1
|
Nezhad NG, Rahman RNZRA, Normi YM, Oslan SN, Shariff FM, Leow TC. Isolation, screening and molecular characterization of phytase-producing microorganisms to discover the novel phytase. Biologia (Bratisl) 2023; 78:2527-2537. [DOI: 10.1007/s11756-023-01391-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/10/2023] [Indexed: 09/02/2023]
|
2
|
Solhtalab M, Klein AR, Aristilde L. Hierarchical Reactivity of Enzyme-Mediated Phosphorus Recycling from Organic Mixtures by Aspergillus niger Phytase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2295-2305. [PMID: 33305954 DOI: 10.1021/acs.jafc.0c05924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Biological recycling of inorganic phosphorus (Pi) from organic phosphorus (Po) compounds by phosphatase-type enzymes, including phytases, is an important contributor to the pool of bioavailable P to plants and microorganisms. However, studies of mixed-substrate reactions with these enzymes are lacking. Here, we explore the reactivity of a phytase extract from the fungus Aspergillus niger toward a heterogeneous mixture containing, in addition to phytate, different structures of environmentally relevant Po compounds such as ribonucleotides and sugar phosphates. Using a high-resolution liquid chromatography-mass spectrometry method to monitor simultaneously the parent Po compounds and their by-products, we captured sequential substrate-specific evolution of Pi from the mixture, with faster hydrolysis of multiphosphorylated compounds (phytate, diphosphorylated sugars, and di- and tri-phosphorylated ribonucleotides) than hydrolysis of monophosphorylated compounds (monophosphorylated sugars and monophosphorylated ribonucleotides). The interaction mechanisms and energies revealed by molecular docking simulations of each Po compound within the enzyme's active site explained the substrate hierarchy observed experimentally. Specifically, the favorable orientation for binding of the negatively charged phosphate moieties with respect to the positive potential surface of the active site was important. Collectively, our findings provide mechanistic insights about the broad but hierarchical role of phytase-type enzymes in Pi recycling from the heterogeneous assembly of Po compounds in agricultural soils or wastes.
Collapse
Affiliation(s)
- Mina Solhtalab
- Department of Biological and Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853, United States
| | - Annaleise R Klein
- Department of Biological and Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853, United States
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Ludmilla Aristilde
- Department of Biological and Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853, United States
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
3
|
Corrêa TLR, de Araújo EF. Fungal phytases: from genes to applications. Braz J Microbiol 2020; 51:1009-1020. [PMID: 32410091 PMCID: PMC7455620 DOI: 10.1007/s42770-020-00289-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 04/30/2020] [Indexed: 12/18/2022] Open
Abstract
Phytic acid stores 60-90% of the inorganic phosphorus in legumes, oil seeds, and cereals, making it inaccessible for metabolic processes in living systems. In addition, given its negative charge, phytic acid complexes with divalent cations, starch, and proteins. Inorganic phosphorous can be released from phytic acid upon the action of phytases. Phytases are phosphatases produced by animals, plants, and microorganisms, notably Aspergillus niger, and are employed as animal feed additive, in chemical industry and for ethanol production. Given the industrial relevance of phytases produced by filamentous fungi, this work discusses the functional characterization of fungal phytase-coding genes/proteins, highlighting the physicochemical parameters that govern the enzymatic activity, the development of phytase super-producing strains, and key features for industrial applications.
Collapse
Affiliation(s)
- Thamy Lívia Ribeiro Corrêa
- Department of Microbiology/BIOAGRO, Federal University of Viçosa, Av. Peter Henry Rolfs s/n, Vicosa, MG, 36570-000, Brazil.
| | - Elza Fernandes de Araújo
- Department of Microbiology/BIOAGRO, Federal University of Viçosa, Av. Peter Henry Rolfs s/n, Vicosa, MG, 36570-000, Brazil
| |
Collapse
|
4
|
Xie Z, Fong WP, Tsang PWK. Engineering and optimization of phosphate-responsive phytase expression in Pichia pastoris yeast for phytate hydrolysis. Enzyme Microb Technol 2020; 137:109533. [PMID: 32423670 DOI: 10.1016/j.enzmictec.2020.109533] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/30/2020] [Accepted: 02/06/2020] [Indexed: 10/25/2022]
Abstract
Phytate is the major storage form of phosphorus in plants. It is present in cereals and raw materials of vegetable origin used in animal and human diets. However, non-ruminant animals have little phytase activity in their guts and, therefore, cannot digest phytate. As a result, almost all dietary phytate is discharged into the environment, causing phosphorus pollution. Phytate is also considered as an "antinutrient" for its ability to form insoluble and stable complexes with metal ions, thus reducing dietary absorption of essential minerals. It is a dire need to develop sustainable approaches for environmentally-friendly utilization for this valuable and abundant natural resource. To this end, we engineered Pichia pastoris to express and secrete phytase in a "made-to-order" fashion in response to external level of inorganic phosphate (Pi). Responsiveness to external Pi level was achieved by generating a Pi-responsive promoter library using directed evolution. The resultant yeast strains were proven to liberate Pi from wheat-based meal in a simulated in vitro digestion model. These yeast-based whole cell biocatalysts may serve as platform hosts with potential applications in food processing industry and animal waste treatment.
Collapse
Affiliation(s)
- Zhenming Xie
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing-Ping Fong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Paul Wai-Kei Tsang
- Technological and Higher Education Institute of Hong Kong, Hong Kong, China.
| |
Collapse
|
5
|
Production of Phytase Enzyme by a Bioengineered Probiotic for Degrading of Phytate Phosphorus in the Digestive Tract of Poultry. Probiotics Antimicrob Proteins 2020; 11:580-587. [PMID: 29680882 DOI: 10.1007/s12602-018-9423-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Probiotics are beneficial microorganisms and have long been used in food production as well as health promotion products. Bioengineered probiotics are used to express and transfer native or recombinant molecules to the mucosal surface of the digestive tract to improve feed efficiency and promote health. Lactococcus lactis is a potential probiotic candidate to produce useful biological proteins. The aim of this investigation was to develop a recombinant Lactococcus lactis with the potential of producing phytase. To enhance the efficiency of expression and secretion of recombinant phytase, usp45 signal peptide was added to the expression vector containing phytase gene (appA2) derived from Escherichia coli. Sequencing of recombinant plasmid containing appA2 showed the correct construction of plasmid. Total length of the phytase insert was 1.25 kbp. A Blast search of the cloned fragment showed 99% similarity to the reported E. coli phytase sequence in the GenBank (accession number: AM946981.2). A plasmid containing usp45 and appA2 electrotransferred into Lactococcus lactis. Zymogram with polyacrylamide gel revealed that the protein extract from the supernatant and the cell pellet of recombinant bacteria had phytase activity. Enzyme activity of 4 U/ml was obtained in cell extracts, and supernatant maximal phytase activity was 19 U/ml. The recombinant L. lactis was supplemented in broiler chicken feed and showed the increase of apparent digestibility on phytate phosphorus in the digestive tract and it was same as performance of E. coli commercial phytase.
Collapse
|
6
|
Zhu J, Wakisaka M. Finding of phytase: Understanding growth promotion mechanism of phytic acid to freshwater microalga Euglena gracilis. BIORESOURCE TECHNOLOGY 2020; 296:122343. [PMID: 31711907 DOI: 10.1016/j.biortech.2019.122343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
To better understand the promotion effect of phytic acid and its uptake mechanism in freshwater microalga Euglena gracilis, cell growth, photosynthetic pigment content and cell morphology of E. gracilis were evaluated under four conditions: phosphorus deficient group (CMP-), single phosphate treatment group (CMP+), single phytic acid treatment group (CMPA-), and phosphate-phytic acid mixed treatment group (CMPA+). The results showed that phytic acid could serve as the sole phosphorus source for the growth of E. gracilis, and phytase which catalyzes the hydrolysis of phytic acid was discovered for the first time in E. gracilis. Fourier transform infrared spectroscopy combined with multivariate analysis showed the good recognition of metabolites from different culture conditions especially focusing on relative carbohydrate or lipid contents. Phytic acid derived from agro-wastes is a cheap growth promoter for E. gracilis, and this E. gracilis with high nutritional value is applicable to animal feed while minimizing environmental impact.
Collapse
Affiliation(s)
- Jiangyu Zhu
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Fukuoka 808-0196, Japan
| | - Minato Wakisaka
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Fukuoka 808-0196, Japan.
| |
Collapse
|
7
|
Sharma A, Gupta G, Ahmad T, Mansoor S, Kaur B. Enzyme Engineering: Current Trends and Future Perspectives. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1695835] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Anshula Sharma
- Department of Biotechnology, Punjabi University, Patiala, India
| | - Gaganjot Gupta
- Department of Biotechnology, Punjabi University, Patiala, India
| | - Tawseef Ahmad
- Department of Biotechnology, Punjabi University, Patiala, India
| | | | - Baljinder Kaur
- Department of Biotechnology, Punjabi University, Patiala, India
| |
Collapse
|
8
|
Pudney A, Gandini C, Economou CK, Smith R, Goddard P, Napier JA, Spicer A, Sayanova O. Multifunctionalizing the marine diatom Phaeodactylum tricornutum for sustainable co-production of omega-3 long chain polyunsaturated fatty acids and recombinant phytase. Sci Rep 2019; 9:11444. [PMID: 31391507 PMCID: PMC6686013 DOI: 10.1038/s41598-019-47875-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 07/23/2019] [Indexed: 11/09/2022] Open
Abstract
There is an urgent requirement for sustainable sources of food and feed due to world population growth. Aquaculture relies heavily on the fish meal and fish oils derived from capture fisheries, challenging sustainability of the production system. Furthermore, substitution of fish oil with vegetable oil and fish meal with plant seed meals in aquaculture feeds reduces the levels of valuable omega-3 long chain polyunsaturated fatty acids such as eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, and lowers the nutritional value due to the presence of phytate. Addition of exogenous phytase to fish feed is beneficial for enhancing animal health and reducing phosphorus pollution. We have engineered the marine diatom Phaeodactylum tricornutum, accumulating high levels of EPA and DHA together with recombinant proteins: the fungal Aspergillus niger PhyA or the bacterial Escherichia coli AppA phytases. The removal of the N-terminal signal peptide further increased phytase activity. Strains engineered with fcpA and CIP1 promoters showed the highest level of phytase activity. The best engineered strain achieved up to 40,000 phytase activity units (FTU) per gram of soluble protein, thus demonstrating the feasibility of development of multifunctionalized microalgae to simultaneously produce industrially useful proteins and fatty acids to meet the demand of intensive fish farming activity.
Collapse
Affiliation(s)
- Alex Pudney
- Algenuity, Eden Laboratory, Broadmead Road, Stewartby, BEDS MK43 9ND, UK
| | - Chiara Gandini
- Department of Plant Sciences, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
| | - Chloe K Economou
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Richard Smith
- Department of Plant Sciences, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
| | - Paul Goddard
- Amalga Technologies Ltd, 80 Park Road, Hampton Wick, Kingston on Thames, Surrey, KT14AY, UK
| | - Johnathan A Napier
- Department of Plant Sciences, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
| | - Andrew Spicer
- Algenuity, Eden Laboratory, Broadmead Road, Stewartby, BEDS MK43 9ND, UK
| | - Olga Sayanova
- Department of Plant Sciences, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK.
| |
Collapse
|
9
|
Han N, Miao H, Yu T, Xu B, Yang Y, Wu Q, Zhang R, Huang Z. Enhancing thermal tolerance of Aspergillus niger PhyA phytase directed by structural comparison and computational simulation. BMC Biotechnol 2018; 18:36. [PMID: 29859065 PMCID: PMC5984770 DOI: 10.1186/s12896-018-0445-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/11/2018] [Indexed: 11/10/2022] Open
Abstract
Background Phytase supplied in feeds for monogastric animals is important for improving nutrient uptake and reducing phosphorous pollution. High-thermostability phytases are particularly desirable due to their ability to withstand transient high temperatures during feed pelleting procedures. A comparison of crystal structures of the widely used industrial Aspergillus niger PhyA phytase (AnP) with its close homolog, the thermostable Aspergillus fumigatus phytase (AfP), suggests 18 residues in three segments associated with thermostability. In this work, we aim to improve the thermostability of AnP through site-directed mutagenesis. We identified favorable mutations based on structural comparison of homologous phytases and molecular dynamics simulations. Results A recombinant phytase (AnP-M1) was created by substituting 18 residues in AnP with their AfP analogs. AnP-M1 exhibited greater thermostability than AnP at 70 °C. Molecular dynamics simulations suggested newly formed hydrogen bonding interactions with nine substituted residues give rise to the improved themostability. Thus, another recombinant phytase (AnP-M2) with just these nine point substitutions was created. AnP-M2 demonstrated superior thermostability among all AnPs at ≥70 °C: AnP-M2 maintained 56% of the maximal activity after incubation at 80 °C for 1 h; AnP-M2 retained 30-percentage points greater residual activity than that of AnP and AnP-M1 after 1 h incubation at 90 °C. Conclusions The resulting AnP-M2 is an attractive candidate in industrial applications, and the nine substitutions in AnP-M2 are advantageous for phytase thermostability. This work demonstrates that a strategy combining structural comparison of homologous enzymes and computational simulation to focus on important interactions is an effective method for obtaining a thermostable enzyme. Electronic supplementary material The online version of this article (10.1186/s12896-018-0445-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nanyu Han
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, 650500, China.,Engineering Research Center of Sustainable and Utilization of Biomass Energy, Ministry of Education, Kunming, 650500, China
| | - Huabiao Miao
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, China
| | - Tingting Yu
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, China
| | - Bo Xu
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, 650500, China.,Engineering Research Center of Sustainable and Utilization of Biomass Energy, Ministry of Education, Kunming, 650500, China
| | - Yunjuan Yang
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, 650500, China.,Engineering Research Center of Sustainable and Utilization of Biomass Energy, Ministry of Education, Kunming, 650500, China
| | - Qian Wu
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, 650500, China.,Engineering Research Center of Sustainable and Utilization of Biomass Energy, Ministry of Education, Kunming, 650500, China
| | - Rui Zhang
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, 650500, China.,Engineering Research Center of Sustainable and Utilization of Biomass Energy, Ministry of Education, Kunming, 650500, China
| | - Zunxi Huang
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, China. .,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, 650500, China. .,Engineering Research Center of Sustainable and Utilization of Biomass Energy, Ministry of Education, Kunming, 650500, China.
| |
Collapse
|
10
|
Abstract
One of the greatest sources of metabolic and enzymatic diversity are microorganisms. In recent years, emerging recombinant DNA and genomic techniques have facilitated the development of new efficient expression systems, modification of biosynthetic pathways leading to new metabolites by metabolic engineering, and enhancement of catalytic properties of enzymes by directed evolution. Complete sequencing of industrially important microbial genomes is taking place very rapidly, and there are already hundreds of genomes sequenced. Functional genomics and proteomics are major tools used in the search for new molecules and development of higher-producing strains.
Collapse
Affiliation(s)
| | - Sergio Sánchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, CDMX, México
| |
Collapse
|
11
|
Greiner R. Activity of Escherichia coli, Aspergillus niger, and Rye Phytase toward Partially Phosphorylated myo-Inositol Phosphates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9603-9607. [PMID: 29052415 DOI: 10.1021/acs.jafc.7b03897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Kinetic parameters for the dephosphorylation of sodium phytate and a series of partially phosphorylated myo-inositol phosphates were determined at pH 3.0 and pH 5.0 for three phytase preparations (Aspergillus niger, Escherichia coli, rye). The enzymes showed lower affinity and turnover numbers at pH 3 compared to pH 5 toward all myo-inositol phosphates included in the study. The number and distribution of phosphate groups on the myo-inositol ring affected the kinetic parameters. Representatives of the individual phytate dephosphorylation pathways were identified as the best substrates of the phytases. Within the individual phytate dephosphorylation pathways, the pentakisphosphates were better substrates compared to the tetrakisphosphates or phytate itself. E. coli and rye phytase showed comparable activities at both pH values toward the tetrakis- and trisphosphate, whereas A. niger phytase exhibited a higher activity toward the tetrakisphosphate. A myo-inositol phosphate with alternate phosphate groups was shown to be not significantly dephosphorylated by the phytases.
Collapse
Affiliation(s)
- Ralf Greiner
- Federal Research Institute of Nutrition and Food, Department of Food Technology and Bioprocess Engineering, Max Rubner-Institut , Haid-und-Neu-Straße 9, 76131 Karlsruhe, Germany
| |
Collapse
|
12
|
Bekalu ZE, Madsen CK, Dionisio G, Brinch-Pedersen H. Aspergillus ficuum phytase activity is inhibited by cereal grain components. PLoS One 2017; 12:e0176838. [PMID: 28472144 PMCID: PMC5417552 DOI: 10.1371/journal.pone.0176838] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/18/2017] [Indexed: 11/19/2022] Open
Abstract
In the current study, we report for the first time that grain components of barley, rice, wheat and maize can inhibit the activity of Aspergillus ficuum phytase. The phytase inhibition is dose dependent and varies significantly between cereal species, between cultivars of barley and cultivars of wheat and between Fusarium graminearum infected and non-infected wheat grains. The highest endpoint level of phytase activity inhibition was 90%, observed with grain protein extracts (GPE) from F. graminearum infected wheat. Wheat GPE from grains infected with F. graminearum inhibits phytase activity significantly more than GPE from non-infected grains. For four barley cultivars studied, the IC50 value ranged from 0.978 ± 0.271 to 3.616 ± 0.087 mg×ml-1. For two non-infected wheat cultivars investigated, the IC50 values were varying from 2.478 ± 0.114 to 3.038 ± 0.097 mg×ml-1. The maize and rice cultivars tested gaveIC50 values on 0.983 ± 0.205 and 1.972 ± 0.019 mg×ml-1, respectively. After purifying the inhibitor from barley grains via Superdex G200, an approximately 30–35 kDa protein was identified. No clear trend for the mechanism of inhibition could be identified via Michaelis-Menten kinetics and Lineweaver-Burk plots. However, testing of the purified phytase inhibitor together with the A. ficuum phytase and the specific protease inhibitors pepstatin A, E64, EDTA and PMSF revealed that pepstatin A repealed the phytase inhibition. This indicates that the observed inhibition of A. ficuum phytase by cereal grain extracts is caused by protease activity of the aspartic proteinase type.
Collapse
Affiliation(s)
- Zelalem Eshetu Bekalu
- Department of Molecular Biology and Genetics, Research Center Flakkebjerg, Aarhus University, Slagelse, Denmark
| | - Claus Krogh Madsen
- Department of Molecular Biology and Genetics, Research Center Flakkebjerg, Aarhus University, Slagelse, Denmark
| | - Giuseppe Dionisio
- Department of Molecular Biology and Genetics, Research Center Flakkebjerg, Aarhus University, Slagelse, Denmark
| | - Henrik Brinch-Pedersen
- Department of Molecular Biology and Genetics, Research Center Flakkebjerg, Aarhus University, Slagelse, Denmark
- * E-mail:
| |
Collapse
|
13
|
Kim BH, Lee JY, Lee PCW. Purification, sequencing and evaluation of a divergent phytase from Penicillium oxalicum KCTC6440. J GEN APPL MICROBIOL 2015; 61:117-23. [PMID: 26377131 DOI: 10.2323/jgam.61.117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
A fungal strain producing high levels of phytase was purified to homogeneity from Penicillium oxalicum KCTC6440 (PhyA). The molecular mass of the purified PhyA was 65 kDa and optimal activity occurred at 55°C. The enzyme was stable in a pH range of 4.5-6.5, with an optimum performance at pH 5.5. The Km value for the substrate sodium phytate was 0.48 mM with a Vmax of 672 U/mg. The enzyme was inhibited by Ca(2+), Cu(2+), and Zn(2+), and slightly enhanced by EDTA. The PhyA efficiently released phosphate from feedstuffs such as soybean, rich bran and corn meal. The PhyA gene was cloned in two steps of degenerate PCR and inverse PCR and found to comprise 1501 bp and encode 461 amino acid residues. The enzyme was found to have only 13 amino acids differing to the known PhyA from other Penicillium sp., but has distinct enzyme characteristics. Computational analysis showed that PhyA possessed more positively charged residues in the active sites compared to other PhyA molecules, which may explain the broader pH spectrum.
Collapse
Affiliation(s)
- Bong-Hyun Kim
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School
| | | | | |
Collapse
|
14
|
Ribeiro Corrêa TL, de Queiroz MV, de Araújo EF. Cloning, recombinant expression and characterization of a new phytase from Penicillium chrysogenum. Microbiol Res 2015; 170:205-12. [DOI: 10.1016/j.micres.2014.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 06/09/2014] [Accepted: 06/15/2014] [Indexed: 11/30/2022]
|
15
|
Lee SH, Cho J, Bok J, Kang S, Choi Y, Lee PCW. Characterization, Gene Cloning, and Sequencing of a Fungal Phytase, PhyA, FromPenicillium oxalicumPJ3. Prep Biochem Biotechnol 2014; 45:336-47. [DOI: 10.1080/10826068.2014.923446] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Ushasree MV, Vidya J, Pandey A. Extracellular expression of a thermostable phytase (phyA) in Kluyveromyces lactis. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Ushasree MV, Vidya J, Pandey A. Gene cloning and soluble expression of Aspergillus niger phytase in E. coli cytosol via chaperone co-expression. Biotechnol Lett 2013; 36:85-91. [DOI: 10.1007/s10529-013-1322-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 08/08/2013] [Indexed: 11/29/2022]
|
18
|
Marui J, Tada S, Fukuoka M, Wagu Y, Shiraishi Y, Kitamoto N, Sugimoto T, Hattori R, Suzuki S, Kusumoto KI. Reduction of the degradation activity of umami-enhancing purinic ribonucleotide supplement in miso by the targeted suppression of acid phosphatases in the Aspergillus oryzae starter culture. Int J Food Microbiol 2013; 166:238-43. [PMID: 23973834 DOI: 10.1016/j.ijfoodmicro.2013.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/04/2013] [Accepted: 07/08/2013] [Indexed: 10/26/2022]
Abstract
Miso (fermented soybean paste) is a traditional Japanese fermented food, and is now used worldwide. The solid-state culture of filamentous fungus, Aspergillus oryzae, grown on rice is known as rice-koji, and is important as a starter for miso fermentation because of its prominent hydrolytic enzyme activities. Recently, commercial miso products have been supplemented with purinic ribonucleotides, such as inosine monophosphate (IMP) and guanine monophosphate, to enhance the characteristic umami taste of glutamate in miso. Because the purinic ribonucleotides are degraded by enzymes such as acid phosphatases in miso, heat inactivation is required prior to the addition of these flavorings. However, heat treatment is a costly process and reduces the quality of miso. Therefore, an approach to lower acid phosphatase activities in koji culture is necessary. Transcriptional analysis using an A. oryzae KBN8048 rice-koji culture showed that eight of the 13 acid phosphatase (aph) genes were significantly down-regulated by the addition of phosphoric acid in the preparation of the culture in a concentration-dependent manner, while aphC expression was markedly up-regulated under the same conditions. The eight down-regulated genes might be under the control of the functional counterpart of the Saccharomyces cerevisiae transcriptional activator Pho4, which specifically regulates phosphatase genes in response to the ambient phosphate availability. However, the regulatory mechanism of aphC was not clear. The IMP dephosphorylation activities in rice-koji cultures of KBN8048 and the aphC deletion mutant (ΔaphC) were reduced by up to 30% and 70%, respectively, in cultures with phosphoric acid, while protease and amylase activity, which is important for miso fermentation, was minimally affected. The miso products fermented using the rice-koji cultures of KBN8048 and ΔaphC prepared with phosphoric acid had reductions in IMP dephosphorylation activity of 80% and 90%, respectively, without any adverse effects on amylase and protease activities. Thus, preparing the A. oryzae rice-koji culture under phosphate-sufficient conditions preferentially produces a fermentation starter of miso exhibiting low purinic ribonucleotide dephosphorylation activity. Moreover, aphC is a potential breeding target to reduce purinic ribonucleotide degradation activity further in commercial miso products.
Collapse
Affiliation(s)
- Junichiro Marui
- Applied Microbiology Division, National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Site-Directed Mutagenesis Improves the Thermostability and Catalytic Efficiency of Aspergillus niger N25 Phytase Mutated by I44E and T252R. Appl Biochem Biotechnol 2013; 171:900-15. [DOI: 10.1007/s12010-013-0380-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 07/01/2013] [Indexed: 10/26/2022]
|
20
|
An improved integrative transformation system for Pichia pastoris with DNA-polyethylenimine-dextran sulfate nanoparticles. BIOTECHNOL BIOPROC E 2013. [DOI: 10.1007/s12257-012-0667-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Miao Y, Xu H, Fei B, Qiao D, Cao Y. Expression of food-grade phytase in Lactococcus lactis from optimized conditions in milk broth. J Biosci Bioeng 2013; 116:34-8. [PMID: 23453854 DOI: 10.1016/j.jbiosc.2013.01.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 10/27/2022]
Abstract
The major objective of this study was to engineer lactic acid bacteria to produce the enzyme phytase from a gene native to Bacillus subtilis GYPB04. The phytase gene (phyC) of B. subtilis GYPB04 was cloned into the plasmid pMG36e for expression in Lactococcus lactis. The enzyme activity in L. lactis cultured in GM17 broth was 20.25 U/mL at 36°C. The expressed phytase was characterized as active in a pH range of 2.0-9.0 at a temperature range of 20-80°C, with an optimum pH of 5.5-6.5 and temperature of 60°C. When cultured in food-grade milk broth, the transformed L. lactis grew to an OD(600 nm) value of 1.05 and had a phytase yield of 13.58 U/mL. In same broth under optimized conditions for cell growth and phytase production, the transformant reached an OD(600 nm) value of 1.68 and a phytase yield of 42.12 U/mL, representing approximately 1.6-fold and 3.1-fold increases, respectively, compared to growth in natural milk broth. Fermentation was scaled to 5 L under optimized conditions, and product analysis revealed a final OD(600 nm) value of 1.89 and an extracellular enzyme activity of 24.23 U/mL. The results of this study may be used in the dairy fermentation industry for the development of functional, healthy yogurts and other fermented dairy foods that provide both active phytase and viable probiotics to the consumer.
Collapse
Affiliation(s)
- Yuzhi Miao
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, PR China
| | | | | | | | | |
Collapse
|
22
|
Miao YZ, Xu H, Fei BJ, Qiao DR, Cao Y. PCR-RFLP analysis of the diversity of phytate-degrading bacteria in the Tibetan Plateau. Can J Microbiol 2013; 59:245-51. [PMID: 23586748 DOI: 10.1139/cjm-2012-0752] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phytases play a very important role in increasing phytate digestion and reducing phosphorus pollution in the environment, and phytate-degrading bacteria have a ubiquitous distribution in the environment. Due to its extremely harsh environment, the Tibetan Plateau breeds possibly abundant, extreme microorganisms. In this research, 67 phytate-degrading bacteria were isolated from different habitats in the Tibetan Plateau. Among all isolates, 40.3% were screened from farmland, 25.3% from wetland, 4.5% from saline-alkaline soil, 7.5% from hot springs, and 22.4% from lawns, which showed that the distribution of the phytate-degrading bacteria varied with habitats. By the PCR-RFLP method, 16 different species were identified and named, 4 of which are reported for the first time as phytate-degrading bacteria, that is, Uncultured Enterococcus sp. GYPB01, Bacillaceae bacterium strain GYPB05, Endophytic bacterium strain GYPB16, and Shigella dysenteria strain GYPB22. Through the assay of phytase activity of 16 strains, Klebsiella sp. strain GYPB15 displayed the highest capability of phytase production. Through analysis of the optimum pH, the optimum temperature, and the thermal stability of enzyme from 16 strains, some especial phytate-degrading bacteria were obtained. Our findings clearly indicate a good relation between the composition of the soils from the different environments in the Tibetan Plateau and populations of cultivable phytate-degrading bacteria. Moreover, extreme harsh soils are logically the best soils in which to find some strains of phytate-degrading bacteria for exploiting in the fields of biotechnology and industry.
Collapse
Affiliation(s)
- Yu-Zhi Miao
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, P.R. China
| | | | | | | | | |
Collapse
|
23
|
Abstract
Phytases are phosphohydrolytic enzymes that initiate stepwise removal of phosphate from phytate. Simple-stomached species such as swine, poultry, and fish require extrinsic phytase to digest phytate, the major form of phosphorus in plant-based feeds. Consequently, this enzyme is supplemented in these species’ diets to decrease their phosphorus excretion, and it has emerged as one of the most effective and lucrative feed additives. This chapter provides a comprehensive review of the evolving course of phytase science and technology. It gives realistic estimates of the versatile roles of phytase in animal feeding, environmental protection, rock phosphorus preservation, human nutrition and health, and industrial applications. It elaborates on new biotechnology and existing issues related to developing novel microbial phytases as well as phytase-transgenic plants and animals. And it targets critical and integrated analyses on the global impact, novel application, and future demand of phytase in promoting animal agriculture, human health, and societal sustainability.
Collapse
Affiliation(s)
- Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, New York 14853
| | | | | | | | - Michael J. Azain
- Department of Animal Science, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
24
|
Abstract
Microorganisms are one of the greatest sources of metabolic and enzymatic diversity. In recent years, emerging recombinant DNA and genomic techniques have facilitated the development of new efficient expression systems, modification of biosynthetic pathways leading to new metabolites by metabolic engineering, and enhancement of catalytic properties of enzymes by directed evolution. Complete sequencing of industrially important microbial genomes is taking place very rapidly and there are already hundreds of genomes sequenced. Functional genomics and proteomics are major tools used in the search for new molecules and development of higher-producing strains.
Collapse
|
25
|
YOSHINO-YASUDA S, HASEGAWA O, IGA Y, SHIRAISHI Y, WAGU Y, SUZUKI T, SUGIMOTO T, KUSUMOTO KI, KATO M, KITAMOTO N. Disruption and Overexpression of Acid Phosphatase Gene (aphA) from a Miso Koji Mold, Aspergillus oryzae KBN630, and Characterization of the Gene Product. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2012. [DOI: 10.3136/fstr.18.59] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
26
|
MARUI J, TADA S, FUKUOKA M, SUZUKI S, HATTORI R, WAGU Y, SHIRAISHI Y, KITAMOTO N, SUGIMOTO T, KUSUMOTO KI. Comparison of Acid Phosphatase Gene Expression Profiles in Solid-State Rice and Soybean Cultures of an Aspergillus oryzae Strain with Low Acid Phosphatase Activity (KBN8048): Implications for Miso Brewing. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2012. [DOI: 10.3136/fstr.18.83] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
27
|
Improving Phytase Enzyme Activity in a Recombinant phyA Mutant Phytase from Aspergillus niger N25 by Error-Prone PCR. Appl Biochem Biotechnol 2011; 166:549-62. [DOI: 10.1007/s12010-011-9447-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 10/26/2011] [Indexed: 01/17/2023]
|
28
|
Transgenic microalgae expressing Escherichia coli AppA phytase as feed additive to reduce phytate excretion in the manure of young broiler chicks. Appl Microbiol Biotechnol 2011; 91:553-63. [DOI: 10.1007/s00253-011-3279-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 03/19/2011] [Accepted: 03/26/2011] [Indexed: 10/18/2022]
|
29
|
Phytase gene expression in Lactobacillus and analysis of its biochemical characteristics. Microbiol Res 2010; 165:329-35. [DOI: 10.1016/j.micres.2009.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 06/09/2009] [Accepted: 06/14/2009] [Indexed: 11/21/2022]
|
30
|
Li R, Zhao J, Sun C, Lu W, Guo C, Xiao K. Biochemical properties, molecular characterizations, functions, and application perspectives of phytases. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11703-010-0103-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Adrio JL, Demain AL. Recombinant organisms for production of industrial products. Bioeng Bugs 2009; 1:116-31. [PMID: 21326937 DOI: 10.4161/bbug.1.2.10484] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 10/30/2009] [Accepted: 11/02/2009] [Indexed: 11/19/2022] Open
Abstract
A revolution in industrial microbiology was sparked by the discoveries of ther double-stranded structure of DNA and the development of recombinant DNA technology. Traditional industrial microbiology was merged with molecular biology to yield improved recombinant processes for the industrial production of primary and secondary metabolites, protein biopharmaceuticals and industrial enzymes. Novel genetic techniques such as metabolic engineering, combinatorial biosynthesis and molecular breeding techniques and their modifications are contributing greatly to the development of improved industrial processes. In addition, functional genomics, proteomics and metabolomics are being exploited for the discovery of novel valuable small molecules for medicine as well as enzymes for catalysis. The sequencing of industrial microbal genomes is being carried out which bodes well for future process improvement and discovery of new industrial products.
Collapse
Affiliation(s)
- Jose-Luis Adrio
- NeuronBioPharma, S.A., Parque Tecnologico de Ciencias de la Salud, Edificio BIC, Armilla, Granada, Spain
| | | |
Collapse
|
32
|
Demain AL, Vaishnav P. Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 2009; 27:297-306. [PMID: 19500547 DOI: 10.1016/j.biotechadv.2009.01.008] [Citation(s) in RCA: 584] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 01/14/2009] [Accepted: 01/21/2009] [Indexed: 02/08/2023]
Abstract
Large proteins are usually expressed in a eukaryotic system while smaller ones are expressed in prokaryotic systems. For proteins that require glycosylation, mammalian cells, fungi or the baculovirus system is chosen. The least expensive, easiest and quickest expression of proteins can be carried out in Escherichia coli. However, this bacterium cannot express very large proteins. Also, for S-S rich proteins, and proteins that require post-translational modifications, E. coli is not the system of choice. The two most utilized yeasts are Saccharomyces cerevisiae and Pichia pastoris. Yeasts can produce high yields of proteins at low cost, proteins larger than 50 kD can be produced, signal sequences can be removed, and glycosylation can be carried out. The baculoviral system can carry out more complex post-translational modifications of proteins. The most popular system for producing recombinant mammalian glycosylated proteins is that of mammalian cells. Genetically modified animals secrete recombinant proteins in their milk, blood or urine. Similarly, transgenic plants such as Arabidopsis thaliana and others can generate many recombinant proteins.
Collapse
Affiliation(s)
- Arnold L Demain
- Research Institute for Scientists Emeriti, Drew University, Madison, NJ 07940, USA
| | | |
Collapse
|
33
|
Bei J, Chen Z, Fu J, Jiang Z, Wang J, Wang X. Structure-based fragment shuffling of two fungal phytases for combination of desirable properties. J Biotechnol 2009; 139:186-93. [DOI: 10.1016/j.jbiotec.2008.08.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 08/14/2008] [Accepted: 08/19/2008] [Indexed: 11/30/2022]
|
34
|
Ullah AHJ, Sethumadhavan K, Mullaney EJ. Kinetic characterization of O-phospho-L-tyrosine phosphohydrolase activity of two fungal phytases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:7467-7471. [PMID: 18627164 DOI: 10.1021/jf800597f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Fungal phytases belonging to "histidine acid phosphatase" or HAP class of phosphohydrolases that catalyze the hydrolysis of phytic acid could also hydrolyze O-phospho-L-tyrosine, which is also called phosphotyrosine. Two phytases from Aspergillus niger and Aspergillus awamori with pH optima 2.5 were tested for phosphotyrosine hydrolase activity; both enzymes cleaved the phosphomonoester bond of phosphotyrosine efficiently at acidic pH. The Km for phosphotyrosine ranged from 465 to 590 microM as opposed to 135 to 160 microM for phytate. The Vmax, however, is 2-4 times higher for phosphotyrosine than it is for phytate. The catalytic efficiency of phytase for phosphotyrosine is on the same order as it is for phytate (3.5 x 10(6) to 1.6 x 10(7) M(-1) s(-1)); the pH versus activity profile for phosphotyrosine is, however, different from what it is for phytate. The temperature optima shifted 5 degrees C higher to 70 degrees C when phosphotyrosine was used as the substrate. Taken together, the kinetic data show that fungal HAPs that are known as PhyB are capable of cleaving the phosphomonoester bond in phosphotyrosine. This is the first time that phosphotyrosine phosphatase (PTPase) activity has been reported for the subgroup of HAP known as phytase.
Collapse
Affiliation(s)
- Abul H J Ullah
- Commodity Utilization Research Unit, Southern Regional Research Center, ARS, United States Department of Agriculture, 1100 Robert E. Lee Boulevard, New Orleans, Louisiana 70124, USA.
| | | | | |
Collapse
|
35
|
Puhl AA, Greiner R, Selinger LB. Kinetics, substrate specificity, and stereospecificity of two new protein tyrosine phosphatase-like inositol polyphosphatases from Selenomonas lacticifex. Biochem Cell Biol 2008; 86:322-30. [DOI: 10.1139/o08-095] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inositol polyphosphatases (IPPases) play an important role in the metabolism of inositol polyphosphates, a class of molecules involved in signal transduction. Here we characterize 2 new protein tyrosine phosphatase-like IPPases (PhyAsl and PhyBsl) cloned from Selenomonas lacticifex that can hydrolyze myo-inositol hexakisphosphate (InsP6) in vitro. To determine their preferred substrates and stereospecificity of InsP6 dephosphorylation, a combination of kinetic and high-performance ion pair chromatography studies were conducted. Despite only 33% amino acid sequence identity between them, both enzymes display strict specificity for IPP substrates and cleave InsP6 primarily at the d-3-phosphate position (>90%). Furthermore, both enzymes predominantly degrade InsP6 to Ins(2)P via identical and very specific routes of dephosphorylation (3,4,5,6,1). Despite these similarities, PhylAsl is shown to have a slight kinetic preference for the major inositol pentakisphosphate intermediate in its InsP6 hydrolysis pathway, whereas PhyBsl displays a unique and substantial preference for an inositol tetrakisphosphate intermediate.
Collapse
Affiliation(s)
- Aaron A. Puhl
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
- Department of Microbiology and Biotechnology, Max Rubner Institute, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Strasse 9, D-76131 Karlsruhe, Germany
| | - Ralf Greiner
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
- Department of Microbiology and Biotechnology, Max Rubner Institute, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Strasse 9, D-76131 Karlsruhe, Germany
| | - L. Brent Selinger
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
- Department of Microbiology and Biotechnology, Max Rubner Institute, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Strasse 9, D-76131 Karlsruhe, Germany
| |
Collapse
|
36
|
Chang MH, Young CC, Chien SY, Arun AB. Expression of recombinantPichia pastoris X33 phytase for dephosphorylation of rice bran fermented liquid. ANN MICROBIOL 2008. [DOI: 10.1007/bf03175322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
37
|
Utilisation of plant cell-wall polysaccharides and organic phosphorus substrates by isolates of Aspergillus and Penicillium isolated from soil. FUNGAL ECOL 2008. [DOI: 10.1016/j.funeco.2008.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
38
|
Puhl AA, Greiner R, Selinger LB. A protein tyrosine phosphatase-like inositol polyphosphatase from Selenomonas ruminantium subsp. lactilytica has specificity for the 5-phosphate of myo-inositol hexakisphosphate. Int J Biochem Cell Biol 2008; 40:2053-64. [DOI: 10.1016/j.biocel.2008.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 01/18/2008] [Accepted: 02/10/2008] [Indexed: 11/28/2022]
|
39
|
Chun JA, Lee WH, Han MO, Lee JW, Yi YB, Park GY, Chung CH. Optimization of abiotic factors for improved growth and extracellular production of recombinant fungal phytase in sesame hairy root cultures. BIOTECHNOL BIOPROC E 2007. [DOI: 10.1007/bf02931099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
40
|
Zhang W, Mullaney EJ, Lei XG. Adopting selected hydrogen bonding and ionic interactions from Aspergillus fumigatus phytase structure improves the thermostability of Aspergillus niger PhyA phytase. Appl Environ Microbiol 2007; 73:3069-76. [PMID: 17351092 PMCID: PMC1892878 DOI: 10.1128/aem.02970-06] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although it has been widely used as a feed supplement to reduce manure phosphorus pollution of swine and poultry, Aspergillus niger PhyA phytase is unable to withstand heat inactivation during feed pelleting. Crystal structure comparisons with its close homolog, the thermostable Aspergillus fumigatus phytase (Afp), suggest associations of thermostability with several key residues (E35, S42, R168, and R248) that form a hydrogen bond network in the E35-to-S42 region and ionic interactions between R168 and D161 and between R248 and D244. In this study, loss-of-function mutations (E35A, R168A, and R248A) were introduced singularly or in combination into seven mutants of Afp. All seven mutants displayed decreases in thermostability, with the highest loss (25% [P<0.05]) in the triple mutant (E35A R168A R248A). Subsequently, a set of corresponding substitutions were introduced into nine mutants of PhyA to strengthen the hydrogen bonding and ionic interactions. While four mutants showed improved thermostability, the best response came from the quadruple mutant (A58E P65S Q191R T271R), which retained 20% greater (P<0.05) activity after being heated at 80 degrees C for 10 min and had a 7 degrees C higher melting temperature than that of wild-type PhyA. This study demonstrates the functional importance of the hydrogen bond network and ionic interaction in supporting the high thermostability of Afp and the feasibility of adopting these structural units to improve the thermostability of a homologous PhyA phytase.
Collapse
Affiliation(s)
- Wanming Zhang
- Department of Animal Science, 252 Morrison Hall, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
41
|
Uchida H, Arakida S, Sakamoto T, Kawasaki H. Expression of Aspergillus oryzae phytase gene in Aspergillus oryzae RIB40 niaD(-). J Biosci Bioeng 2007; 102:564-7. [PMID: 17270723 DOI: 10.1263/jbb.102.564] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Accepted: 08/28/2006] [Indexed: 11/17/2022]
Abstract
Aspergillus oryzae RIB40 niaD(-) was transformed using a plasmid constructed with the A. oryzae phytase gene and pNAN8142 vector. The culture broth of the transformant, which was grown in a medium containing starch as a carbon source and polyvinylpyrrolidone showed phytase activity of a maximum of 2.0 units ml(-1) at 37 degrees C, pH 5.5.
Collapse
Affiliation(s)
- Hiroyuki Uchida
- Department of Applied Chemistry and Biotechnology, Faculty of Engineering, University of Fukui, 9-1 Bunkyo 3-chome, Fukui-shi 910-8507, Japan.
| | | | | | | |
Collapse
|
42
|
|
43
|
Drakakaki G, Marcel S, Arcalis E, Altmann F, Gonzalez-Melendi P, Fischer R, Christou P, Stoger E. The intracellular fate of a recombinant protein is tissue dependent. PLANT PHYSIOLOGY 2006; 141:578-86. [PMID: 16632592 PMCID: PMC1475444 DOI: 10.1104/pp.106.076661] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Recombinant proteins directed to the secretory pathway in plants require a signal peptide for entry into the endoplasmic reticulum. In the absence of further targeting information, such proteins are generally secreted via the default pathway to the apoplast. This has been well documented in protoplasts and leaf tissue, but the trafficking of recombinant proteins in seeds and other storage tissues has rarely been investigated. We used Aspergillus niger phytase as a model glycoprotein to compare the intracellular fate of a recombinant protein in the leaves and seeds of rice (Oryza sativa). Using fluorescence and electron microscopy we showed that the recombinant protein was efficiently secreted from leaf cells as expected. In contrast, within endosperm cells it was retained in endoplasmic reticulum-derived prolamin bodies and protein storage vacuoles. Consistent with our immunolocalization data, the phytase produced in endosperm cells possessed oligomannose and vacuolar-type N-glycans [Man(3)(Xyl)(Fuc)GlcNAc(2)], whereas the phytase produced in leaves contained predominantly secretion-type N-glycans [GlcNAc(2)Man(3)(Xyl)(Fuc)GlcNAc(2)]. The latter could not be detected in preparations of the endosperm-derived phytase. Our results show that the intracellular deposition and modification of a recombinant protein is tissue dependent.
Collapse
Affiliation(s)
- Georgia Drakakaki
- Institute for Molecular Biotechnology, Biology VII, Aachen University, 52074 Aachen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhou XL, Shen W, Zhuge J, Wang ZX. Biochemical properties of a thermostable phytase from Neurospora crassa. FEMS Microbiol Lett 2006; 258:61-6. [PMID: 16630256 DOI: 10.1111/j.1574-6968.2006.00205.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A gene (Ncphy) encoding a putative phytase in Neurospora crassa was cloned and expressed in Pichia pastoris, and the biochemical properties of the recombinant protein were examined in relation to the phytic acid hydrolysis in animal feed. The recombinant phytase (rNcPhy) hydrolyzed phytic acid with a specific activity of 125 U mg-1, Km of 228 micromol L-1, Vmax of 0.31 nmol (phosphate) s-1 mg-1, a temperature optimum of 60 degrees C and a pH optimum of 5.5 and a second pH optimum of 3.5. The enzyme displayed pH stability around pH 3.5-9.5 and showed satisfactory thermostability at 80 degrees C. The phytase from N. crassa has potential for improving animal feed processing at higher temperatures.
Collapse
Affiliation(s)
- Xiao-Ling Zhou
- The Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Southern Yangtze University, Wuxi, China
| | | | | | | |
Collapse
|
45
|
Abstract
Although microorganisms are extremely good in presenting us with an amazing array of valuable products, they usually produce them only in amounts that they need for their own benefit; thus, they tend not to overproduce their metabolites. In strain improvement programs, a strain producing a high titer is usually the desired goal. Genetics has had a long history of contributing to the production of microbial products. The tremendous increases in fermentation productivity and the resulting decreases in costs have come about mainly by mutagenesis and screening/selection for higher producing microbial strains and the application of recombinant DNA technology.
Collapse
Affiliation(s)
- Jose L Adrio
- Department of Biotechnology, Puleva Biotech, S.A., Granada, Spain.
| | | |
Collapse
|
46
|
Kang SH, Cho KK, Bok JD, Kim SC, Cho JS, Lee PCW, Kang SK, Lee HG, Woo JH, Lee HJ, Lee SC, Choi YJ. Cloning, sequencing and characterization of a novel phosphatase gene, phoI, from soil bacterium Enterobacter sp. 4. Curr Microbiol 2006; 52:243-8. [PMID: 16550460 DOI: 10.1007/s00284-005-4467-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Accepted: 01/30/2005] [Indexed: 10/24/2022]
Abstract
A gene, phoI, coding for a phosphatase from Enterobacter sp. 4 was cloned in Escherichia coli and sequenced. Analysis of the sequence revealed one open reading frame (ORF) that encodes a 269-amino acid protein with a calculated molecular mass of 29 kDa. PhoI belongs to family B acid phosphatase and exhibits 49.4% identity and 62.4% homology to the hel gene from Heamophilus influenzae, which encoded an outer membrane protein (P4). The optimum pH and temperature for phosphatase activity were pH 5.5 and 40 degrees C, respectively. Its specific activity on rho-nitrophenyl phosphatate was 70 U/mg at pH 5.5 and 40 degrees C. Enzyme activity was inhibited by Al3+, EDTA, and DTT, but fivefold activated by Cu2+ ion (350 U/mg). PhoI showed a strong synergistic effect when used with a purified E. coli phytase, AppA, to estimate combination effects.
Collapse
Affiliation(s)
- Seung Ha Kang
- School of Agricultural Biotechnology, Seoul National University Seoul, 151-921, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Peng RH, Yao QH, Xiong AS, Cheng ZM, Li Y. Codon-modifications and an endoplasmic reticulum-targeting sequence additively enhance expression of an Aspergillus phytase gene in transgenic canola. PLANT CELL REPORTS 2006; 25:124-32. [PMID: 16249870 DOI: 10.1007/s00299-005-0036-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Revised: 07/01/2005] [Accepted: 07/09/2005] [Indexed: 05/05/2023]
Abstract
Transgenic plants offer advantages for biomolecule production because plants can be grown on a large scale and the recombinant macromolecules can be easily harvested and extracted. We introduced an Aspergillus phytase gene into canola (Brassica napus) (line 9412 with low erucic acid and low glucosinolates) by Agrobacterium-mediated transformation. Phytase expression in transgenic plant was enhanced with a synthetic phytase gene according to the Brassica codon usage and an endoplasmic reticulum (ER) retention signal KDEL that confers an ER accumulation of the recombinant phytase. Secretion of the phytase to the extracellular fluid was also established by the use of the tobacco PR-S signal peptide. Phytase accumulation in mature seed accounted for 2.6% of the total soluble proteins. The enzyme can be glycosylated in the seeds of transgenic plants and retain a high stability during storage. These results suggest a commercial feasibility of producing a stable recombinant phytase in canola at a high level for animal feed supplement and for reducing phosphorus eutrophication problems.
Collapse
Affiliation(s)
- Ri-He Peng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, People's Republic China
| | | | | | | | | |
Collapse
|
48
|
Haefner S, Knietsch A, Scholten E, Braun J, Lohscheidt M, Zelder O. Biotechnological production and applications of phytases. Appl Microbiol Biotechnol 2005; 68:588-97. [PMID: 16041577 DOI: 10.1007/s00253-005-0005-y] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Revised: 04/14/2005] [Accepted: 04/15/2005] [Indexed: 11/28/2022]
Abstract
Phytases decompose phytate, which is the primary storage form of phosphate in plants. More than 10 years ago, the first commercial phytase product became available on the market. It offered to help farmers reduce phosphorus excretion of monogastric animals by replacing inorganic phosphates by microbial phytase in the animal diet. Phytase application can reduce phosphorus excretion by up to 50%, a feat that would contribute significantly toward environmental protection. Furthermore, phytase supplementation leads to improved availability of minerals and trace elements. In addition to its major application in animal nutrition, phytase is also used for processing of human food. Research in this field focuses on better mineral absorption and technical improvement of food processing. All commercial phytase preparations contain microbial enzymes produced by fermentation. A wide variety of phytases were discovered and characterized in the last 10 years. Initial steps to produce phytase in transgenic plants were also undertaken. A crucial role for its commercial success relates to the formulation of the enzyme solution delivered from fermentation. For liquid enzyme products, a long shelf life is achieved by the addition of stabilizing agents. More comfortable for many customers is the use of dry enzyme preparations. Different formulation technologies are used to produce enzyme powders that retain enzyme activity, are stable in application, resistant against high temperatures, dust-free, and easy to handle.
Collapse
|
49
|
Li X, Yang SH, Yu XC, Jin ZX, Li WD, Li L, Li J, Li MG. Construction of transgenic Bacillus mucilaginosus strain with improved phytase secretion. J Appl Microbiol 2005; 99:878-84. [PMID: 16162239 DOI: 10.1111/j.1365-2672.2005.02683.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To construct a transgenic Bacillus mucilaginosus strain to increase the secretion capability of a wild-type isolate of B. mucilaginosus D4B1 to hydrolyse phytate phosphorus, which can be used as a microbial fertilizer in field application. METHODS AND RESULTS We constructed a phytase secreting expression vector pSP43 with a mini-Tn5 transposon and a Aspergillus fumigatus phytase expression cassette. The vector pSP43 was successfully transferred into the wild-type B. mucilaginosus using the particle bombardment method, and three transgenic strains with a stable copy of phytase expression cassette integrated into the chromosome of the B. mucilaginosus by Tn5 transposition were selected. The phytase activity of the engineered strains increased 36-46-fold when compared with the wild-type strain of D4B1. CONCLUSIONS The A. fumigatus phytase gene can be expressed under the direction of p43 promoter in B. mucilaginosus. The expression protein is secreted extracellularly and newly constructed strains showed a high phytase activity. SIGNIFICANCE AND IMPACT OF THE STUDY A transgenic Bacillus strain by the particle bombardment method was constructed.
Collapse
Affiliation(s)
- X Li
- The Keylaboratory of Bioactive Material, Ministry of Education; Life Science College, Nankai University, Tianjin, China.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Cho J, Lee C, Kang S, Lee J, Lee H, Bok J, Woo J, Moon Y, Choi Y. Molecular cloning of a phytase gene (phy M) from Pseudomonas syringae MOK1. Curr Microbiol 2005; 51:11-5. [PMID: 15971093 DOI: 10.1007/s00284-005-4482-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Accepted: 12/30/2004] [Indexed: 10/25/2022]
Abstract
A phytase gene (phy M) was cloned from Pseudomonas syringae MOK1 by two steps of degenerate PCR and inverse PCR. This gene consists of 1,287 nucleotides and encodes a polypeptide of 428 amino acids with a deduced molecular mass of 46,652 kDa. Based on its amino acid sequence, the Phy M shares the active site RHGXRXP and HD sequence motifs, typically characterized by histidine acid phosphatases familly. Each phy M gene fragment encoding mature Phy M with its own signal sequence (pEPSS) and without (pEPSM) was subcloned into the E. coli BL21 (DE3) expression vector, pET22b (+). The enzyme activity in crude extracts of clone pEPSM was 2.514 Umg(-1) of protein, and about 10-fold higher than that of clone pEPSS.
Collapse
Affiliation(s)
- Jaiesoon Cho
- Inositide Signaling Group, National Institute of Environmental Health Sciences, NIH, DHSS, Research Triangle Park, PO Box 12233, NC 27709, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|