1
|
Wagner A. Adaptive evolvability through direct selection instead of indirect, second-order selection. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:395-404. [PMID: 34254439 PMCID: PMC9786751 DOI: 10.1002/jez.b.23071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/11/2021] [Accepted: 06/04/2021] [Indexed: 12/30/2022]
Abstract
Can evolvability itself be the product of adaptive evolution? To answer this question is challenging, because any DNA mutation that alters only evolvability is subject to indirect, "second order" selection on the future effects of this mutation. Such indirect selection is weaker than "first-order" selection on mutations that alter fitness, in the sense that it can operate only under restrictive conditions. Here I discuss a route to adaptive evolvability that overcomes this challenge. Specifically, a recent evolution experiment showed that some mutations can enhance both fitness and evolvability through a combination of direct and indirect selection. Unrelated evidence from gene duplication and the evolution of gene regulation suggests that mutations with such dual effects may not be rare. Through such mutations, evolvability may increase at least in part because it provides an adaptive advantage. These observations suggest a research program on the adaptive evolution of evolvability, which aims to identify such mutations and to disentangle their direct fitness effects from their indirect effects on evolvability. If evolvability is itself adaptive, Darwinian evolution may have created more than life's diversity. It may also have helped create the very conditions that made the success of Darwinian evolution possible.
Collapse
Affiliation(s)
- Andreas Wagner
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland,Swiss Institute of BioinformaticsQuartier Sorge‐Batiment GenopodeLausanneSwitzerland,The Santa Fe InstituteSanta FeNew MexicoUSA,Stellenbosch Institute for Advanced Study, Wallenberg Research Centre at Stellenbosch UniversityStellenboschSouth Africa
| |
Collapse
|
2
|
Zhou JH, Ding YZ, He Y, Chu YF, Zhao P, Ma LY, Wang XJ, Li XR, Liu YS. The effect of multiple evolutionary selections on synonymous codon usage of genes in the Mycoplasma bovis genome. PLoS One 2014; 9:e108949. [PMID: 25350396 PMCID: PMC4211681 DOI: 10.1371/journal.pone.0108949] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/26/2014] [Indexed: 11/19/2022] Open
Abstract
Mycoplasma bovis is a major pathogen causing arthritis, respiratory disease and mastitis in cattle. A better understanding of its genetic features and evolution might represent evidences of surviving host environments. In this study, multiple factors influencing synonymous codon usage patterns in M. bovis (three strains’ genomes) were analyzed. The overall nucleotide content of genes in the M. bovis genome is AT-rich. Although the G and C contents at the third codon position of genes in the leading strand differ from those in the lagging strand (p<0.05), the 59 synonymous codon usage patterns of genes in the leading strand are highly similar to those in the lagging strand. The over-represented codons and the under-represented codons were identified. A comparison of the synonymous codon usage pattern of M. bovis and cattle (susceptible host) indicated the independent formation of synonymous codon usage of M. bovis. Principal component analysis revealed that (i) strand-specific mutational bias fails to affect the synonymous codon usage pattern in the leading and lagging strands, (ii) mutation pressure from nucleotide content plays a role in shaping the overall codon usage, and (iii) the major trend of synonymous codon usage has a significant correlation with the gene expression level that is estimated by the codon adaptation index. The plot of the effective number of codons against the G+C content at the third codon position also reveals that mutation pressure undoubtedly contributes to the synonymous codon usage pattern of M. bovis. Additionally, the formation of the overall codon usage is determined by certain evolutionary selections for gene function classification (30S protein, 50S protein, transposase, membrane protein, and lipoprotein) and translation elongation region of genes in M. bovis. The information could be helpful in further investigations of evolutionary mechanisms of the Mycoplasma family and heterologous expression of its functionally important proteins.
Collapse
Affiliation(s)
- Jian-hua Zhou
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P.R. China
| | - Yao-zhong Ding
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P.R. China
| | - Ying He
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P.R. China
| | - Yue-feng Chu
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P.R. China
| | - Ping Zhao
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P.R. China
| | - Li-ya Ma
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P.R. China
| | - Xin-jun Wang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P.R. China
| | - Xue-rui Li
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P.R. China
- * E-mail: (XRL); (YSL)
| | - Yong-sheng Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P.R. China
- * E-mail: (XRL); (YSL)
| |
Collapse
|
3
|
Macwana S, Muriana PM. Spontaneous bacteriocin resistance in Listeria monocytogenes as a susceptibility screen for identifying different mechanisms of resistance and modes of action by bacteriocins of lactic acid bacteria. J Microbiol Methods 2012; 88:7-13. [DOI: 10.1016/j.mimet.2011.09.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 09/21/2011] [Accepted: 09/21/2011] [Indexed: 11/25/2022]
|
4
|
Changey F, Devers-Lamrani M, Rouard N, Martin-Laurent F. In vitro evolution of an atrazine-degrading population under cyanuric acid selection pressure: evidence for the selective loss of a 47 kb region on the plasmid ADP1 containing the atzA, B and C genes. Gene 2011; 490:18-25. [PMID: 21959051 DOI: 10.1016/j.gene.2011.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 09/05/2011] [Accepted: 09/09/2011] [Indexed: 02/02/2023]
Abstract
The adaptation of microorganisms to pesticide biodegradation relies on the recruitment of catabolic genes by horizontal gene transfer and homologous recombination mediated by insertion sequences (IS). This environment-friendly function is maintained in the degrading population but it has a cost which could diminish its fitness. The loss of genes in the course of evolution being a major mechanism of ecological specialization, we mimicked evolution in vitro by sub-culturing the atrazine-degrading Pseudomonas sp. ADP in a liquid medium containing cyanuric acid as the sole source of nitrogen. After 120 generations, a new population evolved, which replaced the original one. This new population grew faster on cyanuric acid but showed a similar cyanuric acid degrading ability. Plasmid profiles and Southern blot analyses revealed the deletion of a 47 kb region from pADP1 containing the atzABC genes coding for the enzymes that turn atrazine into cyanuric acid. Long PCR and sequencing analyses revealed that this deletion resulted from a homologous recombination between two direct repeats of a 110-bp, identical to ISPps1 of Pseudomonas huttiensis, flanking the deleted 47 kb region. The loss of a region containing three functional genes constitutively expressed thereby constituting a genetic burden under cyanuric acid selection pressure was responsible for the gain in fitness of the new population. It highlights the IS-mediated plasticity of the pesticide-degrading potential and shows that IS not only favours the expansion of the degrading genetic potential thanks to dispersion and duplication events but also contribute to its reduction thanks to deletion events.
Collapse
Affiliation(s)
- F Changey
- INRA, Université de Bourgogne, Microbiologie du Sol et de l'Environnement, 17 Rue Sully, 21065 Dijon Cedex, France
| | | | | | | |
Collapse
|
5
|
Schubert S, Darlu P, Clermont O, Wieser A, Magistro G, Hoffmann C, Weinert K, Tenaillon O, Matic I, Denamur E. Role of intraspecies recombination in the spread of pathogenicity islands within the Escherichia coli species. PLoS Pathog 2009; 5:e1000257. [PMID: 19132082 PMCID: PMC2606025 DOI: 10.1371/journal.ppat.1000257] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 12/08/2008] [Indexed: 11/25/2022] Open
Abstract
Horizontal gene transfer is a key step in the evolution of bacterial pathogens. Besides phages and plasmids, pathogenicity islands (PAIs) are subjected to horizontal transfer. The transfer mechanisms of PAIs within a certain bacterial species or between different species are still not well understood. This study is focused on the High-Pathogenicity Island (HPI), which is a PAI widely spread among extraintestinal pathogenic Escherichia coli and serves as a model for horizontal transfer of PAIs in general. We applied a phylogenetic approach using multilocus sequence typing on HPI-positive and -negative natural E. coli isolates representative of the species diversity to infer the mechanism of horizontal HPI transfer within the E. coli species. In each strain, the partial nucleotide sequences of 6 HPI–encoded genes and 6 housekeeping genes of the genomic backbone, as well as DNA fragments immediately upstream and downstream of the HPI were compared. This revealed that the HPI is not solely vertically transmitted, but that recombination of large DNA fragments beyond the HPI plays a major role in the spread of the HPI within E. coli species. In support of the results of the phylogenetic analyses, we experimentally demonstrated that HPI can be transferred between different E. coli strains by F-plasmid mediated mobilization. Sequencing of the chromosomal DNA regions immediately upstream and downstream of the HPI in the recipient strain indicated that the HPI was transferred and integrated together with HPI–flanking DNA regions of the donor strain. The results of this study demonstrate for the first time that conjugative transfer and homologous DNA recombination play a major role in horizontal transfer of a pathogenicity island within the species E. coli. The species Escherichia coli comprises non-pathogenic, commensal bacterial strains belonging to the normal gut microbiota of humans and many animals, but also pathogenic strains, which cause different types of intestinal or extraintestinal infections in man and animals. Single factors and mechanisms involved in pathogenesis of extraintestinal pathogenic E. coli (ExPEC) have been analyzed in detail for many years. The genetic information of these virulence factors has largely been acquired by horizontal DNA transfer. Key elements of horizontal transfer are large DNA fragments, called genomic islands, integrated into the conserved E. coli chromosomal backbone. The transfer of genomic islands within the E. coli species, however, has yet been elusive. In this study, we focused on the High-Pathogenicity Island (HPI), which is a genomic island widely spread among E. coli. It serves as a model for horizontal transfer within the E. coli species. We used a combination of sequenced based methods (Multi Locus Sequence Typing) and DNA–transfer experiments to decipher the transfer mechanisms of DNA–islands within the E. coli species. The results of this study demonstrate for the first time that conjugative transfer and homologous DNA recombination play a major role in horizontal transfer and spread of a pathogenicity island within E. coli.
Collapse
Affiliation(s)
- Sören Schubert
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
|
7
|
Abstract
Biological evolution is known to be driven by the availability of genetic variants. Spontaneous genetic variation can be the result of a number of specific molecular mechanisms. These can be grouped into three qualitatively different natural strategies of generating genetic variations, namely local sequence changes, DNA rearrangement within the genome and horizontal gene transfer, which is referred to here as DNA acquisition. All of these strategies bring about alterations in the DNA sequences of the genome, thus corresponding to the molecular genetic definition of the term mutation. A detailed inspection of specific mechanisms of mutagenesis reveals on the one hand the impact of non-genetic internal and environmental factors, and on the other hand the specific involvement of gene products. The underlying so-called evolution genes can be classified into generators of genetic variations and into modulators of the frequency of genetic variation. These evolution genes are postulated to have themselves undergone biological evolution under the pressure of second-order selection. On the basis of a few selected examples of mutagenesis, elements for a theory of molecular evolution are collected without a claim for completeness. Philosophical dimensions as well as practical aspects of the advanced knowledge on specific molecular mechanisms involved in molecular evolution are also briefly discussed.
Collapse
Affiliation(s)
- Werner Arber
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland.
| |
Collapse
|
8
|
Morabito S, Tozzoli R, Oswald E, Caprioli A. A mosaic pathogenicity island made up of the locus of enterocyte effacement and a pathogenicity island of Escherichia coli O157:H7 is frequently present in attaching and effacing E. coli. Infect Immun 2003; 71:3343-8. [PMID: 12761117 PMCID: PMC155766 DOI: 10.1128/iai.71.6.3343-3348.2003] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) and enterohemorragic E. coli (EHEC) possess a pathogenicity island (PAI), termed the locus of enterocyte effacement (LEE), which confers the capability to cause the characteristic attaching and effacing lesions of the brush border. Due to this common property, these organisms are also termed attaching and effacing E. coli (AEEC). Sequencing of the EHEC O157 genome recently revealed the presence of other putative PAIs in the chromosome of this organism. In this article, we report on the presence of four of those PAIs in a panel of 133 E. coli strains belonging to different pathogroups and serotypes. One of these PAIs, termed O122 in strain EDL 933 and SpLE3 in strain Sakai, was observed in most of the AEEC strains examined but not in the other groups of E. coli. It was also found to contain the virulence-associated gene efa1/lifA. In EHEC O157, PAI O122 is located 0.7 Mb away from the LEE. Conversely, we demonstrated that in many EHEC non-O157 strains and EPEC strains belonging to eight serogroups, PAI O122 and the LEE are physically linked to form a cointegrated structure. This structure can be considered a mosaic PAI that could have been acquired originally by AEEC. In some clones, such as EHEC O157, the LEE-O122 mosaic PAI might have undergone recombinational events, resulting in the insertion of the portion referred to as PAI O122 in a different location.
Collapse
Affiliation(s)
- Stefano Morabito
- Laboratorio di Medicina Veterinaria, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | | | | | | |
Collapse
|
9
|
Salvatore P, Pagliarulo C, Colicchio R, Zecca P, Cantalupo G, Tredici M, Lavitola A, Bucci C, Bruni CB, Alifano P. Identification, characterization, and variable expression of a naturally occurring inhibitor protein of IS1106 transposase in clinical isolates of Neisseria meningitidis. Infect Immun 2001; 69:7425-36. [PMID: 11705917 PMCID: PMC98831 DOI: 10.1128/iai.69.12.7425-7436.2001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Transposition plays a role in the epidemiology and pathogenesis of Neisseria meningitidis. Insertion sequences are involved in reversible capsulation and insertional inactivation of virulence genes encoding outer membrane proteins. In this study, we have investigated and identified one way in which transposon IS1106 controls its own activity. We have characterized a naturally occurring protein (Tip) that inhibits the transposase. The inhibitor protein is a truncated version of the IS1106 transposase lacking the NH(2)-terminal DNA binding sequence, and it regulates transposition by competing with the transposase for binding to the outside ends of IS1106, as shown by gel shift and in vitro transposition assays. IS1106Tip mRNA is variably expressed among serogroup B meningococcal clinical isolates, and it is absent in most collection strains belonging to hypervirulent lineages.
Collapse
Affiliation(s)
- P Salvatore
- Dipartimento di Biologia e Patologia Cellulare e Molecolare "L. Califano," Università di Napoli "Federico II," Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kobayashi I. Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res 2001; 29:3742-56. [PMID: 11557807 PMCID: PMC55917 DOI: 10.1093/nar/29.18.3742] [Citation(s) in RCA: 393] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2001] [Revised: 07/12/2001] [Accepted: 07/23/2001] [Indexed: 11/14/2022] Open
Abstract
Restriction-modification (RM) systems are composed of genes that encode a restriction enzyme and a modification methylase. RM systems sometimes behave as discrete units of life, like viruses and transposons. RM complexes attack invading DNA that has not been properly modified and thus may serve as a tool of defense for bacterial cells. However, any threat to their maintenance, such as a challenge by a competing genetic element (an incompatible plasmid or an allelic homologous stretch of DNA, for example) can lead to cell death through restriction breakage in the genome. This post-segregational or post-disturbance cell killing may provide the RM complexes (and any DNA linked with them) with a competitive advantage. There is evidence that they have undergone extensive horizontal transfer between genomes, as inferred from their sequence homology, codon usage bias and GC content difference. They are often linked with mobile genetic elements such as plasmids, viruses, transposons and integrons. The comparison of closely related bacterial genomes also suggests that, at times, RM genes themselves behave as mobile elements and cause genome rearrangements. Indeed some bacterial genomes that survived post-disturbance attack by an RM gene complex in the laboratory have experienced genome rearrangements. The avoidance of some restriction sites by bacterial genomes may result from selection by past restriction attacks. Both bacteriophages and bacteria also appear to use homologous recombination to cope with the selfish behavior of RM systems. RM systems compete with each other in several ways. One is competition for recognition sequences in post-segregational killing. Another is super-infection exclusion, that is, the killing of the cell carrying an RM system when it is infected with another RM system of the same regulatory specificity but of a different sequence specificity. The capacity of RM systems to act as selfish, mobile genetic elements may underlie the structure and function of RM enzymes.
Collapse
Affiliation(s)
- I Kobayashi
- Department of Molecular Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
11
|
Ziebuhr W, Lössner I, Rachid S, Dietrich K, Götz F, Hacker J. Modulation of the polysaccharide intercellular adhesin (PIA) expression in biofilm forming Staphylococcus epidermidis. Analysis of genetic mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 485:151-7. [PMID: 11109101 DOI: 10.1007/0-306-46840-9_21] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- W Ziebuhr
- Institut für Molekulare Infektionsbiologie, Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Blum-Oehler G, Dobrindt U, Janke B, Nagy G, Piechaczek K, Hacker J. Pathogenicity islands of uropathogenic E. coli and evolution of virulence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 485:25-32. [PMID: 11109083 DOI: 10.1007/0-306-46840-9_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- G Blum-Oehler
- Institut für Molekulare Infektionsbiologie, Universität Würzburg
| | | | | | | | | | | |
Collapse
|
13
|
Dobrindt U, Reidl J. Pathogenicity islands and phage conversion: evolutionary aspects of bacterial pathogenesis. Int J Med Microbiol 2000; 290:519-27. [PMID: 11100826 DOI: 10.1016/s1438-4221(00)80017-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Horizontal gene transfer plays a key role in the generation of novel bacterial pathogens. Besides plasmids and bacteriophages, large genomic regions termed pathogenicity islands (PAIs) can be transferred horizontally. All three mechanisms for DNA exchange or transfer may be important for the evolution of bacterial pathogens.
Collapse
Affiliation(s)
- U Dobrindt
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Germany
| | | |
Collapse
|
14
|
Morschhäuser J, Köhler G, Ziebuhr W, Blum-Oehler G, Dobrindt U, Hacker J. Evolution of microbial pathogens. Philos Trans R Soc Lond B Biol Sci 2000; 355:695-704. [PMID: 10874741 PMCID: PMC1692774 DOI: 10.1098/rstb.2000.0609] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Various genetic mechanisms including point mutations, genetic rearrangements and lateral gene transfer processes contribute to the evolution of microbes. Long-term processes leading to the development of new species or subspecies are termed macroevolution, and short-term developments, which occur during days or weeks, are considered as microevolution. Both processes, macro- and microevolution need horizontal gene transfer, which is particularly important for the development of pathogenic microorganisms. Plasmids, bacteriophages and so-called pathogenicity islands (PAIs) play a crucial role in the evolution of pathogens. During microevolution, genome variability of pathogenic microbes leads to new phenotypes, which play an important role in the acute development of an infectious disease. Infections due to Staphylococcus epidermidis, Candida albicans and Escherichia coli will be described with special emphasis on processes of microevolution. In contrast, the development of PAIs is a process involved in macroevolution. PAIs are especially important in processes leading to new pathotypes or even species. In this review, particular attention will be given to the fact that the evolution of pathogenic microbes can be considered as a specific example for microbial evolution in general.
Collapse
Affiliation(s)
- J Morschhäuser
- Zentrum für Infektionsforschung, Universität Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Ziebuhr W, Dietrich K, Trautmann M, Wilhelm M. Chromosomal rearrangements affecting biofilm production and antibiotic resistance in a Staphylococcus epidermidis strain causing shunt-associated ventriculitis. Int J Med Microbiol 2000; 290:115-20. [PMID: 11043988 DOI: 10.1016/s1438-4221(00)80115-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
During two clinical courses of shunt-associated meningitis in a 3-month-old child, five multiresistant S. epidermidis isolates were obtained and analyzed with regard to biofilm production and antibiotic susceptibility. Three S. epidermidis strains, which were initially isolated from the cerebrospinal fluid, produced biofilms on polystyrene tissue culture plates. Following antibiotic treatment and subsequent exchange of the shunt system, sterilization of the CSF was achieved. However, after three weeks a relapse of the infection occurred. The two S. epidermidis isolates obtained now were biofilm negative, but showed an identical resistance pattern as those from the previous infection, except that resistance to rifampicin and increased mininal inhibitory concentrations of aminoglycoside antibiotics had emerged. DNA fingerprinting by PFGE indicated the clonal origin of all isolates. However, some DNA rearrangements and differences in the IS256-specific hybridization patterns could be identified in the isolates from the second infection period that led to altered biofilm formation and increased expression of aminoglycoside resistance traits. The data evidence that variation of biofilm expression occurs in vivo during an infection and highlight the extraordinary genome flexibility of pathogenic S. epidermidis.
Collapse
Affiliation(s)
- W Ziebuhr
- Institut für Molekulare Infektionsbiologie, Würzburg, Germany.
| | | | | | | |
Collapse
|
16
|
Abstract
On the basis of established knowledge of microbial genetics one can distinguish three major natural strategies in the spontaneous generation of genetic variations in bacteria. These strategies are: (1) small local changes in the nucleotide sequence of the genome, (2) intragenomic reshuffling of segments of genomic sequences and (3) the acquisition of DNA sequences from another organism. The three general strategies differ in the quality of their contribution to microbial evolution. Besides a number of non-genetic factors, various specific gene products are involved in the generation of genetic variation and in the modulation of the frequency of genetic variation. The underlying genes are called evolution genes. They act for the benefit of the biological evolution of populations as opposed to the action of housekeeping genes and accessory genes which are for the benefit of individuals. Examples of evolution genes acting as variation generators are found in the transposition of mobile genetic elements and in so-called site-specific recombination systems. DNA repair systems and restriction-modification systems are examples of modulators of the frequency of genetic variation. The involvement of bacterial viruses and of plasmids in DNA reshuffling and in horizontal gene transfer is a hint for their evolutionary functions. Evolution genes are thought to undergo biological evolution themselves, but natural selection for their functions is indirect, at the level of populations, and is called second-order selection. In spite of an involvement of gene products in the generation of genetic variations, evolution genes do not programmatically direct evolution towards a specific goal. Rather, a steady interplay between natural selection and mixed populations of genetic variants gives microbial evolution its direction.
Collapse
Affiliation(s)
- W Arber
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland.
| |
Collapse
|
17
|
Schlör S, Riedl S, Blass J, Reidl J. Genetic rearrangements of the regions adjacent to genes encoding heat-labile enterotoxins (eltAB) of enterotoxigenic Escherichia coli strains. Appl Environ Microbiol 2000; 66:352-8. [PMID: 10618247 PMCID: PMC91829 DOI: 10.1128/aem.66.1.352-358.2000] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/1999] [Accepted: 09/28/1999] [Indexed: 02/02/2023] Open
Abstract
One of the most common bacterially mediated diarrheal infections is caused by enterotoxigenic Escherichia coli (ETEC) strains. ETEC-derived plasmids are responsible for the distribution of the genes encoding the main toxins, namely, the heat-labile and heat-stable enterotoxins. The origins and transfer modes (intra- or interplasmid) of the toxin-encoding genes have not been characterized in detail. In this study, we investigated the DNA regions located near the heat-labile enterotoxin-encoding genes (eltAB) of several clinical isolates. It was found that the eltAB region is flanked by conserved 236- and 280-bp regions, followed by highly variable DNA sequences which consist mainly of partial insertion sequence (IS) elements. Furthermore, we demonstrated that rearrangements of the eltAB region of one particular isolate, which harbors an IS91R sequence next to eltAB, could be produced by a recA-independent but IS91 sequence-dependent mechanism. Possible mechanisms of dissemination of IS element-associated enterotoxin-encoding genes are discussed.
Collapse
Affiliation(s)
- S Schlör
- Zentrum für Infektionsforschung, Universität Würzburg, 97070 Würzburg, Germany
| | | | | | | |
Collapse
|
18
|
Dary A, Martin P, Wenner T, Leblond P, Decaris B. Evolution of the linear chromosomal DNA in Streptomyces: is genomic variability developmentally modulated? Res Microbiol 1999; 150:439-45. [PMID: 10540907 DOI: 10.1016/s0923-2508(99)00113-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Genome rearrangements are responsible for the variability observed at the ends of the chromosome among Streptomyces species. The characterization of mutators, which are stimulated for genome plasticity, and of mutants produced at different stages of development support the idea that genome instability is developmentally modulated.
Collapse
Affiliation(s)
- A Dary
- Laboratoire de génétique et microbiologie associé à l'Institut national de la recherche agronomique (unité 952), faculté des sciences de l'université Henri Poincaré, Nancy 1, Vandoeuvre-Lès-Nancy, France.
| | | | | | | | | |
Collapse
|
19
|
Tenaillon O, Toupance B, Le Nagard H, Taddei F, Godelle B. Mutators, population size, adaptive landscape and the adaptation of asexual populations of bacteria. Genetics 1999; 152:485-93. [PMID: 10353893 PMCID: PMC1460623 DOI: 10.1093/genetics/152.2.485] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Selection of mutator alleles, increasing the mutation rate up to 10, 000-fold, has been observed during in vitro experimental evolution. This spread is ascribed to the hitchhiking of mutator alleles with favorable mutations, as demonstrated by a theoretical model using selective parameters corresponding to such experiments. Observations of unexpectedly high frequencies of mutators in natural isolates suggest that the same phenomenon could occur in the wild. But it remains questionable whether realistic in natura parameter values could also result in selection of mutators. In particular, the main parameters of adaptation, the size of the adapting population and the height and steepness of the adaptive peak characterizing adaptation, are very variable in nature. By simulation approach, we studied the effect of these parameters on the selection of mutators in asexual populations, assuming additive fitness. We show that the larger the population size, the more likely the fixation of mutator alleles. At a large population size, at least four adaptive mutations are needed for mutator fixation; moreover, under stronger selection stronger mutators are selected. We propose a model based on multiple mutations to illustrate how second-order selection can optimize population fitness when few favorable mutations are required for adaptation.
Collapse
Affiliation(s)
- O Tenaillon
- Laboratoire de Mutagenèse, Institut J. Monod, CNRS Université Paris 7, F75251 Paris, France.
| | | | | | | | | |
Collapse
|
20
|
Abstract
Three strategies of different quality contribute in parallel to the natural formation of genetic variants in bacteria: (1) small local alterations of DNA sequences; (2) recombinational reshuffling of segments of the genome; and (3) acquisition of DNA sequences by horizontal gene transfer. Key enzymes involved in these processes often act as variation generators by making use of structural flexibilities of biological macromolecules and of the effect of random encounter. In the theory of molecular evolution, genetic determinants of variation generators as well as of modulators of the frequency of genetic variation are defined as evolutionary genes. This postulate is consistent with the notion that spontaneous mutagenesis is in general not adaptive and that the direction of evolution depends on natural selection exerted on populations of genetic variants.
Collapse
Affiliation(s)
- W Arber
- Biozentrum, University of Basel, Switzerland
| |
Collapse
|
21
|
Abstract
Most descriptions of mutation have emphasized its negative consequences, and randomness with respect to biological function. This book seeks to balance the discussion by emphasizing mechanisms that both diversify the genome and increase the probability that a genome's descendants will survive. This chapter provides a framework for, and overview of, the diverse contributions to this book; these contributions will be stimulating companions, well into the 21st Century, as we work to comprehend the information contained in genomic databases. Genomes that encode "better" amino acid sequences are at a selective advantage. Genomes that generate diversity also are at an advantage to the extent that they can navigate efficiently through the space of possible sequence changes. Biochemical systems that tend to increase the ratio of useful to destructive genetic change may harness preexisting information (horizontal gene transfer, DNA translocation and/or DNA duplication), focus the location, timing, and extent of genetic change, adjust the dynamic range of a gene's activity, and/or sample regulatory connections between sites distributed across the genome. Rejecting entirely random genetic variation as the substrate of genome evolution is not a refutation, but rather provides a deeper understanding, of the theory of natural selection of Darwin and Wallace. The fittest molecular strategies survive, along with descendants of the genomes that encode them.
Collapse
|
22
|
Abstract
Molecular genetics teaches three lessons relevant to the nature of genetic change during evolution: (1) Genomes are organized as hierarchies of composite systems (multidomain protein-coding sequences; functional loci made up of regulatory, coding, processing, and intervening sequences; and multilocus regulons and replicons) interconnected and organized into specific "system architectures" by repetitive DNA elements. (2) Genetic change often occurs via natural genetic engineering systems (cellular biochemical functions, such as recombination complexes, topoisomerases, and mobile elements, capable of altering DNA sequence information and joining together different genomic components). (3) The activity of natural genetic systems is regulated by cellular control circuits with respect to the timing, activity levels, and specificities of DNA rearrangements (e.g., adaptive mutation, Ty element mobility, and P factor insertions). These three lessons provide plausible molecular explanations for the episodic, multiple, nonrandom DNA rearrangements needed to account for the evolution of novel genomic system architectures and complex multilocus adaptations. This molecular genetic perspective places evolutionary change in the biologically responsive context of cellular biochemistry.
Collapse
Affiliation(s)
- J A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, Illinois 60637, USA.
| |
Collapse
|
23
|
Ziebuhr W, Krimmer V, Rachid S, Lössner I, Götz F, Hacker J. A novel mechanism of phase variation of virulence in Staphylococcus epidermidis: evidence for control of the polysaccharide intercellular adhesin synthesis by alternating insertion and excision of the insertion sequence element IS256. Mol Microbiol 1999; 32:345-56. [PMID: 10231490 DOI: 10.1046/j.1365-2958.1999.01353.x] [Citation(s) in RCA: 304] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Biofilm formation of Staphylococcus epidermidis on smooth polymer surfaces has been shown to be mediated by the ica operon. Upon activation of this operon, a polysaccharide intercellular adhesin (PIA) is synthesized that supports bacterial cell-to-cell contacts and triggers the production of thick, multilayered biofilms. Thus, the ica gene cluster represents a genetic determinant that significantly contributes to the virulence of specific Staphylococcus epidermidis strains. PIA synthesis has been reported recently to undergo a phase variation process. In this study, biofilm-forming Staphylococcus epidermidis strains and their PIA-negative phase variants were analysed genetically to investigate the molecular mechanisms of phase variation. We have characterized biofilm-negative variants by Southern hybridization with ica-specific probes, polymerase chain reaction and nucleotide sequencing. The data obtained in these analyses suggested that in approximately 30% of the variants the missing biofilm formation was due to the inactivation of either the icaA or the icaC gene by the insertion of the insertion sequence element IS256. Furthermore, it was shown that the transposition of IS256 into the ica operon is a reversible process. After repeated passages of the PIA-negative insertional mutants, the biofilm-forming phenotype could be restored. Nucleotide sequence analyses of the revertants confirmed the complete excision of IS256, including the initially duplicated 8 bp target sites. These results elucidate, for the first time, a molecular mechanism mediating phase variation in staphylcocci, and they demonstrate that a naturally occurring insertion sequence element is actively involved in the modulation of expression of a Staphylococcus virulence factor.
Collapse
Affiliation(s)
- W Ziebuhr
- Institut für Molekulare Infektionsbiologie, Röntgenring 11, D-97070 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Nakatsu CH, Korona R, Lenski RE, de Bruijn FJ, Marsh TL, Forney LJ. Parallel and divergent genotypic evolution in experimental populations of Ralstonia sp. J Bacteriol 1998; 180:4325-31. [PMID: 9721265 PMCID: PMC107437 DOI: 10.1128/jb.180.17.4325-4331.1998] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetic rearrangements within a population of bacteria were analyzed to understand the degree of divergence occurring after experimental evolution. We used 18 replicate populations founded from Ralstonia sp. strain TFD41 that had been propagated for 1,000 generations with 2,4-dichlorophenoxyacetic acid (2,4-D) as the carbon source. Genetic divergence was examined by restriction fragment length polymorphism analysis of the incumbent plasmid that carries the 2,4-D catabolic genes and by amplification of random regions of the genome via PCR. In 18 evolved clones examined, we observed duplication within the plasmid, including the tfdA gene, which encodes a 2,4-D dioxygenase that catalyzes the first step in the 2,4-D catabolic pathway. In 71 of 72 evolved clones, a common 2.4-kb PCR product was lost when genomic fingerprints produced by PCR amplification using degenerate primers based on repetitive extragenic palindromic (REP) sequences (REP-PCR) were compared. The nucleotide sequence of the 2.4-kb PCR product has homology to the TRAP (tripartite ATP-independent periplasmic) solute transporter gene family. Hybridization of the 2. 4-kb REP-PCR product from the ancestor to genomic DNA from the evolved populations showed that the loss of the PCR product resulted from deletions in the genome. Deletions in the plasmid and presence and/or absence of other REP-PCR products were also found in these clones but at much lower frequencies. The common and uncommon genetic changes observed show that both parallel and divergent genotypic evolution occurred in replicate populations of this bacterium.
Collapse
Affiliation(s)
- C H Nakatsu
- NSF Center for Microbial Ecology, Michigan State University, East Lansing, Michigan 48824, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Kusano K, Sakagami K, Yokochi T, Naito T, Tokinaga Y, Ueda E, Kobayashi I. A new type of illegitimate recombination is dependent on restriction and homologous interaction. J Bacteriol 1997; 179:5380-90. [PMID: 9286991 PMCID: PMC179407 DOI: 10.1128/jb.179.17.5380-5390.1997] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Illegitimate (nonhomologous) recombination requires little or no sequence homology between recombining DNAs and has been regarded as being a process distinct from homologous recombination, which requires a long stretch of homology between recombining DNAs. Under special conditions in Escherichia coli, we have found a new type of illegitimate recombination that requires an interaction between homologous DNA sequences. It was detected when a plasmid that carried 2-kb-long inverted repeats was subjected to type II restriction in vitro and type I (EcoKI) restriction in vivo within a delta rac recBC recG ruvC strain. Removal of one of the repeats or its replacement with heterologous DNA resulted in a reduction in the level of recombination. The recombining sites themselves shared, at most, a few base pairs of homology. Many of the recombination events joined a site in one of the repeats with a site in another repeat. In two of the products, one of the recombining sites was at the end of one of the repeats. Removal of one of the EcoKI sites resulted in decreased recombination. We discuss the possibility that some structure made by homologous interaction between the long repeats is used by the EcoKI restriction enzyme to promote illegitimate recombination. The possible roles and consequences of this type of homologous interaction are discussed.
Collapse
Affiliation(s)
- K Kusano
- Department of Molecular Biology, Institute of Medical Science, University of Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Osborn AM, Bruce KD, Strike P, Ritchie DA. Distribution, diversity and evolution of the bacterial mercury resistance (mer) operon. FEMS Microbiol Rev 1997; 19:239-62. [PMID: 9167257 DOI: 10.1111/j.1574-6976.1997.tb00300.x] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mercury and its compounds are distributed widely across the earth. Many of the chemical forms of mercury are toxic to all living organisms. However, bacteria have evolved mechanisms of resistance to several of these different chemical forms, and play a major role in the global cycling of mercury in the natural environment. Five mechanisms of resistance to mercury compounds have been identified, of which resistance to inorganic mercury (HgR) is the best understood, both in terms of the mechanisms of resistance to mercury and of resistance to heavy metals in general. Resistance to inorganic mercury is encoded by the genes of the mer operon, and can be located on transposons, plasmids and the bacterial chromosome. Such systems have a worldwide geographical distribution, and furthermore, are found across a wide range of both Gram-negative and Gram-positive bacteria from both natural and clinical environments. The presence of mer genes in bacteria from sediment cores suggest that mer is an ancient system. Analysis of DNA sequences from mer operons and genes has revealed genetic variation both in operon structure and between individual genes from different mer operons, whilst analysis of bacteria which are sensitive to inorganic mercury has identified a number of vestigial non-functional operons. It is hypothesised that mer, due to its ubiquity with respect to geographical location, environment and species range, is an ancient system, and that ancient bacteria carried genes conferring resistance to mercury in response to increased levels of mercury in natural environments, perhaps resulting from volcanic activity. Models for the evolution of both a basic mer operon and for the Tn21-related family of mer operons and transposons are suggested. The study of evolution in bacteria has recently become dominated by the generation of phylogenies based on 16S rRNA genes. However, it is important not to underestimate the roles of horizontal gene transfer and recombinational events in evolution. In this respect mer is a suitable system for evaluating phylogenetic methods which incorporate the effects of horizontal gene transfer. In addition, the mer operon provides a model system in the study of environmental microbiology which is useful both as an example of a genotype which is responsive to environmental pressures and as a generic tool for the development of new methodology for the analysis of bacterial communities in natural environments.
Collapse
Affiliation(s)
- A M Osborn
- School of Biological Sciences, Donnan Laboratories, University of Liverpool, UK
| | | | | | | |
Collapse
|
27
|
Duim B, Bowler LD, Eijk PP, Jansen HM, Dankert J, van Alphen L. Molecular variation in the major outer membrane protein P5 gene of nonencapsulated Haemophilus influenzae during chronic infections. Infect Immun 1997; 65:1351-6. [PMID: 9119473 PMCID: PMC175139 DOI: 10.1128/iai.65.4.1351-1356.1997] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
During the course of persistent infections by nonencapsulated Haemophilus influenzae in patients with chronic bronchitis, the major outer membrane protein (MOMP) P5 varies in molecular weight. The nature of this variability was determined by DNA sequence analysis of the P5 gene from five different H. influenzae strains and their seven MOMP P5 variants which were isolated from patients with chronic infections of the lower respiratory tract. Analysis of the P5 sequence data from the different strains revealed four well-defined, heterogeneous regions. These regions of variable sequence appeared to correspond to the regions of the gene encoding the putative surface-exposed loops of MOMP P5. The MOMP P5 variants with alterations in MOMP P5 were shown to result from DNA point mutations and codon deletions. In addition, in three variants derived sequentially from one H. influenzae strain, a frameshift mutation resulted in the formation of a stop codon in the region encoding the signal sequence of the MOMP P5 gene. Strikingly, all nucleotide substitutions in the MOMP P5 loop regions of variants were nonsynonymous, suggesting that variants with alterated amino acid compositions of the surface-exposed parts of MOMP P5 obtained a selective advantage during persistence of the infection by nonencapsulated H. influenzae in chronic bronchitis patients.
Collapse
Affiliation(s)
- B Duim
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
28
|
Rozsa FW, Meyer TF, Fussenegger M. Inversion of Moraxella lacunata type 4 pilin gene sequences by a Neisseria gonorrhoeae site-specific recombinase. J Bacteriol 1997; 179:2382-8. [PMID: 9079926 PMCID: PMC178977 DOI: 10.1128/jb.179.7.2382-2388.1997] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A plasmid library of Neisseria gonorrhoeae sequences was screened for the ability to mediate recombinations on a sequence containing the Moraxella lacunata type 4 pilin gene invertible region in Escherichia coli. A plasmid containing the N. gonorrhoeae sequence encoding the putative recombinase (gcr) was identified and sequenced. Plasmids containing gcr were able to mediate site-specific recombinations despite a weak amino acid homology to Piv, the native M. lacunata pilin gene invertase. The gcr gene is present only in pathogenic strains of Neisseria tested; however, in our assays gene knockouts of gcr did not alter the variation of surface features that play a role in the pathogenesis of N. gonorrhoeae.
Collapse
Affiliation(s)
- F W Rozsa
- Department of Microbiology, Biozentrum, University of Basel, Switzerland.
| | | | | |
Collapse
|
29
|
Vandamme P, Pot B, Gillis M, de Vos P, Kersters K, Swings J. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 1996; 60:407-38. [PMID: 8801440 PMCID: PMC239450 DOI: 10.1128/mr.60.2.407-438.1996] [Citation(s) in RCA: 354] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Over the last 25 years, a much broader range of taxonomic studies of bacteria has gradually replaced the former reliance upon morphological, physiological, and biochemical characterization. This polyphasic taxonomy takes into account all available phenotypic and genotypic data and integrates them in a consensus type of classification, framed in a general phylogeny derived from 16S rRNA sequence analysis. In some cases, the consensus classification is a compromise containing a minimum of contradictions. It is thought that the more parameters that will become available in the future, the more polyphasic classification will gain stability. In this review, the practice of polyphasic taxonomy is discussed for four groups of bacteria chosen for their relevance, complexity, or both: the genera Xanthomonas and Campylobacter, the lactic acid bacteria, and the family Comamonadaceae. An evaluation of our present insights, the conclusions derived from it, and the perspectives of polyphasic taxonomy are discussed, emphasizing the keystone role of the species. Taxonomists did not succeed in standardizing species delimitation by using percent DNA hybridization values. Together with the absence of another "gold standard" for species definition, this has an enormous repercussion on bacterial taxonomy. This problem is faced in polyphasic taxonomy, which does not depend on a theory, a hypothesis, or a set of rules, presenting a pragmatic approach to a consensus type of taxonomy, integrating all available data maximally. In the future, polyphasic taxonomy will have to cope with (i) enormous amounts of data, (ii) large numbers of strains, and (iii) data fusion (data aggregation), which will demand efficient and centralized data storage. In the future, taxonomic studies will require collaborative efforts by specialized laboratories even more than now is the case. Whether these future developments will guarantee a more stable consensus classification remains an open question.
Collapse
Affiliation(s)
- P Vandamme
- Laboratorium voor Microbiologie, Universiteit Gent, Belgium
| | | | | | | | | | | |
Collapse
|
30
|
Rozsa FW, Viollier P, Fussenegger M, Hiestand-Nauer R, Arber W. Cin-mediated recombination at secondary crossover sites on the Escherichia coli chromosome. J Bacteriol 1995; 177:1159-68. [PMID: 7868587 PMCID: PMC176719 DOI: 10.1128/jb.177.5.1159-1168.1995] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Cin recombinase is known to mediate DNA inversion between two wild-type cix sites flanking genetic determinants for the host range of bacteriophage P1. Cin can also act with low frequency at secondary (or quasi) sites (designated cixQ) that have lower homology to either wild-type site. An inversion tester sequence able to reveal novel operon fusions was integrated into the Escherichia coli chromosome, and the Cin recombinase was provided in trans. Among a total of 13 Cin-mediated inversions studied, three different cixQ sites had been used. In two rearranged chromosomes, the breakpoints of the inversions were mapped to cixQ sites in supB and ompA, representing inversions of 109 and 210 kb, respectively. In the third case, a 2.1-kb inversion was identified at a cixQ site within the integrated sequences. This derivative itself was a substrate for a second inversion of 1.5 kb between the remaining wild-type cix and still another cixQ site, thus resembling a reversion. In analogy to that which is known from DNA inversion on plasmids, homology of secondary cix sites to wild-type recombination sites is not a strict requirement for inversion to occur on the chromosome. The chromosomal rearrangements which resulted from these Cin-mediated inversions were quite stable and suffered no growth disadvantage compared with the noninverted parental strain. The mechanistic implications and evolutionary relevance of these findings are discussed.
Collapse
Affiliation(s)
- F W Rozsa
- Department of Microbiology, University of Basel, Switzerland
| | | | | | | | | |
Collapse
|
31
|
|
32
|
Recchia GD, Hall RM. Plasmid evolution by acquisition of mobile gene cassettes: plasmid pIE723 contains the aadB gene cassette precisely inserted at a secondary site in the incQ plasmid RSF1010. Mol Microbiol 1995; 15:179-87. [PMID: 7752893 DOI: 10.1111/j.1365-2958.1995.tb02232.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Gene cassettes are mobile DNA elements which contain a specific recombination site, a 59-base element, recognized by the site-specific recombination system of integrons. Gene cassettes are normally found inserted at a unique site in an integron, downstream of a promoter which directs transcription of the cassette-associated genes. However, insertion of a gene cassette into a secondary site in a plasmid which does not contain an integron is also formally possible. Sequence analysis of the aadB gene in pIE723, a plasmid closely related to the IncQ plasmid RSF1010, revealed the presence of the complete aadB cassette inserted at a secondary site downstream of a known RSF1010 promoter. The site of insertion of the aadB cassette in RSF1010 conformed to the consensus for secondary sites recognized by the integron integrase (Int), and it is likely that the cassette was inserted via a single Int-mediated recombination event between the 59-base element of a free, circular aadB cassette and a secondary site in RSF1010. The cassette-associated recombination site was inactivated by the insertion, and Int-mediated excision of the aadB cassette from this non-specific location was not detectable, indicating that the cassette is stably inserted. The movement of gene cassettes to secondary sites is likely to play an important role in the acquisition of new genes by bacterial and plasmid genomes.
Collapse
Affiliation(s)
- G D Recchia
- CSIRO Division of Biomolecular Engineering, Sydney Laboratory, North Ryde, New South Wales, Australia
| | | |
Collapse
|
33
|
Arber W, Naas T, Blot M. Generation of genetic diversity by DNA rearrangements in resting bacteria. FEMS Microbiol Ecol 1994. [DOI: 10.1111/j.1574-6941.1994.tb00224.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
34
|
Abstract
DNA synthesis is an accurate and very processive phenomenon, yet chromosome replication does not proceed at a constant rate and progression of the replication fork can be impeded. Several structural and functional features of the template can modulate the rate of progress of the replication fork. These include DNA secondary structures, DNA damage and occupied protein-binding sites. In addition, prokaryotes contain sites where replication is specifically arrested. DNA regions at which the replication machinery is blocked or transiently slowed could be particularly susceptible to genome rearrangements. Illegitimate recombination, a ubiquitous phenomenon which may have dramatic consequences, occurs by a variety of mechanisms. The observation that some rearrangements might be facilitated by a pause in replication could provide a clue in elucidating these processes. In support of this, some homologous and illegitimate recombination events have already been correlated with replication pauses or arrest sites.
Collapse
Affiliation(s)
- H Bierne
- Laboratoire de Génétique Microbienne, INRA Domaine de Vilvert, Jouy en Josas, France
| | | |
Collapse
|