1
|
Sondo M, Wonni I, Koïta K, Rimbault I, Barro M, Tollenaere C, Moulin L, Klonowska A. Diversity and plant growth promoting ability of rice root-associated bacteria in Burkina-Faso and cross-comparison with metabarcoding data. PLoS One 2023; 18:e0287084. [PMID: 38032916 PMCID: PMC10688718 DOI: 10.1371/journal.pone.0287084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
Plant-associated bacteria are essential partners in plant health and development. In addition to taking advantage of the rapid advances recently achieved in high-throughput sequencing approaches, studies on plant-microbiome interactions require experiments with culturable bacteria. A study on the rice root microbiome was recently initiated in Burkina Faso. As a follow up, the aim of the present study was to develop a collection of corresponding rice root-associated bacteria covering maximum diversity, to assess the diversity of the obtained isolates based on the culture medium used, and to describe the taxonomy, phenotype and abundance of selected isolates in the rice microbiome. More than 3,000 isolates were obtained using five culture media (TSA, NGN, NFb, PCAT, Baz). The 16S rRNA fragment sequencing of 1,013 selected isolates showed that our working collection covered four bacterial phyla (Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes) and represented 33% of the previously described diversity of the rice root microbiome at the order level. Phenotypic in vitro analysis of the plant growth promoting capacity of the isolates revealed an overall ammonium production and auxin biosynthesis capacity, while siderophore production and phosphate solubilisation were enriched in Burkholderia, Ralstonia, Acinetobacter and Pseudomonas species. Of 45 representative isolates screened for growth promotion on seedlings of two rice cultivars, five showed an ability to improve the growth of both cultivars, while five others were effective on only one cultivar. The best results were obtained with Pseudomonas taiwanensis ABIP 2315 and Azorhizobium caulinodans ABIP 1219, which increased seedling growth by 158% and 47%, respectively. Among the 14 best performing isolates, eight appeared to be abundant in the rice root microbiome dataset from previous study. The findings of this research contribute to the in vitro and in planta PGP capacities description of rice root-associated bacteria and their potential importance for plants by providing, for the first time, insight into their prevalence in the rice root microbiome.
Collapse
Affiliation(s)
- Moussa Sondo
- INERA, Institut de l’Environnement et de Recherches Agricoles du Burkina Faso, Bobo-Dioulasso, Burkina Faso
- PHIM Plant Health Institute, IRD, CIRAD, INRAE, Institut Agro, Univ. Montpellier, Montpellier, France
- Université Joseph Ki Zerbo, Ouagadougou, Burkina Faso
- LMI Pathobios, Observatoire des Agents Phytopathogènes en Afrique de l’Ouest, Bobo-Dioulasso, Burkina Faso
| | - Issa Wonni
- INERA, Institut de l’Environnement et de Recherches Agricoles du Burkina Faso, Bobo-Dioulasso, Burkina Faso
- LMI Pathobios, Observatoire des Agents Phytopathogènes en Afrique de l’Ouest, Bobo-Dioulasso, Burkina Faso
| | - Kadidia Koïta
- Université Joseph Ki Zerbo, Ouagadougou, Burkina Faso
- LMI Pathobios, Observatoire des Agents Phytopathogènes en Afrique de l’Ouest, Bobo-Dioulasso, Burkina Faso
| | - Isabelle Rimbault
- PHIM Plant Health Institute, IRD, CIRAD, INRAE, Institut Agro, Univ. Montpellier, Montpellier, France
| | - Mariam Barro
- INERA, Institut de l’Environnement et de Recherches Agricoles du Burkina Faso, Bobo-Dioulasso, Burkina Faso
- LMI Pathobios, Observatoire des Agents Phytopathogènes en Afrique de l’Ouest, Bobo-Dioulasso, Burkina Faso
| | - Charlotte Tollenaere
- PHIM Plant Health Institute, IRD, CIRAD, INRAE, Institut Agro, Univ. Montpellier, Montpellier, France
- LMI Pathobios, Observatoire des Agents Phytopathogènes en Afrique de l’Ouest, Bobo-Dioulasso, Burkina Faso
| | - Lionel Moulin
- PHIM Plant Health Institute, IRD, CIRAD, INRAE, Institut Agro, Univ. Montpellier, Montpellier, France
| | - Agnieszka Klonowska
- PHIM Plant Health Institute, IRD, CIRAD, INRAE, Institut Agro, Univ. Montpellier, Montpellier, France
- LMI Pathobios, Observatoire des Agents Phytopathogènes en Afrique de l’Ouest, Bobo-Dioulasso, Burkina Faso
| |
Collapse
|
2
|
Plant Development of Early-Maturing Spring Wheat (Triticum aestivum L.) under Inoculation with Bacillus sp. V2026. PLANTS 2022; 11:plants11141817. [PMID: 35890450 PMCID: PMC9317556 DOI: 10.3390/plants11141817] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 11/18/2022]
Abstract
The effect of a plant growth-promoting bacterium (PGPB) Bacillus sp. V2026, a producer of indolyl-3-acetic acid (IAA) and gibberellic acid (GA), on the ontogenesis and productivity of four genotypes of early-maturing spring wheat was studied under controlled conditions. The inoculation of wheat plants with Bacillus sp. V2026 increased the levels of endogenous IAA and GA in wheat of all genotypes and the level of trans-Zeatin in Sonora 64 and Leningradskaya rannyaya cvs but decreased it in AFI177 and AFI91 ultra-early lines. Interactions between the factors “genotype” and “inoculation” were significant for IAA, GA, and trans-Zeatin concentrations in wheat shoots and roots. The inoculation increased the levels of chlorophylls and carotenoids and reduced lipid peroxidation in leaves of all genotypes. The inoculation resulted in a significant increase in grain yield (by 33–62%), a reduction in the time for passing the stages of ontogenesis (by 2–3 days), and an increase in the content of macro- and microelements and protein in the grain. Early-maturing wheat genotypes showed a different response to inoculation with the bacterium Bacillus sp. V2026. Cv. Leningradskaya rannyaya was most responsive to inoculation with Bacillus sp. V2026.
Collapse
|
3
|
Mohamad R, Willems A, Le Quéré A, Prevent M, Maynaud G, Bonabaud M, Dubois E, Cleyet-Marel JC, Brunel B. Mesorhizobium ventifaucium sp. nov. and Mesorhizobium escarrei sp. nov., two novel root-nodulating species isolated from Anthyllis vulneraria. Syst Appl Microbiol 2022; 45:126341. [DOI: 10.1016/j.syapm.2022.126341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/23/2022] [Accepted: 06/07/2022] [Indexed: 10/18/2022]
|
4
|
Mir MI, Hameeda B, Quadriya H, Kumar BK, Ilyas N, Kee Zuan AT, El Enshasy HA, Dailin DJ, Kassem HS, Gafur A, Sayyed RZ. Multifarious Indigenous Diazotrophic Rhizobacteria of Rice ( Oryza sativa L.) Rhizosphere and Their Effect on Plant Growth Promotion. Front Nutr 2022; 8:781764. [PMID: 35096930 PMCID: PMC8793879 DOI: 10.3389/fnut.2021.781764] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
A diverse group of rhizobacteria persists in the rhizospheric soil, on the surface of roots, or in association with rice plants. These bacteria colonize plant root systems, enhance plant growth and crop yield. Indigenous rhizobacteria are known to promote soil health, grain production quality and serve as sustainable bioinoculant. The present study was aimed to isolate, identify and characterize indigenous plant growth promoting (PGP) diazotrophic bacteria associated with the rhizosphere of rice fields from different areas of Jammu and Kashmir, India. A total of 15 bacteria were isolated and evaluated for various PGP traits, antagonistic activity against phytopathogens, production of hydrolytic enzymes and biofilm formation under in-vitro conditions. The majority of the isolated bacteria were Gram-negative. Out of 15 bacterial isolates, nine isolates produced IAA (12.24 ± 2.86 to 250.3 ± 1.15 μg/ml), 6 isolates exhibited phosphate solubilization activity (36.69 ± 1.63 to 312.4 ± 1.15 μg/ml), 7 isolates exhibited rock phosphate solubilization while 5 isolates solubilized zinc (10-18 mm), 7 isolates showed siderophore production, 8 isolates exhibited HCN production, 6 isolates exhibited aminocyclopropane-1-carboxylate (ACC) deaminase activity, 13 isolates exhibited cellulase activity, nine isolates exhibited amylase and lipase activity and six isolates exhibited chitinase activity. In addition, 5 isolates showed amplification with the nifH gene and showed a significant amount of nitrogenase activity in a range of 0.127-4.39 μmol C2H4/mg protein/h. Five isolates viz., IHK-1, IHK-3, IHK-13, IHK-15 and IHK-25 exhibited most PGP attributes and successfully limited the mycelial growth of Rhizoctonia solani and Fusarium oxysporum in-vitro. All the five bacterial isolates were identified based on morphological, biochemical and 16S rDNA gene sequencing study, as Stenotrophomonas maltophilia, Enterobacter sp., Bacillus sp., Ochrobactrum haematophilum and Pseudomonas aeruginosa. Rice plants developed from seeds inoculated with these PGP strains individually had considerably higher germination percentage, seed vigor index and total dry biomass when compared to control. These findings strongly imply that the PGP diazotrophic bacteria identified in this work could be employed as plant growth stimulators in rice.
Collapse
Affiliation(s)
- Mohammad Imran Mir
- Department of Botany, University College of Science, Osmania University, Hyderabad, India
| | - Bee Hameeda
- Department of Microbiology, University College of Science, Osmania University, Hyderabad, India
| | - Humera Quadriya
- Department of Microbiology, University College of Science, Osmania University, Hyderabad, India
| | - B. Kiran Kumar
- Department of Botany, University College of Science, Osmania University, Hyderabad, India
| | - Noshin Ilyas
- Department of Botany, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Ali Tan Kee Zuan
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hesham Ali El Enshasy
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, Skudai, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
- City of Scientific Research and Technology Applications, New Burg Al Arab, Alexandria, Egypt
| | - Daniel Joe Dailin
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Hazem S. Kassem
- Department of Agricultural Extension and Rural Society, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdul Gafur
- Sinarmas Forestry Corporate Research and Development, Perawang, Indonesia
| | - R. Z. Sayyed
- Asian Plant Growth Promoting Rhizobacteria Society (PGPR) for Sustainable Agriculture, Auburn University, Auburn, AL, United States
| |
Collapse
|
5
|
Mir MI, Kumar BK, Gopalakrishnan S, Vadlamudi S, Hameeda B. Characterization of rhizobia isolated from leguminous plants and their impact on the growth of ICCV 2 variety of chickpea ( Cicer arietinum L.). Heliyon 2021; 7:e08321. [PMID: 34820538 PMCID: PMC8601996 DOI: 10.1016/j.heliyon.2021.e08321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/14/2021] [Accepted: 11/01/2021] [Indexed: 12/20/2022] Open
Abstract
Six rhizobia-like-bacterial strains in total, secluded from the root and stem nodules of various leguminous plants were characterized for growth promoting ability on ICCV 2 variety of chickpea. Bacterial strains showed production of IAA, NH3, siderophore, HCN, ACC deaminase, hydrolytic enzyme production such as chitinase, amylase, protease, lipase, β-1, 3-glucanase and solubilization of nutrients such as phosphate, zinc and potassium. However the performance of PGP traits characterized in-vitro varied among the six bacterial strains. The sequences of 16S rRNA gene of bacterial strains IHSR, IHRG, IHAA, IHGN-3, IHCP-1 and IHCP-2 showed maximum identity with Rhizobium sp., Rhizobium tropici, Rhizobium multihospitium, Mesorhizobium sp., Burkholderia cepacia and Rhizobium pusense. In plate culture conditions the bacterial strains changed the colour of media (NFB) from green to blue and showed amplification of nifH gene by PCR, and also enhanced nodule formation in chickpea under greenhouse conditions, which explains their nitrogen fixing ability. Scanning electron microscopy studies of chickpea roots showed colonization by all the six bacterial strains in solo and by consortium (IHRG + IHGN-3). Under greenhouse conditions, chickpea plants inoculated with different strains showed improvement in plant height, number of branches, total chlorophyll, nodule number, nodule weight, shoot weight, root weight, root volume and root surface area at 30 and 45 days after sowing (DAS) over the uninoculated control plants. It was also observed at the crop maturity stage all the bacterial strains inoculated separately enhanced pod number, seed number and total NPK compared to uninoculated control plants. This study suggests that bacteria associated with root and stem nodules can be a promising resource to enhance nodulation, PGP and crop yields in chickpea.
Collapse
Affiliation(s)
- Mohammad Imran Mir
- Department of Botany, UCS, Osmania University, Hyderabad, 500007, Telangana, India
| | - B Kiran Kumar
- Department of Botany, UCS, Osmania University, Hyderabad, 500007, Telangana, India
| | - Subramaniam Gopalakrishnan
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad, 502319, Telangana, India
| | - Srinivas Vadlamudi
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad, 502319, Telangana, India
| | - Bee Hameeda
- Department of Microbiology, UCS, Osmania University, Hyderabad, 500007, Telangana, India
| |
Collapse
|
6
|
Salmi A, Boulila F. Heavy metals multi-tolerant Bradyrhizobium isolated from mercury mining region in Algeria. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 289:112547. [PMID: 33839604 DOI: 10.1016/j.jenvman.2021.112547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Heavy metals accumulation in the environment has led to a decrease in the capacity of ecosystems to sustain life as human, animal and plant health is threatened. To remedy this problem, rhizoremediation has been suggested as a solution. Legumes and rhizobia symbiotic association has captivated attention due to its involvement in the restoration of heavy-metal-contaminated sites. Thus, the aim of this study was to isolate and characterize the strains nodulating Calicotome spinosa plant that naturally occurred in two Algerian mercury mines. Fifty-four bacterial strains were isolated, then grouped into sixteen distinct BOX-PCR patterns and were genetically identified as belonging to the Bradyrhizobium genus. The studied strains were able to induce nodules on Retama monosperma, R. reatam, Lupinus albus, while no nodulation was observed in Glycine max, their symbiotic capacity was confirmed by amplifying the nodC gene. The phylogenetic analysis based on the nodC has grouped this Bradyrhizobium strains to either symbiovar genistearum or retamae. The isolates revealed diversity in terms of NaCl; pH tolerance, and phosphate solubilization. Production of siderophores was negative for these strains. All the isolated Bradyrhizobium were tolerant to both Zn and Pb in contrast they were sensitive to Cu and Cd. Interestingly, 43% of strains were tolerant to high Hg levels. Hence, some strains displayed multiple tolerances to heavy metals. Therefore, this is the first time we identify Bradyrhizobium strains originating from a North African mercury mine. This study could help to select mercury and other heavy metal-tolerant rhizobia showing an interesting potential to be used as inoculants to remediate the heavy metal soil accumulation.
Collapse
Affiliation(s)
- Adouda Salmi
- Laboratoire d'Ecologie Microbienne, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria.
| | - Farida Boulila
- Laboratoire d'Ecologie Microbienne, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria
| |
Collapse
|
7
|
The leguminous trees Vachellia seyal (Del.) and Prosopis juliflora (Swartz) DC and their association with rhizobial strains from the root-influence zone of the grass Sporobolus robustus Kunth. Symbiosis 2021. [DOI: 10.1007/s13199-021-00763-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Fall F, Le Roux C, Bâ AM, Fall D, Bakhoum N, Faye MN, Kane A, Ndoye I, Diouf D. The rhizosphere of the halophytic grass Sporobolus robustus Kunth hosts rhizobium genospecies that are efficient on Prosopis juliflora (Sw.) DC and Vachellia seyal (Del.) P.J.H. Hurter seedlings. Syst Appl Microbiol 2018; 42:232-239. [PMID: 30384991 DOI: 10.1016/j.syapm.2018.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 01/01/2023]
Abstract
The aim of this study was to survey the abundance and genetic diversity of legume-nodulating rhizobia (LNR) in the rhizosphere of a salt-tolerant grass, Sporobolus robustus Kunth, in the dry and rainy seasons along a salinity gradient, and to test their effectiveness on Prosopis juliflora (SW.) DC and Vachellia seyal (Del.) P.J.H. Hurter seedlings. The results showed a significant decrease in LNR population density and diversity in response to salinity, particularly during the dry season. A phylogenetic analysis of the 16S-23S rRNA ITS region clustered the 232 rhizobium isolates into three genera and 12 distinct representative genotypes: Mesorhizobium (8 genotypes), Ensifer (2 genotypes) and Rhizobium (2 genotypes). Of these genotypes, 2 were only found in the dry season, 4 exclusively in the rainy season and 6 were found in both seasons. Isolates of the Mesorhizobium and Ensifer genera were more abundant than those of Rhizobium, with 55%, 44% and 1% of the total strains, respectively. The abundance of the Mesorhizobium isolates appeared to increase in the dry season, suggesting that they were more adapted to environmental aridity than Ensifer genospecies. Conversely, Ensifer genospecies were more tolerant of high salinity levels than the other genospecies. However, Ensifer genospeciesproved to be the most efficient strains on P. juliflora and V. seyal seedlings. We concluded that S. robustus hosts efficient rhizobium strains in its rhizosphere, suggesting its ability to act as a nurse plant to facilitate seedling recruitment of P. juliflora and V. seyal in saline soils.
Collapse
Affiliation(s)
- Fatoumata Fall
- Laboratoire Commun de Microbiologie (LCM) IRD/ISRA/UCAD, Centre de Recherche de Bel-Air, Dakar, Senegal; Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux (LAPSE), Dakar, Senegal; Département de Biologie Végétale, Université Cheikh Anta Diop de Dakar, Senegal.
| | | | - Amadou Mustapha Bâ
- CIRAD, UMR LSTM, F-34398 Montpellier, France; Laboratoire de Biologie et Physiologie Végétales, Université des Antilles, Guadeloupe, France
| | - Dioumacor Fall
- Laboratoire Commun de Microbiologie (LCM) IRD/ISRA/UCAD, Centre de Recherche de Bel-Air, Dakar, Senegal; Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux (LAPSE), Dakar, Senegal; Centre National de Recherches Agronomiques (CNRA), Institut Sénégalais de Recherches Agricoles (ISRA), Dakar, Senegal
| | - Niokhor Bakhoum
- Laboratoire Commun de Microbiologie (LCM) IRD/ISRA/UCAD, Centre de Recherche de Bel-Air, Dakar, Senegal; Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux (LAPSE), Dakar, Senegal
| | - Mathieu Ndigue Faye
- Laboratoire Commun de Microbiologie (LCM) IRD/ISRA/UCAD, Centre de Recherche de Bel-Air, Dakar, Senegal; Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux (LAPSE), Dakar, Senegal
| | - Aboubacry Kane
- Laboratoire Commun de Microbiologie (LCM) IRD/ISRA/UCAD, Centre de Recherche de Bel-Air, Dakar, Senegal; Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux (LAPSE), Dakar, Senegal; Département de Biologie Végétale, Université Cheikh Anta Diop de Dakar, Senegal
| | - Ibrahima Ndoye
- Laboratoire Commun de Microbiologie (LCM) IRD/ISRA/UCAD, Centre de Recherche de Bel-Air, Dakar, Senegal; Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux (LAPSE), Dakar, Senegal; Département de Biologie Végétale, Université Cheikh Anta Diop de Dakar, Senegal
| | - Diegane Diouf
- Laboratoire Commun de Microbiologie (LCM) IRD/ISRA/UCAD, Centre de Recherche de Bel-Air, Dakar, Senegal; Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux (LAPSE), Dakar, Senegal; Département de Biologie Végétale, Université Cheikh Anta Diop de Dakar, Senegal
| |
Collapse
|
9
|
Phylogenetic diversity of Bradyrhizobium strains nodulating Calicotome spinosa in the Northeast of Algeria. Syst Appl Microbiol 2018; 41:452-459. [DOI: 10.1016/j.syapm.2018.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/24/2018] [Accepted: 05/24/2018] [Indexed: 11/20/2022]
|
10
|
Le Roux C, Tournier E, Lies A, Sanguin H, Chevalier G, Duponnois R, Mousain D, Prin Y. Bacteria of the genus Rhodopseudomonas (Bradyrhizobiaceae): obligate symbionts in mycelial cultures of the black truffles Tuber melanosporum and Tuber brumale. SPRINGERPLUS 2016; 5:1085. [PMID: 27468385 PMCID: PMC4947074 DOI: 10.1186/s40064-016-2756-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/05/2016] [Indexed: 11/18/2022]
Abstract
BACKGROUND This work aimed at characterizing 12 isolates of the genus Tuber including Tuber melanosporum (11 isolates) and Tuber brumale (one isolate). This was done using internal transcribed spacer (ITS) sequences, confirming their origin. RESULTS Analysis of their mating type revealed that both MAT1-1 and MAT1-2 exist within these isolates (with 3 and 8 of each, respectively). We observed that each of these cultures was consistently associated with one bacterium that was intimately linked to fungal growth. These bacterial associates failed to grow in the absence of fungus. We extracted DNA from bacterial colonies in the margin of mycelium and sequenced a nearly complete 16S rDNA gene and a partial ITS fragment. We found they all belonged to the genus Rhodopseudomonas, fitting within different phylogenetic clusters. No relationships were evidenced between bacterial and fungal strains or mating types. Rhodopseudomonas being a sister genus to Bradyrhizobium, we tested the nodulation ability of these bacteria on a promiscuously nodulating legume (Acacia mangium), without success. We failed to identify any nifH genes among these isolates, using two different sets of primers. CONCLUSIONS While the mechanisms of interaction between Tuber and Rhodopseudomonas remain to be elucidated, their interdependency for in vitro growth seems a novel feature of this fungus.
Collapse
Affiliation(s)
| | | | - Adrien Lies
- />CIRAD, UMR LSTM, 34398 Montpellier Cedex 5, France
| | - Hervé Sanguin
- />CIRAD, UMR LSTM, 34398 Montpellier Cedex 5, France
| | - Gérard Chevalier
- />INRA Centre de Recherche de Clermont-Theix, 63039 Clermont-Ferrand Cedex, France
| | | | - Daniel Mousain
- />Société d’Horticulture et d’Histoire Naturelle de l’Hérault, Parc à Ballon 1, bâtiment B, 125 rue du Moulin de Sémalen, 34000 Montpellier, France
| | - Yves Prin
- />CIRAD, UMR LSTM, 34398 Montpellier Cedex 5, France
| |
Collapse
|
11
|
Yan H, Ji ZJ, Jiao YS, Wang ET, Chen WF, Guo BL, Chen WX. Genetic diversity and distribution of rhizobia associated with the medicinal legumes Astragalus spp. and Hedysarum polybotrys in agricultural soils. Syst Appl Microbiol 2016; 39:141-9. [PMID: 26915496 DOI: 10.1016/j.syapm.2016.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 01/28/2016] [Accepted: 01/29/2016] [Indexed: 10/22/2022]
Abstract
With the increasing cultivation of medicinal legumes in agricultural fields, the rhizobia associated with these plants are facing new stresses, mainly from fertilization and irrigation. In this study, investigations on the nodulation of three cultivated medicinal legumes, Astragalus mongholicus, Astragalus membranaceus and Hedysarum polybotrys were performed. Bacterial isolates from root nodules of these legumes were subjected to genetic diversity and multilocus sequence analyses. In addition, the distribution of nodule bacteria related to soil factors and host plants was studied. A total 367 bacterial isolates were obtained and 13 genospecies were identified. The predominant microsymbionts were identified as Mesorhizobium septentrionale, Mesorhizobium temperatum, Mesorhizobium tianshanense, Mesorhizobium ciceri and Mesorhizobium muleiense. M. septentrionale was found in most root nodules especially from legumes grown in the barren soils (with low available nitrogen and low organic carbon contents), while M. temperatum was predominant in nodules where the plants were grown in the nitrogen-rich fields. A. mongholicus tended to be associated with M. septentrionale, M. temperatum and M. ciceri in different soils, while A. membranaceus and H. polybotrys tended to be associated with M. tianshanense and M. septentrionale, respectively. This study showed that soil fertility may be the main determinant for the distribution of rhizobia associated with these cultured legume plants.
Collapse
Affiliation(s)
- Hui Yan
- State Key Laboratory of Agrobiotechnology, Beijing 100193, China; College of Biological Sciences and Rhizobia Research Center, China Agricultural University, Beijing 100193, China
| | - Zhao Jun Ji
- State Key Laboratory of Agrobiotechnology, Beijing 100193, China; College of Biological Sciences and Rhizobia Research Center, China Agricultural University, Beijing 100193, China
| | - Yin Shan Jiao
- State Key Laboratory of Agrobiotechnology, Beijing 100193, China; College of Biological Sciences and Rhizobia Research Center, China Agricultural University, Beijing 100193, China
| | - En Tao Wang
- State Key Laboratory of Agrobiotechnology, Beijing 100193, China; College of Biological Sciences and Rhizobia Research Center, China Agricultural University, Beijing 100193, China; Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340 México D.F., Mexico
| | - Wen Feng Chen
- State Key Laboratory of Agrobiotechnology, Beijing 100193, China; College of Biological Sciences and Rhizobia Research Center, China Agricultural University, Beijing 100193, China.
| | - Bao Lin Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Wen Xin Chen
- State Key Laboratory of Agrobiotechnology, Beijing 100193, China; College of Biological Sciences and Rhizobia Research Center, China Agricultural University, Beijing 100193, China
| |
Collapse
|
12
|
Diouf F, Diouf D, Klonowska A, Le Queré A, Bakhoum N, Fall D, Neyra M, Parrinello H, Diouf M, Ndoye I, Moulin L. Genetic and genomic diversity studies of Acacia symbionts in Senegal reveal new species of Mesorhizobium with a putative geographical pattern. PLoS One 2015; 10:e0117667. [PMID: 25658650 PMCID: PMC4319832 DOI: 10.1371/journal.pone.0117667] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/29/2014] [Indexed: 11/29/2022] Open
Abstract
Acacia senegal (L) Willd. and Acacia seyal Del. are highly nitrogen-fixing and moderately salt tolerant species. In this study we focused on the genetic and genomic diversity of Acacia mesorhizobia symbionts from diverse origins in Senegal and investigated possible correlations between the genetic diversity of the strains, their soil of origin, and their tolerance to salinity. We first performed a multi-locus sequence analysis on five markers gene fragments on a collection of 47 mesorhizobia strains of A. senegal and A. seyal from 8 localities. Most of the strains (60%) clustered with the M. plurifarium type strain ORS 1032T, while the others form four new clades (MSP1 to MSP4). We sequenced and assembled seven draft genomes: four in the M. plurifarium clade (ORS3356, ORS3365, STM8773 and ORS1032T), one in MSP1 (STM8789), MSP2 (ORS3359) and MSP3 (ORS3324). The average nucleotide identities between these genomes together with the MLSA analysis reveal three new species of Mesorhizobium. A great variability of salt tolerance was found among the strains with a lack of correlation between the genetic diversity of mesorhizobia, their salt tolerance and the soils samples characteristics. A putative geographical pattern of A. senegal symbionts between the dryland north part and the center of Senegal was found, reflecting adaptations to specific local conditions such as the water regime. However, the presence of salt does not seem to be an important structuring factor of Mesorhizobium species.
Collapse
Affiliation(s)
- Fatou Diouf
- Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta DIOP de Dakar, Centre de Recherche de Bel Air, Dakar, Senegal
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (LAPSE), Dakar, Senegal
- IRD-Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), Campus de Baillarguet, Montpellier, France
| | - Diegane Diouf
- Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta DIOP de Dakar, Centre de Recherche de Bel Air, Dakar, Senegal
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (LAPSE), Dakar, Senegal
| | - Agnieszka Klonowska
- IRD-Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), Campus de Baillarguet, Montpellier, France
| | - Antoine Le Queré
- Laboratoire Mixte International Biotechnologie Microbienne et Végétale (LBMV), Rabat, Morocco
| | - Niokhor Bakhoum
- Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta DIOP de Dakar, Centre de Recherche de Bel Air, Dakar, Senegal
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (LAPSE), Dakar, Senegal
| | - Dioumacor Fall
- Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta DIOP de Dakar, Centre de Recherche de Bel Air, Dakar, Senegal
- Institut Sénégalais de Recherches Agricoles (ISRA), Dakar, Senegal
| | - Marc Neyra
- Irstea, UR MALY, centre de Lyon-Villeurbanne, Villeurbanne, France
| | - Hugues Parrinello
- MGX-Montpellier GenomiX, Institut de Génomique Fonctionnelle, Montpellier, France
| | - Mayecor Diouf
- Institut Sénégalais de Recherches Agricoles (ISRA), Dakar, Senegal
| | - Ibrahima Ndoye
- Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta DIOP de Dakar, Centre de Recherche de Bel Air, Dakar, Senegal
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (LAPSE), Dakar, Senegal
| | - Lionel Moulin
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (LAPSE), Dakar, Senegal
- IRD-Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), Campus de Baillarguet, Montpellier, France
| |
Collapse
|
13
|
Roumiantseva ML, Muntyan VS, Mengoni A, Simarov BV. ITS-polymorphism of salt-tolerant and salt-sensitive native isolates of Sinorhizoblum meliloti-symbionts of alfalfa, clover and fenugreek plants. RUSS J GENET+ 2014. [DOI: 10.1134/s1022795414040103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Wade TK, Le Quéré A, Laguerre G, N’Zoué A, Ndione JA, doRego F, Sadio O, Ndoye I, Neyra M. Eco-geographical diversity of cowpea bradyrhizobia in Senegal is marked by dominance of two genetic types. Syst Appl Microbiol 2014; 37:129-39. [DOI: 10.1016/j.syapm.2013.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 10/22/2013] [Accepted: 10/23/2013] [Indexed: 10/25/2022]
|
15
|
Bakhoum N, Roux CL, Diouf D, Kane A, Ndoye F, Fall D, Duponnois R, Noba K, Sylla SN, Galiana A. Distribution and Diversity of Rhizobial Populations Associated with <i>Acacia senegal</i> (L.) Willd. Provenances in Senegalese Arid and Semiarid Regions. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ojf.2014.42019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Ardley JK, Reeve WG, O'Hara GW, Yates RJ, Dilworth MJ, Howieson JG. Nodule morphology, symbiotic specificity and association with unusual rhizobia are distinguishing features of the genus Listia within the Southern African crotalarioid clade Lotononis s.l. ANNALS OF BOTANY 2013; 112:1-15. [PMID: 23712451 PMCID: PMC3690986 DOI: 10.1093/aob/mct095] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 03/25/2013] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND AIMS The legume clade Lotononis sensu lato (s.l.; tribe Crotalarieae) comprises three genera: Listia, Leobordea and Lotononis sensu stricto (s.s.). Listia species are symbiotically specific and form lupinoid nodules with rhizobial species of Methylobacterium and Microvirga. This work investigated whether these symbiotic traits were confined to Listia by determining the ability of rhizobial strains isolated from species of Lotononis s.l. to nodulate Listia, Leobordea and Lotononis s.s. hosts and by examining the morphology and structure of the resulting nodules. METHODS Rhizobia were characterized by sequencing their 16S rRNA and nodA genes. Nodulation and N2 fixation on eight taxonomically diverse Lotononis s.l. species were determined in glasshouse trials. Nodules of all hosts, and the process of infection and nodule initiation in Listia angolensis and Listia bainesii, were examined by light microscopy. KEY RESULTS Rhizobia associated with Lotononis s.l. were phylogenetically diverse. Leobordea and Lotononis s.s. isolates were most closely related to Bradyrhizobium spp., Ensifer meliloti, Mesorhizobium tianshanense and Methylobacterium nodulans. Listia angolensis formed effective nodules only with species of Microvirga. Listia bainesii nodulated only with pigmented Methylobacterium. Five lineages of nodA were found. Listia angolensis and L. bainesii formed lupinoid nodules, whereas nodules of Leobordea and Lotononis s.s. species were indeterminate. All effective nodules contained uniformly infected central tissue. Listia angolensis and L. bainesii nodule initials occurred on the border of the hypocotyl and along the tap root, and nodule primordia developed in the outer cortical layer. Neither root hair curling nor infection threads were seen. CONCLUSIONS Two specificity groups occur within Lotononis s.l.: Listia species are symbiotically specific, while species of Leobordea and Lotononis s.s. are generally promiscuous and interact with rhizobia of diverse chromosomal and symbiotic lineages. The seasonally waterlogged habitat of Listia species may favour the development of symbiotic specificity.
Collapse
Affiliation(s)
- Julie K Ardley
- Centre for Rhizobium Studies, Murdoch University, Murdoch WA 6150, Australia.
| | | | | | | | | | | |
Collapse
|
17
|
Ardley JK, Parker MA, De Meyer SE, Trengove RD, O’Hara GW, Reeve WG, Yates RJ, Dilworth MJ, Willems A, Howieson JG. Microvirga lupini sp. nov., Microvirga lotononidis sp. nov. and Microvirga zambiensis sp. nov. are alphaproteobacterial root-nodule bacteria that specifically nodulate and fix nitrogen with geographically and taxonomically separate legume hosts. Int J Syst Evol Microbiol 2012; 62:2579-2588. [DOI: 10.1099/ijs.0.035097-0] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strains of Gram-negative, rod-shaped, non-spore-forming bacteria were isolated from nitrogen-fixing nodules of the native legumes Listia angolensis (from Zambia) and Lupinus texensis (from Texas, USA). Phylogenetic analysis of the 16S rRNA gene showed that the novel strains belong to the genus
Microvirga
, with ≥96.1 % sequence similarity with type strains of this genus. The closest relative of the representative strains Lut6T and WSM3557T was
Microvirga flocculans
TFBT, with 97.6–98.0 % similarity, while WSM3693T was most closely related to
Microvirga aerilata
5420S-16T, with 98.8 % similarity. Analysis of the concatenated sequences of four housekeeping gene loci (dnaK, gyrB, recA and rpoB) and cellular fatty acid profiles confirmed the placement of Lut6T, WSM3557T and WSM3693T within the genus
Microvirga
. DNA–DNA relatedness values, and physiological and biochemical tests allowed genotypic and phenotypic differentiation of Lut6T, WSM3557T and WSM3693T from each other and from other
Microvirga
species with validly published names. The nodA sequence of Lut6T was placed in a clade that contained strains of
Rhizobium
,
Mesorhizobium
and
Sinorhizobium
, while the 100 % identical nodA sequences of WSM3557T and WSM3693T clustered with
Bradyrhizobium
,
Burkholderia
and
Methylobacterium
strains. Concatenated sequences for nifD and nifH show that the sequences of Lut6T, WSM3557T and WSM3693T were most closely related to that of
Rhizobium etli
CFN42T
nifDH. On the basis of genotypic, phenotypic and DNA relatedness data, three novel species of
Microvirga
are proposed: Microvirga lupini sp. nov. (type strain Lut6T = LMG 26460T = HAMBI 3236T), Microvirga lotononidis sp. nov. (type strain WSM3557T = LMG 26455T = HAMBI 3237T) and Microvirga zambiensis sp. nov. (type strain WSM3693T = LMG 26454T = HAMBI 3238T).
Collapse
Affiliation(s)
- Julie K. Ardley
- Centre for Rhizobium Studies, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Matthew A. Parker
- Department of Biological Sciences, State University of New York, Binghamton, 4400 Vestal Parkway, Vestal, NY 13850, USA
| | - Sofie E. De Meyer
- Microbiology Laboratory, University of Gent, Sint-Pietersnieuwstraat 25, B-9000 Ghent, Belgium
| | - Robert D. Trengove
- Separation Science and Metabolomics Laboratory, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Graham W. O’Hara
- Centre for Rhizobium Studies, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Wayne G. Reeve
- Centre for Rhizobium Studies, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Ron J. Yates
- Department of Agriculture Western Australia, 3 Baron Hay Court, South Perth, WA 6151, Australia
- Centre for Rhizobium Studies, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Michael J. Dilworth
- Centre for Rhizobium Studies, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Anne Willems
- Microbiology Laboratory, University of Gent, Sint-Pietersnieuwstraat 25, B-9000 Ghent, Belgium
| | - John G. Howieson
- Centre for Rhizobium Studies, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| |
Collapse
|
18
|
Laranjo M, Young JPW, Oliveira S. Multilocus sequence analysis reveals multiple symbiovars within Mesorhizobium species. Syst Appl Microbiol 2012; 35:359-67. [DOI: 10.1016/j.syapm.2012.06.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 06/07/2012] [Accepted: 06/09/2012] [Indexed: 10/28/2022]
|
19
|
Zhang YM, Li Y, Chen WF, Wang ET, Sui XH, Li QQ, Zhang YZ, Zhou YG, Chen WX. Bradyrhizobium huanghuaihaiense sp. nov., an effective symbiotic bacterium isolated from soybean (Glycine max L.) nodules. Int J Syst Evol Microbiol 2012; 62:1951-1957. [PMID: 22003042 DOI: 10.1099/ijs.0.034546-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In a survey of the biodiversity and biogeography of rhizobia associated with soybean (Glycine max L.) in different sites of the Northern (Huang-Huai-Hai) Plain of China, ten strains were defined as representing a novel genomic species in the genus of Bradyrhizobium. They were distinguished from defined species in restriction fragment length polymorphism (RFLP) analysis of the 16S rRNA gene and the 16S-23S rRNA gene intergenic spacer (IGS). In BOX-PCR, these strains presented two patterns that shared 94% similarity, demonstrating that they were a homogenous group with limited diversity. In phylogenetic analyses of the 16S rRNA gene, IGS and housekeeping gene sequences, four representative strains formed a distant lineage within the genus Bradyrhizobium, which was consistent with the results of DNA-DNA hybridization. The strains of this novel group formed effective nodules with G. max, Glycine soja and Vigna unguiculata in cross-nodulation tests and harboured symbiotic genes (nodC and nifH) identical to those of reference strains of Bradyrhizobium japonicum, Bradyrhizobium liaoningense and 'Bradyrhizobium daqingense' originating from soybean, implying that the novel group may have obtained these symbiotic genes by lateral gene transfer. In analyses of cellular fatty acids and phenotypic features, some differences were found between the novel group and related Bradyrhizobium species, demonstrating that the novel group is distinct phenotypically from other Bradyrhizobium species. Based upon the data obtained, these strains are proposed to represent a novel species, Bradyrhizobium huanghuaihaiense sp. nov., with CCBAU 23303(T) ( = LMG 26136(T) = CGMCC 1.10948(T) = HAMBI 3180(T)) as the type strain. The DNA G+C content of strain CCBAU 23303(T) is 61.5 mol% (T(m)).
Collapse
Affiliation(s)
- Yan Ming Zhang
- State Key Laboratory of Agrobiotechnology and Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Ying Li
- State Key Laboratory of Agrobiotechnology and Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Wen Feng Chen
- State Key Laboratory of Agrobiotechnology and Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - En Tao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340 México Distrito Federal, Mexico
- State Key Laboratory of Agrobiotechnology and Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Xin Hua Sui
- State Key Laboratory of Agrobiotechnology and Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Qin Qin Li
- State Key Laboratory of Agrobiotechnology and Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Yun Zeng Zhang
- State Key Laboratory of Agrobiotechnology and Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Yu Guang Zhou
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Wen Xin Chen
- State Key Laboratory of Agrobiotechnology and Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
20
|
Fterich A, Mahdhi M, Lafuente A, Pajuelo E, Caviedes MA, Rodriguez-Llorente ID, Mars M. Taxonomic and symbiotic diversity of bacteria isolated from nodules of Acacia tortilis subsp. raddiana in arid soils of Tunisia. Can J Microbiol 2012; 58:738-51. [PMID: 22616625 DOI: 10.1139/w2012-048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A collection of rhizobia isolated from Acacia tortilis subsp. raddiana nodules from various arid soils in Tunisia was analyzed for their diversity at both taxonomic and symbiotic levels. The isolates were found to be phenotypically diverse. The majority of the isolates tolerated 3% NaCl and grew at 40 °C. Genetic characterization emphasized that most of the strains (42/50) belong to the genus Ensifer, particularly the species Ensifer meliloti, Ensifer garamanticus, and Ensifer numidicus. Symbiotic properties of isolates showed diversity in their capacity to nodulate their host plant and to fix atmospheric nitrogen. The most effective isolates were closely related to E. garamanticus. Nodulation tests showed that 3 strains belonging to Mesorhizobium genus failed to renodulate their host plant, which is surprising for symbiotic rhizobia. Furthermore, our results support the presence of non-nodulating endophytic bacteria belonging to the Acinetobacter genus in legume nodules.
Collapse
Affiliation(s)
- A Fterich
- Laboratoire de biotechnologies végétales appliquées à l'amélioration des cultures, Faculté des sciences de Gabès, Université de Gabès, Cité Erriadh, Zrig 6072 Gabès, Tunisia
| | | | | | | | | | | | | |
Collapse
|
21
|
Klonowska A, Chaintreuil C, Tisseyre P, Miché L, Melkonian R, Ducousso M, Laguerre G, Brunel B, Moulin L. Biodiversity of Mimosa pudica rhizobial symbionts (Cupriavidus taiwanensis, Rhizobium mesoamericanum) in New Caledonia and their adaptation to heavy metal-rich soils. FEMS Microbiol Ecol 2012; 81:618-35. [DOI: 10.1111/j.1574-6941.2012.01393.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 04/06/2012] [Accepted: 04/09/2012] [Indexed: 11/30/2022] Open
|
22
|
Boukhatem ZF, Domergue O, Bekki A, Merabet C, Sekkour S, Bouazza F, Duponnois R, Lajudie P, Galiana A. Symbiotic characterization and diversity of rhizobia associated with native and introduced acacias in arid and semi-arid regions in Algeria. FEMS Microbiol Ecol 2012; 80:534-47. [DOI: 10.1111/j.1574-6941.2012.01315.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 01/02/2012] [Accepted: 01/23/2012] [Indexed: 11/30/2022] Open
Affiliation(s)
- Zineb Faiza Boukhatem
- Laboratoire de Biotechnologie des Rhizobiums et Amélioration des Plantes; Département de Biotechnologie; Université d'Oran; Es Senia; Algeria
| | - Odile Domergue
- INRA; Laboratoire des Symbioses Tropicales et Méditerranéennes; UMR LSTM; Montpellier; France
| | - Abdelkader Bekki
- Laboratoire de Biotechnologie des Rhizobiums et Amélioration des Plantes; Département de Biotechnologie; Université d'Oran; Es Senia; Algeria
| | - Chahinez Merabet
- Laboratoire de Biotechnologie des Rhizobiums et Amélioration des Plantes; Département de Biotechnologie; Université d'Oran; Es Senia; Algeria
| | - Sonia Sekkour
- Laboratoire de Biotechnologie des Rhizobiums et Amélioration des Plantes; Département de Biotechnologie; Université d'Oran; Es Senia; Algeria
| | - Fatima Bouazza
- Laboratoire de Biotechnologie des Rhizobiums et Amélioration des Plantes; Département de Biotechnologie; Université d'Oran; Es Senia; Algeria
| | - Robin Duponnois
- IRD; Laboratoire des Symbioses Tropicales et Méditerranéennes; UMR LSTM; Montpellier; France
| | - Philippe Lajudie
- IRD; Laboratoire des Symbioses Tropicales et Méditerranéennes; UMR LSTM; Montpellier; France
| | - Antoine Galiana
- CIRAD; Laboratoire des Symbioses Tropicales et Méditerranéennes; UMR LSTM; Montpellier; France
| |
Collapse
|
23
|
Mishra RPN, Tisseyre P, Melkonian R, Chaintreuil C, Miché L, Klonowska A, Gonzalez S, Bena G, Laguerre G, Moulin L. Genetic diversity of Mimosa pudica rhizobial symbionts in soils of French Guiana: investigating the origin and diversity of Burkholderia phymatum and other beta-rhizobia. FEMS Microbiol Ecol 2011; 79:487-503. [PMID: 22093060 DOI: 10.1111/j.1574-6941.2011.01235.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 10/14/2011] [Accepted: 10/19/2011] [Indexed: 12/01/2022] Open
Abstract
The genetic diversity of 221 Mimosa pudica bacterial symbionts trapped from eight soils from diverse environments in French Guiana was assessed by 16S rRNA PCR-RFLP, REP-PCR fingerprints, as well as by phylogenies of their 16S rRNA and recA housekeeping genes, and by their nifH, nodA and nodC symbiotic genes. Interestingly, we found a large diversity of beta-rhizobia, with Burkholderia phymatum and Burkholderia tuberum being the most frequent and diverse symbiotic species. Other species were also found, such as Burkholderia mimosarum, an unnamed Burkholderia species and, for the first time in South America, Cupriavidus taiwanensis. The sampling site had a strong influence on the diversity of the symbionts sampled, and the specific distributions of symbiotic populations between the soils were related to soil composition in some cases. Some alpha-rhizobial strains taxonomically close to Rhizobium endophyticum were also trapped in one soil, and these carried two copies of the nodA gene, a feature not previously reported. Phylogenies of nodA, nodC and nifH genes showed a monophyly of symbiotic genes for beta-rhizobia isolated from Mimosa spp., indicative of a long history of interaction between beta-rhizobia and Mimosa species. Based on their symbiotic gene phylogenies and legume hosts, B. tuberum was shown to contain two large biovars: one specific to the mimosoid genus Mimosa and one to South African papilionoid legumes.
Collapse
|
24
|
Zhang YM, Li Y, Chen WF, Wang ET, Tian CF, Li QQ, Zhang YZ, Sui XH, Chen WX. Biodiversity and biogeography of rhizobia associated with soybean plants grown in the North China Plain. Appl Environ Microbiol 2011; 77:6331-42. [PMID: 21784912 PMCID: PMC3187167 DOI: 10.1128/aem.00542-11] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 07/09/2011] [Indexed: 11/20/2022] Open
Abstract
As the putative center of origin for soybean and the second largest region of soybean production in China, the North China Plain covers temperate and subtropical regions with diverse soil characteristics. However, the soybean rhizobia in this plain have not been sufficiently studied. To investigate the biodiversity and biogeography of soybean rhizobia in this plain, a total of 309 isolates of symbiotic bacteria from the soybean nodules collected from 16 sampling sites were studied by molecular characterization. These isolates were classified into 10 genospecies belonging to the genera Sinorhizobium and Bradyrhizobium, including four novel groups, with S. fredii (68.28%) as the dominant group. The phylogeny of symbiotic genes nodC and nifH defined four lineages among the isolates associated with Sinorhizobium fredii, Bradyrhizobium elkanii, B. japonicum, and B. yuanmingense, demonstrating the different origins of symbiotic genes and their coevolution with the chromosome. The possible lateral transfer of symbiotic genes was detected in several cases. The association between soil factors (available N, P, and K and pH) and the distribution of genospecies suggest clear biogeographic patterns: Sinorhizobium spp. were superdominant in sampling sites with alkaline-saline soils, while Bradyrhizobium spp. were more abundant in neutral soils. This study clarified the biodiversity and biogeography of soybean rhizobia in the North China Plain.
Collapse
Affiliation(s)
- Yan Ming Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Ying Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Wen Feng Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - En Tao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340 México D.F., México
| | - Chang Fu Tian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Qin Qin Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Yun Zeng Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Xin Hua Sui
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Wen Xin Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| |
Collapse
|
25
|
Fterich A, Mahdhi M, Caviedes MA, Pajuelo E, Rivas R, Rodriguez-Llorente ID, Mars M. Characterization of root-nodulating bacteria associated to Prosopis farcta growing in the arid regions of Tunisia. Arch Microbiol 2011; 193:385-97. [PMID: 21359955 DOI: 10.1007/s00203-011-0683-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/02/2011] [Accepted: 02/04/2011] [Indexed: 10/18/2022]
Abstract
Diversity of 50 bacterial isolates recovered from root nodules of Prosopis farcta grown in different arid soils in Tunisia, was investigated. Characterization of isolates was assessed using a polyphasic approach including phenotypic characteristics, 16S rRNA gene PCR--RFLP and sequencing, nodA gene sequencing and MLSA. It was found that most of isolates are tolerant to high temperature (40°C) and salinity (3%). Genetic characterization emphasizes that isolates were assigned to the genus Ensifer (80%), Mesorhizobium (4%) and non-nodulating endophytic bacteria (16%). Forty isolates belonging to the genus Ensifer were affiliated to Ensifer meliloti, Ensifer xinjiangense/Ensifer fredii and Ensifer numidicus species. Two isolates belonged to the genus Mesorhizobium. Eight isolates failing to renodulate their host plant were endophytic bacteria and belonged to Bacillus, Paenibacillus and Acinetobacter genera. Symbiotic properties of nodulating isolates showed a diversity in their capacity to infect their host plant and fix atmospheric nitrogen. Isolate PG29 identified as Ensifer meliloti was the most effective one. Ability of Prosopis farcta to establish symbiosis with rhizobial species confers an important advantage for this species to be used in reforestation programs. This study offered the first systematic information about the diversity of microsymbionts nodulating Prosopis farcta in the arid regions of Tunisia.
Collapse
Affiliation(s)
- A Fterich
- Laboratoire de Biotechnologies Végétales Appliquées à l'Amélioration des Cultures, Faculté des Sciences de Gabès, Université de Gabes, Cité Erriadh Zrig, 6072, Gabès, Tunisia
| | | | | | | | | | | | | |
Collapse
|
26
|
Ghodhbane-Gtari F, Nouioui I, Chair M, Boudabous A, Gtari M. 16S-23S rRNA intergenic spacer region variability in the genus Frankia. MICROBIAL ECOLOGY 2010; 60:487-495. [PMID: 20179918 DOI: 10.1007/s00248-010-9641-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Accepted: 02/02/2010] [Indexed: 05/28/2023]
Abstract
16S-23S rRNA internally transcribed spacer (ITS) sequences from 53 Frankia strains were sequenced and sized from polymerase chain reaction amplification products and compiled with 14 selected 16S-23S ITS sequences from public database. Frankia genomes included two to three ITS copies lacking length polymorphism except for nine strains. No tRNA gene was encountered in this region. Frankia strains exhibited various lengths (369 to 452 nt) and a wide range of sequence similarity (35-100%) in the ITS region. The average pairwise distance varied from 0.368 (clusters 1 and 2) to 0.964 (clusters 3 and 4) and was 0.397, 0.138, 0.129, and 0.016, respectively, for cluster 4 (saprophytic non-infective/non-effective), clusters 1 and 3 (facultative symbiotic), and cluster 2 (obligate symbiotic). This suggests a gradual erosion of Frankia diversity concomitantly with a shift from saprophytic non-infective/non-effective to facultative and symbiotic lifestyle. Comparative sequence analyses of the 16S-23S rRNA intergenic spacer region of Frankia strains are not useful to assign them to their respective cluster or host infection group. Accurate assignment required the inclusion of the adjacent 16S and 23S rRNA gene fragments.
Collapse
Affiliation(s)
- Faten Ghodhbane-Gtari
- Laboratoire Microorganismes and Biomolécules Actives, Département de Biologie, Faculté des Sciences de Tunis, Campus Universitaire, 2092 Tunis, Tunisia
| | | | | | | | | |
Collapse
|
27
|
Cabrera YT, Valdés M. Different genetic groups of Frankia within the root nodules of Casuarina growing in Mexico. Symbiosis 2009. [DOI: 10.1007/s13199-009-0034-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Miché L, Moulin L, Chaintreuil C, Contreras-Jimenez JL, Munive-Hernández JA, Del Carmen Villegas-Hernandez M, Crozier F, Béna G. Diversity analyses of Aeschynomene symbionts in Tropical Africa and Central America reveal that nod-independent stem nodulation is not restricted to photosynthetic bradyrhizobia. Environ Microbiol 2009; 12:2152-64. [PMID: 21966910 DOI: 10.1111/j.1462-2920.2009.02090.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tropical aquatic legumes of the genus Aeschynomene are unique in that they can be stem-nodulated by photosynthetic bradyrhizobia. Moreover, a recent study demonstrated that two Aeschynomene indica symbionts lack canonical nod genes, thereby raising questions about the distribution of such atypical symbioses among rhizobial-legume interactions. Population structure and genomic diversity were compared among stem-nodulating bradyrhizobia isolated from various Aeschynomene species of Central America and Tropical Africa. Phylogenetic analyses based on the recA gene and whole-genome amplified fragment length polymorphism (AFLP) fingerprints on 110 bacterial strains highlighted that all the photosynthetic strains form a separate cluster among bradyrhizobia, with no obvious structuring according to their geographical or plant origins. Nod-independent symbiosis was present in all sampling areas and seemed to be linked to Aeschynomene host species. However, it was not strictly dependent on photosynthetic ability, as exemplified by a newly identified cluster of strains that lacked canonical nod genes and efficiently stem-nodulated A. indica, but were not photosynthetic. Interestingly, the phenotypic properties of this new cluster of bacteria were reflected by their phylogenetical position, as being intermediate in distance between classical root-nodulatingBradyrhizobium spp. and photosynthetic ones. This result opens new prospects about stem-nodulating bradyrhizobial evolution.
Collapse
|
29
|
Genetic characterisation of endophytic actinobacteria isolated from the medicinal plants in Sichuan. ANN MICROBIOL 2008. [DOI: 10.1007/bf03175563] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
30
|
Fall D, Diouf D, Ourarhi M, Faye A, Abdelmounen H, Neyra M, Sylla SN, Missbah El Idrissi M. Phenotypic and genotypic characteristics of Acacia senegal (L.) Willd. root-nodulating bacteria isolated from soils in the dryland part of Senegal. Lett Appl Microbiol 2008; 47:85-97. [PMID: 18565139 DOI: 10.1111/j.1472-765x.2008.02389.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS We characterized phenotypically and genotypically root-nodulating bacteria associated with Acacia senegal (L.) Willd. isolated from the soils surrounding A. senegal trees in the dry land area of Senegal. METHODS AND RESULTS The phenotypical and genotypical characterizations we carried out showed a high diversity of A. senegal root-nodulating bacteria. Phenotypic patterns showed adaptations of the rhizobial strains to many environmental stresses such as heat, drought, and salinity. Twelve molecular groups were distinguished by profiles obtained using polymerase chain reaction/restriction fragment length polymorphism techniques from intergenic spacer region rDNA. The highest genetic diversity was found around the A. senegal rhizosphere. Therefore, A. senegal seemed to have a positive influence on occurrence and genotypical diversity of rhizobial populations. Rhizobial isolates obtained in this study belonged phylogenetically to the genera Mesorhizobium and Rhizobium. CONCLUSIONS Our results provided information about the genetic diversity of the rhizobial strains associated with A. senegal and suggested the adaptability of natural rhizobial populations to major ecological environmental stress within these soil environments. SIGNIFICANCE AND IMPACT OF THE STUDY These results suggested a potential selection of compatible and well adapted strains under stress conditions as inoculants for successful A. senegal growth in arid lands.
Collapse
Affiliation(s)
- D Fall
- Département de Biologie Végétale, Université Cheikh Anta Diop, Laboratoire Commun de Microbiologie, IRD/ISRA/UCAD, Dakar, Senegal
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Mahdhi M, de Lajudie P, Mars M. Phylogenetic and symbiotic characterization of rhizobial bacteria nodulating Argyrolobium uniflorum in Tunisian arid soils. Can J Microbiol 2008; 54:209-17. [DOI: 10.1139/w07-131] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Forty-two bacterial isolates from root nodules of Argyrolobium uniflorum growing in the arid areas of Tunisia were characterized by phenotypic features, RFLP, and sequencing of PCR-amplified 16S rRNA genes. The isolates were found to be phenotypically diverse. The majority of the isolates tolerated 3% NaCl and grew at temperatures up to 40 °C. Phylogenetically, the new isolates were grouped in the genera Sinorhizobium (27), Rhizobium (13), and Agrobacterium (2). Except for the 2 Agrobacterium isolates, all strains induced nodulation on Argyrolobium uniflorum, but the number of nodules and nitrogen fixation efficiency varied among them. Sinorhizobium sp. strains STM 4034, STM 4036, and STM 4039, forming the most effective symbiosis, are potential candidates for inoculants in revegetalisation programs.
Collapse
Affiliation(s)
- M. Mahdhi
- Laboratoire de Biotechnologies végétales Appliquées à l’Amélioration des cultures, Faculté des Sciences de Gabès, Cité Erriadh Zrig 6072 Gabès, Tunisia
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM) UMR 113 IRD/CIRAD/AGRO-M/UM-II, USC INRA Campus International de Baillarguet TA-A82/ J 34398 Montpellier CEDEX 5, France
| | - P. de Lajudie
- Laboratoire de Biotechnologies végétales Appliquées à l’Amélioration des cultures, Faculté des Sciences de Gabès, Cité Erriadh Zrig 6072 Gabès, Tunisia
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM) UMR 113 IRD/CIRAD/AGRO-M/UM-II, USC INRA Campus International de Baillarguet TA-A82/ J 34398 Montpellier CEDEX 5, France
| | - M. Mars
- Laboratoire de Biotechnologies végétales Appliquées à l’Amélioration des cultures, Faculté des Sciences de Gabès, Cité Erriadh Zrig 6072 Gabès, Tunisia
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM) UMR 113 IRD/CIRAD/AGRO-M/UM-II, USC INRA Campus International de Baillarguet TA-A82/ J 34398 Montpellier CEDEX 5, France
| |
Collapse
|
32
|
Mahdhi M, Nzoué A, Gueye F, Merabet C, de Lajudie P, Mars M. Phenotypic and genotypic diversity of Genista saharae microsymbionts from the infra-arid region of Tunisia. Lett Appl Microbiol 2007; 45:604-9. [DOI: 10.1111/j.1472-765x.2007.02233.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Nickel resistance determinants in bradyrhizobium strains from nodules of the endemic New Caledonia legume Serianthes calycina. Appl Environ Microbiol 2007; 73:8018-22. [PMID: 17951443 DOI: 10.1128/aem.01431-07] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bradyrhizobium strains, isolated in New Caledonia from nodules of the endemic legume Serianthes calycina growing in nickel-rich soils, were able to grow in the presence of 15 mM NiCl2. The genomes of these strains harbored two Ni resistance determinants, the cnr and nre operons. By constructing a cnrA mutant, we demonstrated that the cnr operon determines the high nickel resistance in Bradyrhizobium strains.
Collapse
|
34
|
Diouf D, Samba-Mbaye R, Lesueur D, Ba AT, Dreyfus B, de Lajudie P, Neyra M. Genetic diversity of Acacia seyal Del. rhizobial populations indigenous to Senegalese soils in relation to salinity and pH of the sampling sites. MICROBIAL ECOLOGY 2007; 54:553-66. [PMID: 17406772 DOI: 10.1007/s00248-007-9243-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 03/01/2007] [Accepted: 03/02/2007] [Indexed: 05/14/2023]
Abstract
The occurrence and the distribution of rhizobial populations naturally associated to Acacia seyal Del. were characterized in 42 soils from Senegal. The diversity of rhizobial genotypes, as characterized by polymerase chain reaction restriction fragment length polymorphism (RFLP) analysis of 16S-23S rDNA, performed on DNA extracted from 138 nodules resulted in 15 clusters. Results indicated the widespread occurrence of compatible rhizobia associated to A. seyal in various ecogeographic areas. However, the clustering of rhizobial populations based on intergenic spacer (IGS) RFLP profiles did not reflect their geographic origin. Four genera were discriminated on the basis of 16S rRNA gene sequences of the strains representative for the IGS-RFLP profiles. The majority of rhizobia associated to A. seyal were affiliated to Mesorhizobium and Sinorhizobium 64 and 29%, respectively, of the different IGS-RFLP profiles. Our results demonstrate the coexistence inside the nodule of plant-pathogenic non-N(2)-fixing Agrobacterium and Burkholderia strains, which induced the formation of ineffective nodules, with symbiotic rhizobia. Nodulation was recorded in saline soils and/or at low pH values or in alkaline soils, suggesting adaptability of natural rhizobial populations to major ecological environmental stress and their ability to establish symbiotic associations within these soil environments. These results contribute to the progressing research efforts to uncover the biodiversity of rhizobia and to improve nitrogen fixation in agroforestry systems in sub-Saharan Africa.
Collapse
Affiliation(s)
- Diegane Diouf
- Département de Biologie Végétale, Université Cheikh Anta Diop, BP 5005, Dakar, Senegal.
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
AIMS The aim of this study was to optimize DNA extraction from legume nodules to obtain large amounts of high-quality genomic DNA. METHODS AND RESULTS Nodules of different legume species were used. Varied concentrations of guanidine thiocyanate (from 6 mol l(-1) to 0.05 mmol l(-1)), a component of DNAzol, were tested. The quality of DNA extract was determined by PCR-RFLP. The best results were obtained with 0.5 mmol l(-1) guanidine thiocyanate, which resulted in greater DNA yield than with higher and lower concentrations or with DNAzol. CONCLUSION The procedure using 0.5 mmol l(-1) guanidine thiocyanate yields the highest DNA amount when compared with previously described protocols and offers a reliable method to isolate DNA from nodules of different origins. SIGNIFICANCE AND IMPACT OF THE STUDY Irrespective of nodule origin, DNA yield was increased significantly, by two (e.g., Vigna nodules) to seven (Acacia auricoliformis nodules) times. In addition, the proposed procedure's costs are lower than those using the DNAzol.
Collapse
Affiliation(s)
- T Krasova-Wade
- Laboratoire Commun de Microbiologie Centre de Recherche de Bel Air, Dakar, Senegal.
| | | |
Collapse
|
36
|
Safronova V, Chizhevskaya E, Bullitta S, Andronov E, Belimov A, Charles TC, Lindström K. Presence of a novel 16Sâ23S rRNA gene intergenic spacer insert in Bradyrhizobium canariense strains. FEMS Microbiol Lett 2007; 269:207-12. [PMID: 17241238 DOI: 10.1111/j.1574-6968.2006.00623.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Seven slow-growing bacterial strains isolated from root nodules of yellow serradella (Ornithopus compressus) that originated from Asinara Island on North Western Sardinia in Italy were characterized by partial 16S rRNA gene and intergenic spacer (ITS) sequencing as well as amplified fragment length polymorphism (AFLP) genomic fingerprinting. The results indicated that the O. compressus isolates belong to the Bradyrhizobium canariense species. The analysis of ITS sequences divided the branch of B. canariense strains into two statistically separated groups (ITS clusters I and II). All the strains in ITS cluster I showed the presence of unique oligonucleotide insert TTAGAGACTTAGGTTTCTK. This insert was neither found in other described species of the family Rhizobiaceae nor in any other bacterial families and can be used as a natural and high selective genetic marker for ITS cluster I of B. canariense strains. ITS grouping of O. compressus isolates was supported by the unweighted pair group method with arithmetic averages cluster analysis of their AFLP patterns, suggesting that the strains of ITS cluster II were genetically closer to each other than to isolates from the ITS cluster I. A taxonomic importance is supposed of the revealed 19 bp ITS insert for an intraspecific division within high heterogeneous B. canariense species.
Collapse
Affiliation(s)
- Vera Safronova
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo, St-Petersburg-Pushkin, Russia.
| | | | | | | | | | | | | |
Collapse
|
37
|
Rasolomampianina R, Bailly X, Fetiarison R, Rabevohitra R, Béna G, Ramaroson L, Raherimandimby M, Moulin L, De Lajudie P, Dreyfus B, Avarre JC. Nitrogen-fixing nodules from rose wood legume trees (Dalbergia spp.) endemic to Madagascar host seven different genera belonging to alpha- and beta-Proteobacteria. Mol Ecol 2006; 14:4135-46. [PMID: 16262864 DOI: 10.1111/j.1365-294x.2005.02730.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although legume biodiversity is concentrated in tropical regions, the majority of studies on legume nodulating bacteria (LNB) are focused on cultivated leguminous plants from temperate regions. However, recent works on tropical regions tend to indicate that the actual diversity of LNB is largely underestimated. In this study, we report the isolation and characterization of 68 nitrogen-fixing root nodule bacteria collected from eight endemic tree species of Dalbergia in Madagascar. The isolates were characterized by (i) restriction fragment length polymorphism (RFLP) analysis of 16S-IGS rDNA, (ii) 16S rDNA gene sequencing and (iii) nodulation tests. Results revealed a wide diversity of bacteria present in the nodules of Dalbergia. Among the 68 isolated bacteria, 65 belonged to Bradyrhizobium, Mesorhizobium, Rhizobium, Azorhizobium and Phyllobacterium from the alpha-class of Proteobacteria, and three isolates belonged to Burkholderia and Ralstonia from the beta-class of Proteobacteria. Our results also show for the first time that a strain belonging to the Burkholderia cepacia complex is able to induce efficient nodules on a legume plant.
Collapse
Affiliation(s)
- R Rasolomampianina
- Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR 113 IRD/INRA/CIRAD/UM2/Agro-M, Campus International de Baillarguet, 34398 Montpellier cedex 5, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zakhia F, Jeder H, Willems A, Gillis M, Dreyfus B, de Lajudie P. Diverse bacteria associated with root nodules of spontaneous legumes in Tunisia and first report for nifH-like gene within the genera Microbacterium and Starkeya. MICROBIAL ECOLOGY 2006; 51:375-93. [PMID: 16598639 DOI: 10.1007/s00248-006-9025-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Revised: 04/08/2005] [Accepted: 04/12/2005] [Indexed: 05/08/2023]
Abstract
We characterized 34 endophytic bacterial isolates associated to root nodules collected from spontaneous legumes in the arid zone of Tunisia by 16S rDNA polymerase chain reaction (PCR)-restriction fragment length polymorphism, whole cell protein sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), 16S rDNA and 16S-23S rDNA internal transcribed spacer sequencing. Phylogenetically, these isolates belong to the branches containing the genera Inquilinus, Bosea, Rhodopseudomonas, Paracraurococcus, Phyllobacterium, Ochrobactrum, Starkeya, Sphingomonas, Pseudomonas, Agromyces, Microbacterium, Ornithinicoccus, Bacillus, and Paenibacillus. These strains did not induce any nodule formation when inoculated on the wide host spectrum legume species M. atropurpureum (Siratro) and no nodA gene could be amplified by PCR. However, nifH sequences, most similar to those of Sinorhizobium meliloti, were detected within strains related to the genera Microbacterium, Agromyces, Starkeya and Phyllobacterium.
Collapse
Affiliation(s)
- Frédéric Zakhia
- Laboratoire des Symbioses Tropicales et Méditerranéennes, Montpellier, France
| | | | | | | | | | | |
Collapse
|
39
|
Wolde-Meskel E, Terefework Z, Frostegård Å, Lindström K. Genetic diversity and phylogeny of rhizobia isolated from agroforestry legume species in southern Ethiopia. Int J Syst Evol Microbiol 2005; 55:1439-1452. [PMID: 16014464 DOI: 10.1099/ijs.0.63534-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genetic diversity within 195 rhizobial strains isolated from root nodules of 18 agroforestry species (15 woody and three herbaceous legumes) growing in diverse ecoclimatic zones in southern Ethiopia was investigated by using PCR-RFLP of the ribosomal operon [16S rRNA gene, 23S rRNA gene and the internal transcribed spacer (ITS) region between the 16S rRNA and 23S rRNA genes] and 16S rRNA gene partial sequence (800 and 1350 bp) analyses. All of the isolates and the 28 reference strains could be differentiated by using these methods. The size of the ITS varied among test strains (500-1300 bp), and 58 strains contained double copies. UPGMA dendrograms generated from cluster analyses of the 16S and 23S rRNA gene PCR-RFLP data were in good agreement, and the combined distance matrices delineated 87 genotypes, indicating considerable genetic diversity among the isolates. Furthermore, partial sequence analysis of 67 representative strains revealed 46 16S rRNA gene sequence types, among which 12 were 100% similar to those of previously described species and 34 were novel sequences with 94-99% similarity to those of recognized species. The phylogenetic analyses suggested that strains indigenous to Ethiopia belonged to the genera Agrobacterium, Bradyrhizobium, Mesorhizobium, Methylobacterium, Rhizobium and Sinorhizobium. Many of the rhizobia isolated from previously uninvestigated indigenous woody legumes had novel 16S rRNA gene sequences and were phylogenetically diverse. This study clearly shows that the characterization of symbionts of unexplored legumes growing in previously unexplored biogeographical areas will reveal additional diversity.
Collapse
Affiliation(s)
- Endalkachew Wolde-Meskel
- Norwegian University of Life Sciences, Department of Chemistry, Biotechnology and Food Science, PO Box 5040, N-1432 Ås, Norway
| | - Zewdu Terefework
- Department of Applied Chemistry and Microbiology, Biocenter 1, FIN-0014 University of Helsinki, Finland
| | - Åsa Frostegård
- Norwegian University of Life Sciences, Department of Chemistry, Biotechnology and Food Science, PO Box 5040, N-1432 Ås, Norway
| | - Kristina Lindström
- Department of Applied Chemistry and Microbiology, Biocenter 1, FIN-0014 University of Helsinki, Finland
| |
Collapse
|
40
|
Huguet V, Mergeay M, Cervantes E, Fernandez MP. Diversity of Frankia strains associated to Myrica gale in Western Europe: impact of host plant (Myrica vs. Alnus) and of edaphic factors. Environ Microbiol 2004; 6:1032-41. [PMID: 15344928 DOI: 10.1111/j.1462-2920.2004.00625.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Myricaceae can be nodulated by a variety of Frankia strains isolated from other actinorhizal families. Consequently, the genus Myrica has been considered to have low specificity with respect to microsymbiont taxa. In contrast to controlled studies of Myrica infectious capacity, field studies in North America have indicated that M. gale symbionts belong to the genetic group of Alnus-infective strains. Myrica gale is the most widely distributed species in the genus so this study focused on describing the genetic diversity of M. gale-nodulating strains from 10 sites in Western Europe across a range of edaphic conditions. When possible, the specificity of M. gale-infective strains was compared with that of Alnus-infective strains from the same sites. Nodular strains from Belgium, France and Spain were characterized using PCR-RFLP of rrs gene and 16S-23S IGS. rrs-RFLP patterns showed a high level of homogeneity among European strains with one dominant genotype. IGS-RFLP patterns revealed the largest inter and intrasite diversity in France. In Belgium, Frankia strains were found to occur in two groups according to soil pH and organic matter characteristics of the sites. European M. gale-infective strains were genetically different from European Alnus and North American M. gale-infective strains indicating the possibility of different pathways of co-evolution among geographically isolated populations.
Collapse
Affiliation(s)
- Valérie Huguet
- Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, Université Claude Bernard Lyon1, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
| | | | | | | |
Collapse
|
41
|
Ridgway K, Marland L, Harrison A, Wright J, Young J, Fitter A. Molecular diversity of Frankia in root nodules of Alnus incana grown with inoculum from polluted urban soils. FEMS Microbiol Ecol 2004; 50:255-63. [DOI: 10.1016/j.femsec.2004.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
42
|
Badosa E, Moreno C, Montesinos E. Lack of detection of ampicillin resistance gene transfer from Bt176 transgenic corn to culturable bacteria under field conditions. FEMS Microbiol Ecol 2004; 48:169-78. [DOI: 10.1016/j.femsec.2004.01.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
43
|
Huguet V, Batzli JM, Zimpfer JF, Gourbière F, Dawson JO, Fernandez MP. Nodular symbionts ofShepherdia,Alnus, andMyricafrom a sand dune ecosystem: trends in occurrence of soilborneFrankiagenotypes. ACTA ACUST UNITED AC 2004. [DOI: 10.1139/b04-043] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A successional sand dune system along the Lake Michigan shoreline was chosen to study the impact of edaphic factors, vegetation cover, and topographic position on Frankia strain distribution and infectivity. On this site, three actinorhizal species, Myrica gale L., Alnus incana (L.) Moench subsp. rugosa (Du Roi) Clausen, and Shepherdia canadensis (L.) Nutt., grew in different communities. Soil samples were collected on plots devoid of actinorhizal plants and serially diluted to inoculate the three native host plants in a greenhouse study. Strains present in the nodules formed were then genetically characterized using PCR-RFLP of the 16S23S intergenic spacer (IGS). An additional study site was included to estimate the impact of the sympatric presence of the three host species on soil infectivity and strain diversity. On this second site, soils used as inocula were collected in the rhizosphere of M. gale and S. canadensis. The M. gale and A. incana nodular strains belonged to an homogeneous cluster, whereas the S. cana densis nodular strains were separated into two distinct genetic clusters, irrespective of edaphic conditions and proximity to the host's root systems. A χ2analysis conducted on Shepherdia-infective strains showed the dominance of two distinct genotypes, with one of them being specific to newly formed dunes lacking plant cover and the other specific to older, stable dunes with dense vegetative cover.Key words: Frankia, Myrica, Shepherdia, Alnus, IGS 16S23S, sand dunes.
Collapse
|
44
|
Andronov EE, Terefework Z, Roumiantseva ML, Dzyubenko NI, Onichtchouk OP, Kurchak ON, Dresler-Nurmi A, Young JPW, Simarov BV, Lindström K. Symbiotic and genetic diversity of Rhizobium galegae isolates collected from the Galega orientalis gene center in the Caucasus. Appl Environ Microbiol 2003; 69:1067-74. [PMID: 12571030 PMCID: PMC143604 DOI: 10.1128/aem.69.2.1067-1074.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2002] [Accepted: 11/13/2002] [Indexed: 11/20/2022] Open
Abstract
This paper explores the relationship between the genetic diversity of rhizobia and the morphological diversity of their plant hosts. Rhizobium galegae strains were isolated from nodules of wild Galega orientalis and Galega officinalis in the Caucasus, the center of origin for G. orientalis. All 101 isolates were characterized by genomic amplified fragment length polymorphism fingerprinting and by PCR-restriction fragment length polymorphism (RFLP) of the rRNA intergenic spacer and of five parts of the symbiotic region adjacent to nod box sequences. By all criteria, the R. galegae bv. officinalis and R. galegae bv. orientalis strains form distinct clusters. The nod box regions are highly conserved among strains belonging to each of the two biovars but differ structurally to various degrees between the biovars. The findings suggest varying evolutionary pressures in different parts of the symbiotic genome of closely related R. galegae biovars. Sixteen R. galegae bv. orientalis strains harbored copies of the same insertion sequence element; all were isolated from a particular site and belonged to a limited range of chromosomal genotypes. In all analyses, the Caucasian R. galegae bv. orientalis strains were more diverse than R. galegae bv. officinalis strains, in accordance with the gene center theory.
Collapse
Affiliation(s)
- E E Andronov
- Research Institute of Agricultural Microbiology, St. Petersburg, Pushkin 196608, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Sylla SN, Samba RT, Neyra M, Ndoye I, Giraud E, Willems A, de Lajudie P, Dreyfus B. Phenotypic and genotypic diversity of rhizobia nodulating Pterocarpus erinaceus and P. lucens in Senegal. Syst Appl Microbiol 2002; 25:572-83. [PMID: 12583718 DOI: 10.1078/07232020260517715] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A total of fifty root nodules isolates of fast-growing and slow growing rhizobia from Pterocarpus ennaceus and Pterocarpus lucens respectively native of sudanean and sahelian regions of Senegal were characterized. These isolates were compared to representative strains of known rhizobial species. Twenty-two new isolates were slow growers and twenty-eight were fast growers. A polyphasic approach was performed including comparative total protein sodium dodecyl sulphate polyacrylamide gel (SDS-PAGE) profile analysis; 16S rDNA and 16S-23S rDNA intergenic spacer (IGS) sequence analysis. By SDS-PAGE the slow growing isolates grouped in one major cluster containing reference strains of Bradyrhizobium sp. including strains isolated in Africa, in Brazil and in New Zealand. Most of the fast-growing rhizobia grouped in four different clusters or were separate strains related to Rhizobium and Mesorhizobium strains. The 16S rDNA and 16S-23S rDNA IGS sequences analysis showed accurately the differentiation of fast growing rhizobia among the Rhizobium and Mesorbizobium genospecies. The representative strains of slow growing rhizobia were identified as closely related to Bradyrbizobium elkanii and Bradyrhizobium japonicum. Based on 16S rDNA sequence analysis, one slow growing strain (ORS199) was phylogenetically related to Bradyrbizobium sp. (Lupinus) and Blastobacter denitrificans. This position of ORS 199 was not confirmed by IGS sequence divergence. We found no clear relation between the diversity of strains, the host plants and the ecogeographical origins.
Collapse
Affiliation(s)
- Samba Ndao Sylla
- Université Cheikh Anta Diop, FST, Departement de B.V., Dakar, Sénégal.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Estrada P, Mavingui P, Cournoyer B, Fontaine F, Balandreau J, Caballero-Mellado J. A N2-fixing endophytic Burkholderia sp. associated with maize plants cultivated in Mexico. Can J Microbiol 2002; 48:285-94. [PMID: 12030700 DOI: 10.1139/w02-023] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the frame of a survey of potentially endophytic N2-fixing Burkholderia associated with maize in Mexico, its country of origin, the soil of an indigenous maize field near Oaxaca was studied. Under laboratory conditions, plant seedlings of two ancient maize varieties were used as a trap to select endophyte candidates from the soil sample. Among the N2 fixers isolated from inside plant tissues and able to grow on PCAT medium, the most abundant isolates belonged to genus Burkholderia (API 20NE, rrs sequences). Representative isolates obtained from roots and shoots of different plants appeared identical (rrs and nifH RFLP), showing that they were closely related. In addition, their 16S rDNA sequences differed from described Burkholderia species and, phylogenetically, they constituted a separate deep-branching new lineage in genus Burkholderia. This indicated that these isolates probably constituted a new species. An inoculation experiment confirmed that these N2-fixing Burkholderia isolates could densely colonize the plant tissues of maize. More isolates of this group were subsequently obtained from field-grown maize and teosinte plants. It was hypothesized that strains of this species had developed a sort of primitive symbiosis with one of their host plants, teosinte, which persisted during the domestication of teosinte into maize.
Collapse
Affiliation(s)
- Paulina Estrada
- Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuernavaca Morelos
| | | | | | | | | | | |
Collapse
|
47
|
Boyer SL, Flechtner VR, Johansen JR. Is the 16S-23S rRNA internal transcribed spacer region a good tool for use in molecular systematics and population genetics? A case study in cyanobacteria. Mol Biol Evol 2001; 18:1057-69. [PMID: 11371594 DOI: 10.1093/oxfordjournals.molbev.a003877] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We amplified, TA-cloned, and sequenced the 16S-23S internal transcribed spacer (ITS) regions from single isolates of several cyanobacterial species, Calothrix parietina, Scytonema hyalinum, Coelodesmium wrangelii, Tolypothrix distorta, and a putative new genus (isolates SRS6 and SRS70), to investigate the potential of this DNA sequence for phylogenetic and population genetic studies. All isolates carried ITS regions containing the sequences coding for two tRNA molecules (tRNA and tRNA). We retrieved additional sequences without tRNA features from both C. parietina and S. hyalinum. Furthermore, in S. hyalinum, we found two of these non-tRNA-encoding regions to be identical in length but different in sequence. This is the first report of ITS regions from a single cyanobacterial isolate not only different in configuration, but also, within one configuration, different in sequence. The potential of the ITS region as a tool for studying molecular systematics and population genetics is significant, but the presence of multiple nonidentical rRNA operons poses problems. Multiple nonidentical rRNA operons may impact both studies that depend on comparisons of phylogenetically homologous sequences and those that employ restriction enzyme digests of PCR products. We review current knowledge of the numbers and kinds of 16S-23S ITS regions present across bacterial groups and plastids, and we discuss broad patterns congruent with higher-level systematics of prokaryotes.
Collapse
Affiliation(s)
- S L Boyer
- Department of Biology, John Carroll University, 20700 North Park Boulevard, University Heights, OH 44118, USA
| | | | | |
Collapse
|
48
|
Sy A, Giraud É, Samba R, Lajudie PD, Gillis M, Dreyfus B. Certaines légumineuses du genre Crotalaria sont spécifiquement nodulées par une nouvelle espèce de Methylobacterium. Can J Microbiol 2001. [DOI: 10.1139/w01-044] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We studied a collection of 126 rhizobial isolates from eight species of Crotalaria (C. comosa, C. glaucoides, C. goreensis, C. hyssopifolia, C. lathyroides, C. perrottetii, C. podocarpa, and C. retusa) growing in Senegal. Nodulation and nitrogen-fixation tests on nine Crotalaria species revealed two specificity groups within the genus Crotalaria. Group I consists of plants solely nodulated by very specific fast-growing strains. Group II plants are nodulated by slow-growing strains similar to promiscuous Bradyrhizobium spp. strains already reported to nodulate many tropical legumes. SDSPAGE studies showed that slow-growing strains grouped with Bradyrhizobium while fast-growing strains constituted a homogeneous group distinct from all known rhizobia. Amplified ribosomal DNA restriction analysis (ARDRA) of 10 representative strains of this group using four restriction enzymes showed a single pattern for each enzyme confirming the high homogeneity of group I. The 16S rDNA sequence analysis revealed that this specific group belonged to the genus Methylobacterium, thus constituting a new branch of nodulating bacteria.Key words: Crotalaria, Methylobacterium, rhizobium, symbiosis.
Collapse
|
49
|
Jebara M, Mhamdi R, Aouani ME, Ghrir R, Mars M. Genetic diversity of Sinorhizobium populations recovered from different medicago varieties cultivated in Tunisian soils. Can J Microbiol 2001; 47:139-47. [PMID: 11261493 DOI: 10.1139/w00-135] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A collection of 468 rhizobial isolates was obtained from different ecological areas of Tunisia by trapping them on Medicago sativa cv. Gabes, Medicago scutelleta cv. Kelson, Medicago truncatula, and Medicago ciliaris. A subsample of 134 rhizobia was chosen to determine their plasmid profile, and 89 isolates were subjected to multilocus enzyme electrophoresis (MLEE) and PCR/RFLP analysis using 16S, IGS (inter genic spacer), and nifKD probes. Twenty-five representatives from these isolates were evaluated for their nodulation and nitrogen fixation capacities. MLEE studies revealed two groups with highly heterogeneous host specificity and geographical origin. The discriminatory power was found to be slightly better with the amplified ribosomal intergenic region, than the nifKD genes. Divisions detected by nifKD amplified DNA analysis matched those established by ribosomal PCR- RFLPs. The comparison between different analyses revealed that MLEE illustrated better phenotypic properties of isolates than PCR-RFLP or plasmid content analysis. Clear distinction between Sinorhizobium meliloti and Sinorhizobium medicae were observed by analysis of the IGS symbiotic regions between nifD and nifK genes. Were able to distinguish three inoculation groups; isolates trapped from M. sativa cv. Gabes and M. scutelleta cv. Kelson formed one inoculation group which was more closely related to isolates trapped from M. truncatula than those trapped from M. ciliaris.
Collapse
Affiliation(s)
- M Jebara
- Laboratoire de Biochimie Végétale et Symbiotes, Institut National de Recherche Scientifique et Technique, Hammam-lif Tunisie.
| | | | | | | | | |
Collapse
|
50
|
Bock JV, Battershell T, Wiggington J, John TR, Johnson JD. Frankia sequences exhibiting RNA polymerase promoter activity. MICROBIOLOGY (READING, ENGLAND) 2001; 147:499-506. [PMID: 11158367 DOI: 10.1099/00221287-147-2-499] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Frankia are Gram-positive, filamentous bacteria capable of fixing atmospheric dinitrogen either in the free-living state or in symbiosis with a variety of woody plants. Only a few Frankia genes have been sequenced and gene expression is not well characterized. To isolate a segment of Frankia DNA that functions as an RNA polymerase promoter, fragments of Frankia strain ArI5 genomic DNA were cloned upstream of a promoterless, Vibrio harveyi luxAB cassette. Constructs were screened for luminescence in E. coli and positive clones assayed for in vitro transcription activity with a partially purified Frankia RNA polymerase extract. Primer extension analysis of in vitro transcripts produced from one clone, GLO7, identified two major transcription start sites, TSP-1 and TSP-2, 52 bp apart. Deletion analysis then localized sequences essential for promoter activity. The upstream promoter region, GLO7p1, contains sequences resembling the -35 element of a Streptomyces promoter and the -35 and -10 elements of the canonical E. coli promoter. Also within this region are two pentamers identical to sequences near the 5' end of the Frankia strain CpI1 glutamine synthetase gene. The second promoter, GLO7p2, contains a putative NtrC binding site at -145 and a possible sigma(N)-RNA polymerase recognition sequence at -14 suggesting that GLO7p2 may be a nitrogen-regulated promoter. An in vivo transcript representing an ORF of 498 aa starting 64 bp downstream of the distal transcription start, TSP-1, was detected by RT-PCR. This supports the conclusion that this DNA fragment has promoter activity in vivo as well as in vitro.
Collapse
Affiliation(s)
- Joyce V Bock
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA1
| | - Ty Battershell
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA1
| | - James Wiggington
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA1
| | - Theodore R John
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA1
| | - Jerry D Johnson
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA1
| |
Collapse
|