene and two other ORFs found within a 6317-bp region were determined. The deduced amino acid (aa) sequence of the Tt. maritima beta Gal predicts a 1037-aa polypeptide with a calculated M(r) of 122,312. The translated sequence is 30% similar to nine other beta Gal sequences from bacteria and one yeast. Alignment of the Tt. maritima beta Gal with these other sequences reveals that the residues responsible for Mg2+ binding, catalysis and substrate recognition are conserved in the thermophilic enzyme. Sequence analysis also revealed the presence of a divergently transcribed operon containing at least two other genes 5' to lacZ. These ORFs encode proteins homologous to a second family of beta Gal found in Bacillus species and to an ATP-dependent family of bacterial oligopeptide transport proteins.
Collapse
Affiliation(s)
- J B Moore
- Department of Microbiology and Molecular Genetics, University of California Los Angeles 90024
| | | | | |
Collapse
|
20
|
Fanning S, Leahy M, Sheehan D. Nucleotide and deduced amino acid sequences of Rhizobium meliloti 102F34 lacZ gene: comparison with prokaryotic beta-galactosidases and human beta-glucuronidase. Gene 1994; 141:91-6. [PMID: 8163182 DOI: 10.1016/0378-1119(94)90133-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The nucleotide (nt) sequence of a 2.57-kb Sau3A fragment carrying the Rhizobium meliloti beta-galactosidase (beta Gal)-encoding gene (RmlacZ) was determined. An open reading frame (ORF) of 2.26 kb was identified which encoded a 755-amino-acid (aa) polypeptide with a calculated molecular mass of 84,141 Da, in fair agreement with the value of 88 kDa determined by SDS-PAGE. The deduced N-terminal aa sequence was confirmed by direct sequencing of electrophoretically purified R. meliloti beta Gal. The size of the native R. meliloti beta Gal was approx. 174 kDa. Similarities were found between the aa sequence of the R. meliloti beta Gal and those from Clostridium thermosulfurogenes EM1 and Agrobacterium radiobacter, as well as human beta-glucuronidase (beta Glu). Comparisons with beta Gal from Escherichia coli, Klebsiella pneumoniae, Lactobacillus bulgaricus and Kluyveromyces lactis found only weak similarities; however, the putative active site residues appear to be conserved. The RmlacZ sequence is flanked by two partially sequenced ORFs, which show aa sequence and organisational similarities to the previously reported lac operon in A. radiobacter.
Collapse
Affiliation(s)
- S Fanning
- Medical Sciences Department, Regional Technical College, Bishopstown, Cork, Ireland
| | | | | |
Collapse
|
21
|
Yoast S, Adams RM, Mainzer SE, Moon K, Palombella AL, Schmidt BF. Generation and Characterization of Environmentally Sensitive Variants of the beta-Galactosidase from Lactobacillus delbrueckii subsp. bulgaricus. Appl Environ Microbiol 1994; 60:1221-6. [PMID: 16349230 PMCID: PMC201462 DOI: 10.1128/aem.60.4.1221-1226.1994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A method is described for generating and screening variants of the beta-galactosidase from Lactobacillus delbrueckii subsp. bulgaricus sensitive to several environmental stresses, with potential application in the food industry. Chemical mutagenesis with hydroxylamine or methoxylamine was performed on the beta-galactosidase gene carried on an Escherichia coli expression vector. Mutants sensitive to cold, heat, low pH, low magnesium concentration, and the presence of urea were isolated by screening for reduced color development on beta-galactosidase indicator plates. The mutations responsible for three variant beta-galactosidases were localized, and the base substitutions were determined by DNA sequencing. The amino acid alterations associated with one low-pH-sensitive (pHs) and two urea-sensitive (Us) variants correspond to P584L (pHs1), G400S/R479Q (Us26), and G167E/E168K/E363K/V492M (Us17), respectively. Mutant pHs1 is also heat, cold, low magnesium, and urea sensitive; Us26 is also cold sensitive; and Us17 is also low-pH sensitive.
Collapse
Affiliation(s)
- S Yoast
- Genencor International, Inc., South San Francisco, California 94080
| | | | | | | | | | | |
Collapse
|
22
|
Huber RE, Gupta MN, Khare SK. The active site and mechanism of the beta-galactosidase from Escherichia coli. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1994; 26:309-18. [PMID: 8187928 DOI: 10.1016/0020-711x(94)90051-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- R E Huber
- Division of Biochemistry, Faculty of Science, University of Calgary, Alberta, Canada
| | | | | |
Collapse
|
23
|
Saurin W, Dassa E. Sequence relationships between integral inner membrane proteins of binding protein-dependent transport systems: evolution by recurrent gene duplications. Protein Sci 1994; 3:325-44. [PMID: 8003968 PMCID: PMC2142789 DOI: 10.1002/pro.5560030216] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Periplasmic binding protein-dependent transport systems are composed of a periplasmic substrate-binding protein, a set of 2 (sometimes 1) very hydrophobic integral membrane proteins, and 1 (sometimes 2) hydrophilic peripheral membrane protein that binds and hydrolyzes ATP. These systems are members of the superfamily of ABC transporters. We performed a molecular phylogenetic analysis of the sequences of 70 hydrophobic membrane proteins of these transport systems in order to investigate their evolutionary history. Proteins were grouped into 8 clusters. Within each cluster, protein sequences displayed significant similarities, suggesting that they derive from a common ancestor. Most clusters contained proteins from systems transporting analogous substrates such as monosaccharides, oligopeptides, or hydrophobic amino acids, but this was not a general rule. Proteins from diverse bacteria are found within each cluster, suggesting that the ancestors of current clusters were present before the divergence of bacterial groups. The phylogenetic trees computed for hydrophobic membrane proteins of these permeases are similar to those described for the periplasmic substrate-binding proteins. This result suggests that the genetic regions encoding binding protein-dependent permeases evolved as whole units. Based on the results of the classification of the proteins and on the reconstructed phylogenetic trees, we propose an evolutionary scheme for periplasmic permeases. According to this model, it is probable that these transport systems derive from an ancestral system having only 1 hydrophobic membrane protein.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- W Saurin
- Unité de Programmation Moléculaire et Toxicologie génétique, CNRS URA 1444, Institut Pasteur 25, Paris, France
| | | |
Collapse
|
24
|
Gabelsberger J, Liebl W, Schleifer KH. Cloning and characterization of β-galactoside and β-glucoside hydrolysing enzymes of Thermotoga maritima. FEMS Microbiol Lett 1993. [DOI: 10.1111/j.1574-6968.1993.tb06157.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
25
|
Poch O, L'Hôte H, Dallery V, Debeaux F, Fleer R, Sodoyer R. Sequence of the Kluyveromyces lactis beta-galactosidase: comparison with prokaryotic enzymes and secondary structure analysis. Gene 1992; 118:55-63. [PMID: 1511885 DOI: 10.1016/0378-1119(92)90248-n] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The LAC4 gene encoding the beta-galactosidase (beta Gal) of the yeast, Kluyveromyces lactis, was cloned on a 7.2-kb fragment by complementation of a lacZ-deficient Escherichia coli strain. The nucleotide sequence of the structural gene, with 42 bp and 583 bp of the 5'- and 3'-flanking sequences, respectively, was determined. The deduced amino acid (aa) sequence of the K. lactis beta Gal predicts a 1025-aa polypeptide with a calculated M(r) of 117618 and reveals extended sequence homologies with all the published prokaryotic beta Gal sequences. This suggests that the eukaryotic beta Gal is closely related, evolutionarily and structurally, to the prokaryotic beta Gal's. In addition, sequence similarities were observed between the highly conserved N-terminal two-thirds of the beta Gal and the entire length of the beta-glucuronidase (beta Glu) polypeptides, which suggests that beta Glu is clearly related, structurally and evolutionarily, to the N-terminal two-thirds of the beta Gal. The structural analysis of the beta Gal alignment, performed by mean secondary structure prediction, revealed that most of the invariant residues are located in turn or loop structures. The location of the invariant residues is discussed with respect to their accessibility and their possible involvement in the catalytic process.
Collapse
Affiliation(s)
- O Poch
- Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | | | | | | | | | | |
Collapse
|