1
|
Analysis of the IGS rRNA Region and Applicability for Leishmania ( V.) braziliensis Characterization. J Parasitol Res 2020; 2020:8885070. [PMID: 33083046 PMCID: PMC7559751 DOI: 10.1155/2020/8885070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/08/2020] [Accepted: 09/16/2020] [Indexed: 12/03/2022] Open
Abstract
The causative species is an important factor influencing the evolution of American cutaneous leishmaniasis (ACL). Due to its wide distribution in endemic areas, Leishmania (V.) braziliensis is considered one of the most important species in circulation in Brazil. Molecular targets derived from ribosomal RNA (rRNA) were used in studies to identify Leishmania spp.; however, the Intergenic Spacer (IGS) region has not yet been explored in parasite species differentiation. Besides, there is a shortage of sequences deposited in public repositories for this region. Thus, it was proposed to analyze and provide sequences of the IGS rRNA region from different Leishmania spp. and to evaluate their potential as biomarkers to characterize L. braziliensis. A set of primers was designed for complete amplification of the IGS rRNA region of Leishmania spp. PCR products were submitted to Sanger sequencing. The sequences obtained were aligned and analyzed for size and similarity, as well as deposited in GenBank. Characteristics of the repetitive elements (IGSRE) present in the IGS rRNA were also verified. In addition, a set of primers for L. braziliensis identification for qPCR was developed and optimized. Sensitivity (S), specificity (σ), and efficiency (ε) tests were applied. It was found that the mean size for the IGS rRNA region is 3 kb, and the similarity analysis of the sequences obtained demonstrated high conservation among the species. It was observed that the size for the IGSRE repetitive region varies between 61 and 71 bp, and there is a high identity between some species. Fifteen sequences generated for the IGS rRNA partial region of nine different species were deposited in GenBank so far. The specific primer system for L. braziliensis showed S = 10 fg, ε = 98.08%, and logσ = 103 for Leishmania naiffi; logσ = 104 for Leishmania guyanensis; and logσ = 105 for Leishmania shawi. This protocol system can be used for diagnosis, identification, and quantification of a patient's parasite load, aiding in the direction of a more appropriate therapeutic management to the cases of infection by this etiological agent. Besides that, the unpublished sequences deposited in databases can be used for multiple analyses in different contexts.
Collapse
|
2
|
Martínez-Calvillo S, Florencio-Martínez LE, Nepomuceno-Mejía T. Nucleolar Structure and Function in Trypanosomatid Protozoa. Cells 2019; 8:cells8050421. [PMID: 31071985 PMCID: PMC6562600 DOI: 10.3390/cells8050421] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 12/12/2022] Open
Abstract
The nucleolus is the conspicuous nuclear body where ribosomal RNA genes are transcribed by RNA polymerase I, pre-ribosomal RNA is processed, and ribosomal subunits are assembled. Other important functions have been attributed to the nucleolus over the years. Here we review the current knowledge about the structure and function of the nucleolus in the trypanosomatid parasites Trypanosoma brucei, Trypanosoma cruzi and Leishmania ssp., which represent one of the earliest branching lineages among the eukaryotes. These protozoan parasites present a single nucleolus that is preserved throughout the closed nuclear division, and that seems to lack fibrillar centers. Trypanosomatids possess a relatively low number of rRNA genes, which encode rRNA molecules that contain large expansion segments, including several that are trypanosomatid-specific. Notably, the large subunit rRNA (28S-type) is fragmented into two large and four small rRNA species. Hence, compared to other organisms, the rRNA primary transcript requires additional processing steps in trypanosomatids. Accordingly, this group of parasites contains the highest number ever reported of snoRNAs that participate in rRNA processing. The number of modified rRNA nucleotides in trypanosomatids is also higher than in other organisms. Regarding the structure and biogenesis of the ribosomes, recent cryo-electron microscopy analyses have revealed several trypanosomatid-specific features that are discussed here. Additional functions of the nucleolus in trypanosomatids are also reviewed.
Collapse
Affiliation(s)
- Santiago Martínez-Calvillo
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla CP 54090, Estado de México, Mexico.
| | - Luis E Florencio-Martínez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla CP 54090, Estado de México, Mexico.
| | - Tomás Nepomuceno-Mejía
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla CP 54090, Estado de México, Mexico.
| |
Collapse
|
3
|
Conserved Curvature of RNA Polymerase I Core Promoter Beyond rRNA Genes: The Case of the Tritryps. GENOMICS PROTEOMICS & BIOINFORMATICS 2016; 13:355-63. [PMID: 26718450 PMCID: PMC4747651 DOI: 10.1016/j.gpb.2015.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/17/2015] [Accepted: 09/24/2015] [Indexed: 11/23/2022]
Abstract
In trypanosomatids, the RNA polymerase I (RNAPI)-dependent promoters controlling the ribosomal RNA (rRNA) genes have been well identified. Although the RNAPI transcription machinery recognizes the DNA conformation instead of the DNA sequence of promoters, no conformational study has been reported for these promoters. Here we present the in silico analysis of the intrinsic DNA curvature of the rRNA gene core promoters in Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major. We found that, in spite of the absence of sequence conservation, these promoters hold conformational properties similar to other eukaryotic rRNA promoters. Our results also indicated that the intrinsic DNA curvature pattern is conserved within the Leishmania genus and also among strains of T. cruzi and T. brucei. Furthermore, we analyzed the impact of point mutations on the intrinsic curvature and their impact on the promoter activity. Furthermore, we found that the core promoters of protein-coding genes transcribed by RNAPI in T. brucei show the same conserved conformational characteristics. Overall, our results indicate that DNA intrinsic curvature of the rRNA gene core promoters is conserved in these ancient eukaryotes and such conserved curvature might be a requirement of RNAPI machinery for transcription of not only rRNA genes but also protein-coding genes.
Collapse
|
4
|
Abstract
It is almost 20 years since genetic manipulation of Trypanosoma cruzi was first reported. In this time, there have been steady improvements in the available vector systems, and the applications of the technology have been extended into new areas. Episomal vectors have been modified to enhance the level of expression of transfected genes and to facilitate the sub-cellular location of their products. Integrative vectors have been adapted to allow the development of inducible expression systems and the construction of vectors which enable genome modification through telomere-associated chromosome fragmentation. The uses of reverse genetic approaches to dissect peroxide metabolism and the mechanisms of drug activity and resistance in T. cruzi are illustrated in this chapter as examples of how the technology has been used to investigate biological function. Although there remains scope to improve the flexibility of these systems, they have made valuable contributions towards exploiting the genome sequence data and providing a greater understanding of parasite biology and the mechanisms of infection.
Collapse
Affiliation(s)
- Martin C Taylor
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | | |
Collapse
|
5
|
Gene expression in trypanosomatid parasites. J Biomed Biotechnol 2010; 2010:525241. [PMID: 20169133 PMCID: PMC2821653 DOI: 10.1155/2010/525241] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 11/04/2009] [Indexed: 12/21/2022] Open
Abstract
The parasites Leishmania spp., Trypanosoma brucei, and Trypanosoma cruzi are the trypanosomatid protozoa that cause the deadly human diseases leishmaniasis, African sleeping sickness, and Chagas disease, respectively. These organisms possess unique mechanisms for gene expression such as constitutive polycistronic transcription of protein-coding genes and trans-splicing. Little is known about either the DNA sequences or the proteins that are involved in the initiation and termination of transcription in trypanosomatids. In silico analyses of the genome databases of these parasites led to the identification of a small number of proteins involved in gene expression. However, functional studies have revealed that trypanosomatids have more general transcription factors than originally estimated. Many posttranslational histone modifications, histone variants, and chromatin modifying enzymes have been identified in trypanosomatids, and recent genome-wide studies showed that epigenetic regulation might play a very important role in gene expression in this group of parasites. Here, we review and comment on the most recent findings related to transcription initiation and termination in trypanosomatid protozoa.
Collapse
|
6
|
Abreu-Blanco MT, Ramírez JL, Pinto-Santini DM, Papadopoulou B, Guevara P. Analysis of ribosomal RNA transcription termination and 3' end processing in Leishmania amazonensis. Gene 2009; 451:15-22. [PMID: 19914359 DOI: 10.1016/j.gene.2009.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 10/11/2009] [Accepted: 11/03/2009] [Indexed: 11/16/2022]
Abstract
The control of gene expression in the human parasite Leishmania occurs mainly at the post-transcriptional level. Nevertheless, basic cell processes such as ribosome biogenesis seem to be conserved. Mature ribosomal RNAs (rRNAs) are synthesized from typical RNA polymerase I (Pol I) promoters and processed by pathways analogous to other eukaryotes. To further understand Pol I transcription control in these parasites, we have analyzed transcription termination and processing of the rDNA in Leishmania amazonensis. 3'-end S1 mapping of rRNA precursors identified three termini, one corresponding to the mature 28S rRNA and two to the rDNA intergenic spacer (IGS), termed T1 and T2, for precursors which are 185 and 576 nucleotides longer, respectively. Both T1 and T2 are associated with conserved G + C rich elements that have the potential to form hairpin structures and T-rich clusters. We found that two fragments of 423 bp and 233 bp, flanking sites T1 and T2 respectively when placed upstream of the green fluorescent protein gene (GFP), negatively affected the Pol I-driven transcription of this gene, which suggests the presence of a transcription terminator element in these regions. Deletion analysis pointed to a CCCTTTT heptamer as part of the putative terminator and suggested that the hairpins are processing signals.
Collapse
Affiliation(s)
- María Teresa Abreu-Blanco
- Laboratorio de Genética Molecular. Instituto de Biología Experimental. Universidad Central de Venezuela. Apartado Postal 48162. Caracas 1041A. Venezuela
| | | | | | | | | |
Collapse
|
7
|
Figueroa-Angulo E, María Cevallos A, Zentella A, López-Villaseñor I, Hernández R. Potential regulatory elements in the Trypanosoma cruzi rRNA gene promoter. ACTA ACUST UNITED AC 2006; 1759:497-501. [PMID: 17050002 DOI: 10.1016/j.bbaexp.2006.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 09/13/2006] [Accepted: 09/14/2006] [Indexed: 11/30/2022]
Abstract
The Trypanosoma cruzi rRNA gene promoter was characterized by deletion and point mutation analyses. A core of 89 bp was identified as the minimal region with full promoter activity. This core region is flanked upstream by a control element that stimulates its activity, and downstream by a novel down regulating region of about 200 bp. A point mutation analysis of the transcription start region evidenced 7 contiguous nucleotides where individual substitutions produced in all cases a defective promoter. It is generally accepted that the anciently speciated trypanosomatids lack strict promoters for protein coding genes transcribed by RNA polymerase II. The occurrence of a well structured rRNA gene promoter in these species suggests an early appearance of the RNA polymerase I promoters in the evolution of eukaryotic cells.
Collapse
Affiliation(s)
- Elisa Figueroa-Angulo
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70-228, 04510 México DF, Mexico
| | | | | | | | | |
Collapse
|
8
|
Taylor MC, Kelly JM. pTcINDEX: a stable tetracycline-regulated expression vector for Trypanosoma cruzi. BMC Biotechnol 2006; 6:32. [PMID: 16824206 PMCID: PMC1544328 DOI: 10.1186/1472-6750-6-32] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Accepted: 07/06/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trypanosoma cruzi is a protozoan pathogen of major medical importance in Latin America. It is also an early diverging eukaryote that displays many unusual biochemical features. The completion of the T. cruzi genome project has highlighted the need to extend the range of techniques available to study gene function. To this end we report the development of a stable tetracycline-dependent expression vector applicable to this parasite and describe in detail the parameters of the system. RESULTS We first produced T. cruzi cell lines that constitutively expressed bacteriophage T7 RNA polymerase and the tetracycline repressor protein from a multicopy episome. An integrative vector with an inducible expression site under the control of a tetracycline-regulatable T7 promoter (pTcINDEX) was targeted to the transcriptionally silent ribosomal RNA spacer region of these parasites and transformants selected using a T7 RNA polymerase-dependent hygromycin resistance gene. To test the system we used two marker proteins, luciferase and red fluorescent protein (RFP), and an endogenous parasite protein (a mitochondrial superoxide dismutase). In each case we found that induction was both time and dose-dependent. Luciferase mRNA could be induced by at least 100-fold, and luciferase activity up to 60-fold, within 24 hours of the addition of tetracycline. When we examined RFP induction by confocal microscopy and fluorescence activated cell sorter, we observed very high levels of expression (>1000-fold increase in fluorescence intensity), although this was not synchronous throughout clonal populations. Induction of superoxide dismutase resulted in an 18-fold increase in cellular activity. The observation that a tagged version of the enzyme was correctly targeted to the mitochondrion demonstrates that our expression system may also provide a high-throughput strategy for subcellular localisation. CONCLUSION Our results show that pTcINDEX represents a valuable addition to the genetic tools available for T. cruzi. The vector system is sufficiently flexible that it should have widespread uses including inducible expression of tagged proteins, generation of conditional knockout cell lines and the application of dominant-negative approaches.
Collapse
Affiliation(s)
- Martin C Taylor
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - John M Kelly
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
9
|
López-Villaseñor I, Contreras AP, López-Griego L, Alvarez-Sánchez E, Hernández R. Trichomonas vaginalis ribosomal DNA: analysis of the intergenic region and mapping of the transcription start point. Mol Biochem Parasitol 2004; 137:175-9. [PMID: 15279964 DOI: 10.1016/j.molbiopara.2004.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2003] [Revised: 03/26/2004] [Accepted: 04/08/2004] [Indexed: 10/26/2022]
Affiliation(s)
- Imelda López-Villaseñor
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70-228, 04510 Mexico DF, Mexico.
| | | | | | | | | |
Collapse
|
10
|
Figueroa-Angulo E, Martínez-Calvillo S, López-Villaseñor I, Hernández R. Evidence supporting a major promoter in the Trypanosoma cruzi rRNA gene. FEMS Microbiol Lett 2003; 225:221-5. [PMID: 12951245 DOI: 10.1016/s0378-1097(03)00516-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Two clearly separated transcription start points (tsp) have been reported within the Trypanosoma cruzi rDNA (DNA encoding rRNA) gene spacer region. These sites are separated by 270 bp, a distance compatible with the occurrence of two core promoters. To characterize the individual participation of these two elements, a deletion analysis was carried out. Different versions of the promoter regions were assayed in a transient transfection analysis of epimastigotes, using the chloramphenicol acetyl transferase gene (cat) as a reporter. The data indicate that the so-called distal tsp-associated region (relative to the small subunit rRNA 5' terminus coding region) comprises most (80%) if not all of the observed activity. In addition, an associated locus specific repeated element showed a modest upregulating activity, since its presence stimulated the cat reporter gene by about 20%. The data here presented should be valuable in the design of expression vectors for T. cruzi, where the rRNA gene promoter has been an important functional element.
Collapse
Affiliation(s)
- Elisa Figueroa-Angulo
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70-228, 04510 México D.F., Mexico
| | | | | | | |
Collapse
|
11
|
Lorenzi HA, Vazquez MP, Levin MJ. Integration of expression vectors into the ribosomal locus of Trypanosoma cruzi. Gene 2003; 310:91-9. [PMID: 12801636 DOI: 10.1016/s0378-1119(03)00502-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The expression vectors of the protozoan parasite Trypanosoma cruzi pRIBOTEX and pTREX harbor a ribosomal promoter that improves gene expression and clone selection. Interestingly, the solely presence of this 810 bp long sequence leads to the integration of these vectors into the ribosomal locus, even though circular plasmids are poorly recombinogenic. Initially, it was suggested that a 174 bp long ribosomal-specific repeat element present in the ribosomal promoter region could be responsible for the genetic exchange. On the contrary, we demonstrate that recombination of pTREX occurs within a 86 bp long region located 120 bp downstream the transcription start point (tsp1) of the ribosomal promoter, and it does not depend on the presence of the ribosomal repeat. We also determined that a 291 bp segment encompassing the tsp1 and the 86 bp long recombination region contains all necessary signals to drive transcription and complete recombination into the rRNA locus. Finally, we demonstrate that the integration of pTREX derived plasmids into the nuclear genome occurs within the first 5 h post-transfection, and that non-integrated copies are rapidly degraded.
Collapse
Affiliation(s)
- Hernán Alejandro Lorenzi
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, INGEBI - CONICET, University of Buenos Aires, Vuelta de Obligado 2490 2P, 1428, Buenos Aires, Argentina
| | | | | |
Collapse
|
12
|
Stolf BS, Souto RP, Pedroso A, Zingales B. Two types of ribosomal RNA genes in hybrid Trypanosoma cruzi strains. Mol Biochem Parasitol 2003; 126:73-80. [PMID: 12554086 DOI: 10.1016/s0166-6851(02)00270-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Trypanosoma cruzi isolates can be divided into two major phylogenetic lineages-T. cruzi I and T. cruzi II. The population structure is predominantly clonal, with sexuality having no or limited influence on the evolution of the parasite. Isoenzymes and nuclear gene sequences have provided evidence that some T. cruzi strains are hybrids. Previous work of our group has shown that the putative hybrid strains designated as group 1/2 contain two types of rDNA units, corresponding to those found in T. cruzi I and T. cruzi II. In this study, the presence and transcription of the two types of ribosomal RNA (rRNA) cistrons were investigated in epimastigotes, metacyclic and tissue culture trypomastigotes of group 1/2 isolates. PCR and RT-PCR assays indicate that both types of cistrons are present in group 1/2 strains, but only type-2 genes are transcribed in all developmental stages. The structure of the promoter regions of group 1/2 was compared to reference T. cruzi I and T. cruzi II strains. In all cases, the transcription start point was mapped to a conserved A residue located approximately 1800 bp upstream the 18S rRNA gene. The distribution of rDNA clusters in chromosomal bands of group 1/2 was evaluated by pulsed-field gel electrophoresis (PFGE). The majority of type-2 rDNA genes are localized in a 1.5 Mbp band, whereas type-1 cistrons are mostly concentrated in a 1.1 Mbp band. The structural and functional studies of group 1/2 ribosomal cistrons described here may shed light on the evolutionary processes that took place during the generation of such hybrid organisms.
Collapse
MESH Headings
- Animals
- Base Sequence
- Chromosome Mapping
- Cloning, Molecular
- Genes, Protozoan
- Genes, rRNA
- Genetic Variation
- Hybridization, Genetic
- Molecular Sequence Data
- Promoter Regions, Genetic
- RNA, Ribosomal/analysis
- RNA, Ribosomal/classification
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- Sequence Alignment
- Species Specificity
- Transcription, Genetic/genetics
- Trypanosoma cruzi/classification
- Trypanosoma cruzi/genetics
Collapse
Affiliation(s)
- Beatriz S Stolf
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes 748, Brazil
| | | | | | | |
Collapse
|
13
|
Orlando TC, Rubio MAT, Sturm NR, Campbell DA, Floeter-Winter LM. Intergenic and external transcribed spacers of ribosomal RNA genes in lizard-infecting Leishmania: molecular structure and phylogenetic relationship to mammal-infecting Leishmania in the subgenus Leishmania (Leishmania). Mem Inst Oswaldo Cruz 2002; 97:695-701. [PMID: 12219138 DOI: 10.1590/s0074-02762002000500020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To establish the relationships of the lizard- and mammal-infecting Leishmania, we characterized the intergenic spacer region of ribosomal RNA genes from L. tarentolae and L. hoogstraali. The organization of these regions is similar to those of other eukaryotes. The intergenic spacer region was approximately 4 kb in L. tarentolae and 5.5 kb in L. hoogstraali. The size difference was due to a greater number of 63-bp repetitive elements in the latter species. This region also contained another element, repeated twice, that had an inverted octanucleotide with the potential to form a stem-loop structure that could be involved in transcription termination or processing events. The ribosomal RNA gene localization showed a distinct pattern with one chromosomal band (2.2 Mb) for L. tarentolae and two (1.5 and 1.3 Mb) for L. hoogstraali. The study also showed sequence differences in the external transcribed region that could be used to distinguish lizard Leishmania from the mammalian Leishmania. The intergenic spacer region structure features found among Leishmania species indicated that lizard and mammalian Leishmania are closely related and support the inclusion of lizard-infecting species into the subgenus Sauroleishmania proposed by Saf'janova in 1982.
Collapse
Affiliation(s)
- Tereza C Orlando
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, 05508-900, Brasil
| | | | | | | | | |
Collapse
|
14
|
de Andrade Stempliuk V, Floeter-Winter LM. Functional domains of the rDNA promoter display a differential recognition in Leishmania. Int J Parasitol 2002; 32:437-47. [PMID: 11849640 DOI: 10.1016/s0020-7519(01)00371-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A construct containing the RNA polymerase I promoter of Leishmania (L.) amazonensis, driving the expression of cloramphenicol acetyl transferase reporter gene, was better recognised by heterologous hosts species Leishmania (L.) major and Leishmania (L.) mexicana than by the homologous host L. (L.) amazonensis. The rDNA promoter domains responsible for recognition were functionally mapped. The core domain (-74 to +170) conferred a barely equal recognition on homologous or heterologous cells, slightly favouring to the later. Addition of the upstream domain (-196 to -74) repressed the expression in all cells tested. The third domain, consisting of repeated elements (upstream to -196 in L. (L.) amazonensis), enhanced by about 20 times the core activity of homologous species and by about 40 times the heterologous ones. Gel mobility shift patterns generated by the binding of core sequence of L. (L.) amazonensis to nuclear extracts of the Leishmania species suggested that the rDNA transcriptional machinery is a complex DNA-protein association particular for each species. A model is proposed to explain the mechanism and possible interactions of transcription machinery in the regulation of rDNA expression in phylogenically related organisms.
Collapse
Affiliation(s)
- Valeska de Andrade Stempliuk
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1374, 05508-900, São Paulo, SP, Brazil
| | | |
Collapse
|
15
|
Martínez-Calvillo S, Sunkin SM, Yan S, Fox M, Stuart K, Myler PJ. Genomic organization and functional characterization of the Leishmania major Friedlin ribosomal RNA gene locus. Mol Biochem Parasitol 2001; 116:147-57. [PMID: 11522348 DOI: 10.1016/s0166-6851(01)00310-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The sequence and gene organization of the ribosomal RNA (rRNA) genes of Leishmania major Friedlin (LmjF) were determined. Interestingly, the rDNA repeat unit contained a duplicated 526 bp fragment at the 3' end of the unit with two copies of the LSUepsilon rRNA gene. Our results suggested the presence of only approximately 24 copies of the rRNA unit per diploid genome in LmjF. Repetitive elements (IGSRE) of 63 bp occurred in the intergenic spacer (IGS) between the LSUepsilon and the SSU rRNA genes. Among the different rDNA units, the region containing the IGSRE fluctuated in length from approximately 1.3 to approximately 18 kb. The transcription initiation site (TIS) of the rRNA unit was localized by primer extension to 1043 bp upstream of the SSU gene and 184 bp downstream of the IGSRE. Sequence comparison among several species of Leishmania showed a high degree of conservation around the TIS. Moreover, the IGSRE also showed considerable similarity between Leishmania species. In transient transfection assays, a fragment containing the TIS directed a 164- to 178-fold increase in luciferase activity over the no-insert control, indicating the presence of a promoter within this 391 bp fragment. The LmjF promoter region was also functional in other species of Leishmania. Nuclear run-on analyses demonstrated that only the rRNA-coding strand is transcribed, downstream of this RNA polymerase I (pol I) promoter. These experiments also suggested that transcription terminates upstream of the IGSRE.
Collapse
Affiliation(s)
- S Martínez-Calvillo
- Seattle Biomedical Research Institute, 4 Nickerson Street, Seattle, WA 98109-1651, USA
| | | | | | | | | | | |
Collapse
|
16
|
Wen LM, Xu P, Benegal G, Carvaho MR, Butler DR, Buck GA. Trypanosoma cruzi: exogenously regulated gene expression. Exp Parasitol 2001; 97:196-204. [PMID: 11384163 DOI: 10.1006/expr.2001.4612] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A regulated expression vector would provide a strong tool for the dissection of gene function in Trypanosoma cruzi. Herein, we establish a system in which genes in T. cruzi expression vectors can be exogenously regulated by tetracycline. We first generated strains of T. cruzi that stably express the repressor of the bacterial tetracycline resistance gene and T7 RNA polymerase. Based on these strains, we developed two T. cruzi expression systems regulated by tetracycline--the first by use of a regulated rRNA promoter and the second by use of a regulated T7 promoter. In the former, we constructed an expression vector in which tetracycline resistance gene operators flank the transcription start point of the T. cruzi rRNA gene promoter. Reporter gene activity from this modified promoter was regulated up to 20-fold in the presence of different concentrations of tetracycline. In the T7 system, tetracycline resistance gene operators flank the transcription start point of the T7 promoter. Reporter gene activity from this modified promoter was regulated up to 150-fold in the presence of different concentrations of tetracycline. Expression in these systems was repressed when tetracycline was removed even after full induction for extended periods in the presence of tetracycline. We are now using these two systems to test protein function in T. cruzi.
Collapse
Affiliation(s)
- L M Wen
- Department of Microbiology and Immunology, Medical College of Virginia, Richmond, Virginia 23298-0678, USA
| | | | | | | | | | | |
Collapse
|
17
|
dos Santos WG, Buck GA. Simultaneous stable expression of neomycin phosphotransferase and green fluorescence protein genes in Trypanosoma cruzi. J Parasitol 2000; 86:1281-8. [PMID: 11191905 DOI: 10.1645/0022-3395(2000)086[1281:sseonp]2.0.co;2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The ribosomal RNA (rRNA) gene promoter was used to construct plasmid vectors that simultaneously express multiple exogenous genes in Trypanosoma cruzi. Vector pBSPANEO expresses neomycin phosphotransferase, and pPAGFPAN expresses both green fluorescent protein and neomycin phosphotransferase from a single promoter. Both vectors require the presence of the rRNA promoter for stable transfection; epimastigotes transfected with pPAGFPAN strongly fluoresced due to green fluorescent protein expression. Intact plasmids were rescued from the T. cruzi-transfected population after >8 mo of culture, indicating stable replication of these vectors. Vectors were integrated into the rRNA locus by homologous recombination and into other loci, presumably by illegitimate recombination. Parasites bearing tandem concatamers of plasmids were also found among the transfectants. Transfectants expressing green fluorescent protein showed a bright green fluorescence distributed throughout the cell. Fluorescence was also detected in amastigotes after infection of mammalian cells with transfected parasites, indicating that the rRNA promoter can drive efficient expression of these reporter genes in multiple life-cycle stages of the parasite. Expression of the heterologous genes was detected after passage in mice or in the insect vector. These vectors will be useful for the genetic dissection of T. cruzi biology and pathogenesis.
Collapse
Affiliation(s)
- W G dos Santos
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond 23298-0678, USA
| | | |
Collapse
|
18
|
Schnare MN, Collings JC, Spencer DF, Gray MW. The 28S-18S rDNA intergenic spacer from Crithidia fasciculata: repeated sequences, length heterogeneity, putative processing sites and potential interactions between U3 small nucleolar RNA and the ribosomal RNA precursor. Nucleic Acids Res 2000; 28:3452-61. [PMID: 10982863 PMCID: PMC110749 DOI: 10.1093/nar/28.18.3452] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2000] [Revised: 07/17/2000] [Accepted: 07/28/2000] [Indexed: 11/12/2022] Open
Abstract
In Crithidia fasciculata, the ribosomal RNA (rRNA) gene repeats range in size from approximately 11 to 12 kb. This length heterogeneity is localized to a region of the intergenic spacer (IGS) that contains tandemly repeated copies of a 19mer sequence. The IGS also contains four copies of an approximately 55 nt repeat that has an internal inverted repeat and is also present in the IGS of Leishmania species. We have mapped the C.fasciculata transcription initiation site as well as two other reverse transcriptase stop sites that may be analogous to the A0 and A' pre-rRNA processing sites within the 5' external transcribed spacer (ETS) of other eukaryotes. Features that could influence processing at these sites include two stretches of conserved primary sequence and three secondary structure elements present in the 5' ETS. We also characterized the C.fasciculata U3 snoRNA, which has the potential for base-pairing with pre-rRNA sequences. Finally, we demonstrate that biosynthesis of large subunit rRNA in both C. fasciculata and Trypanosoma brucei involves 3'-terminal addition of three A residues that are not present in the corresponding DNA sequences.
Collapse
MESH Headings
- Animals
- Base Pairing
- Base Sequence
- Conserved Sequence
- Crithidia fasciculata/genetics
- Crithidia fasciculata/metabolism
- DNA, Protozoan/genetics
- DNA, Protozoan/metabolism
- DNA, Ribosomal/genetics
- DNA, Ribosomal/metabolism
- Genetic Heterogeneity
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Ribosomal/metabolism
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- Repetitive Sequences, Nucleic Acid
- Restriction Mapping
- Sequence Alignment
- Sequence Analysis, DNA
- Trypanosoma brucei brucei/genetics
Collapse
Affiliation(s)
- M N Schnare
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | | | | | | |
Collapse
|
19
|
Downey N, Donelson JE. Search for promoters for the GARP and rRNA genes of Trypanosoma congolense. Mol Biochem Parasitol 1999; 104:25-38. [PMID: 10589979 DOI: 10.1016/s0166-6851(99)00135-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A search was conducted for transcriptional promoters in Trypanosoma congolense. A promoter test plasmid was constructed utilising the luciferase coding region flanked by the intergenic regions of a T. congolense gene encoding GARP, the glutamic acid and alanine rich protein on the surface of procyclic organisms. Using this plasmid, sequences located upstream of an 18S rRNA gene were tested in transient transfection assays for their ability to promote luciferase expression. A rRNA promoter fragment of 377 bp was identified that increases luciferase activity by as much as 35,000-fold above background levels. The rRNA transcription initiation site is located 961 bp upstream of the 18S rRNA gene and immediately downstream of 6 bp imperfect repeats. The plasmid was also used to examine sequences upstream of a GARP gene cluster in two different T. congolense strains for promoter activity. In contrast to the findings of another group, we were unable to detect promoter activity upstream of these GARP genes in either strain. We conclude that the GARP gene promoter, if it exists, has less than 0.03% (1/3000) of the activity of the rRNA promoter in this luciferase-based assay.
Collapse
Affiliation(s)
- N Downey
- Department of Molecular Biology Ph.D. Program, University of Iowa, Iowa City 52242, USA
| | | |
Collapse
|
20
|
Yan S, Lodes MJ, Fox M, Myler PJ, Stuart K. Characterization of the Leishmania donovani ribosomal RNA promoter. Mol Biochem Parasitol 1999; 103:197-210. [PMID: 10551363 DOI: 10.1016/s0166-6851(99)00126-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The rRNA genes of Leishmania donovani are organized on chromosome 27 as tandem repeats of approximately 12.5-kb units that each contain a promoter, the subunit rRNAs, and approximately 39 copies of a 64-bp species-specific sequence. The transcription initiation site was mapped to 1020 bp upstream of the 18S rRNA gene by RNase protection and primer extension. A 349-bp sequence between the 64-bp repeats and the 18S rRNA gene appears to contain a promoter, since it directs a 60-fold increase in luciferase expression over the no-insert control in transient transfection assays. Stepwise deletion and 10-bp replacement studies identified three domains that affect promoter activity. In strain LSB-51.1, a naturally occurring gene conversion with a portion of the LD1 sequence from chromosome 35 replaced the rRNA genes within one repeat unit, from downstream of the promoter to within the 64-bp repeats. Northern blot analysis of RNA from LSB-51.1 showed large transcripts from the external spacer regions that are not normally transcribed. These results imply that the gene conversion eliminated sequences at or near the 5' terminus of the 64-bp repeats which normally function in transcription termination.
Collapse
MESH Headings
- Animals
- Base Sequence
- Kinetoplastida/genetics
- Leishmania donovani/genetics
- Molecular Sequence Data
- Promoter Regions, Genetic
- RNA, Ribosomal/genetics
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 28S/genetics
- Repetitive Sequences, Nucleic Acid
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Terminator Regions, Genetic
- Transcription, Genetic
Collapse
Affiliation(s)
- S Yan
- Seattle Biomedical Research Institute, WA 98109-1651, USA
| | | | | | | | | |
Collapse
|
21
|
Espinoza B, Vera-Cruz JM, González H, Ortega E, Hernández R. Genotype and virulence correlation within Mexican stocks of Trypanosoma cruzi isolated from patients. Acta Trop 1998; 70:63-72. [PMID: 9707365 DOI: 10.1016/s0001-706x(98)00005-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Five Trypanosoma cruzi stocks were isolated from infected patients in the central state of Jalisco, Mexico. Parasites were isolated by direct inoculation of infected blood into BALB/c mice. The five stocks of T. cruzi were analyzed for in vitro growth, and for virulence and parasitic load in vivo. Furthermore, a genetic analysis based on restriction fragment length polymorphism associated with a repetitive element from the rRNA gene spacer was performed. No differences in in vitro growth or in parasitic load in vivo were found among the stocks. While three stocks showed low virulence for mice, the other two stocks killed 80 and 100% of the infected mice. In addition, Southern blot of total DNA hybridized with a repetitive element from the rRNA gene spacer showed two clearly distinct patterns that correlated with the observed ability of the stocks to kill infected mice. Our results show a correlation among the ability to kill BALB/c mice, the genetic pattern and clinical symptoms produced by the different stocks in the infected patients.
Collapse
Affiliation(s)
- B Espinoza
- Departamento de Immunologia, Instituto de Investigaciones Biomedicas, UNAM. Cd. Universidad Nacional Autónoma de Mexico, Mexico city.
| | | | | | | | | |
Collapse
|
22
|
Martínez-Calvillo S, López I, Hernández R. pRIBOTEX expression vector: a pTEX derivative for a rapid selection of Trypanosoma cruzi transfectants. Gene 1997; 199:71-6. [PMID: 9358041 DOI: 10.1016/s0378-1119(97)00348-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To improve the selection phenotype of the expression plasmid pTEX, a Trypanosoma cruzi rDNA (DNA coding for rRNA) gene spacer fragment (806 bp) containing a mapped transcription start point (tsp) was cloned in the vectors pTEX and pTEX-cat, generating the plasmids pRIBOTEX and pRIBOTEX-cat. T. cruzi cultures transiently transfected with pRIBOTEX-cat expressed a chloramphenicol (Cm) acetyltransferase (CAT) activity 16,000-fold greater than the activity observed with the parental vector pTEX-cat. Moreover, T. cruzi cells transformed with pRIBOTEX and pRIBOTEX-cat exhibited logarithmic growth in the presence of Geneticin (G418) 2 weeks earlier than that observed with controls transformed with pTEX. The plasmid copy number in stably transformed trypanosomes was about 50-times higher in cultures transformed with pTEX-cat than in cells transformed with pRIBOTEX or pRIBOTEX-cat. However, the neo RNA steady-state level and the CAT activity observed among the stably transfected cultures showed only modest differences. Finally, it was found that the pRIBOTEX vector was not episomally maintained as pTEX, but integrated into a chromosome indistinguishable from the one encoding rRNA. These features make pRIBOTEX a useful tool for transfection and rapid expression of genes in T. cruzi.
Collapse
Affiliation(s)
- S Martínez-Calvillo
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F
| | | | | |
Collapse
|
23
|
Nunes LR, de Carvalho MR, Buck GA. Trypanosoma cruzi strains partition into two groups based on the structure and function of the spliced leader RNA and rRNA gene promoters. Mol Biochem Parasitol 1997; 86:211-24. [PMID: 9200127 DOI: 10.1016/s0166-6851(97)02857-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have previously identified a major proximal sequence element (PSE) responsible for transcription of the spliced leader (SL) gene from Trypanosoma cruzi strain CL, and showed that the sequence encompassing this PSE exhibits approximately 30% divergence between two major groups of T. cruzi isolates, but strong conservation within the groups. In this report, we show that the SL RNA gene promoter from the CL strain (group I) is efficiently expressed only in T. cruzi isolates from group I. Similarly, the sequence of the approximately 643 bp promoter region of the T. cruzi rRNA is strongly conserved within, but diverged approximately 20% between, the two groups. Reporter constructs driven by the rRNA promoter sequences from group I strains are strongly expressed after electroporation into other group I strains, but not expressed in group II strains. In contrast, constructs bearing rRNA promoter sequences from group II strains are active in strains from both groups. Phylogenetic analyses performed with both the rRNA and the SL RNA gene promoter sequences yielded similar trees, and these trees strongly reinforce the partitioning of known T. cruzi into two major groups that parallel the observed functional specificity of the promoters. Given the well-documented species specific pattern of both rRNA promoters and PSEs in higher eukaryotes, these results suggest an ancient evolutionary divergence among organisms currently classified as T. cruzi.
Collapse
MESH Headings
- Animals
- Base Sequence
- Evolution, Molecular
- Genes, Protozoan/genetics
- Molecular Sequence Data
- Nucleic Acid Conformation
- Phylogeny
- Promoter Regions, Genetic/genetics
- Promoter Regions, Genetic/physiology
- RNA Splicing
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/physiology
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/physiology
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Trypanosoma cruzi/chemistry
- Trypanosoma cruzi/classification
- Trypanosoma cruzi/genetics
Collapse
Affiliation(s)
- L R Nunes
- Department of Microbiology and Immunology, Medical College, Virginia Commonwealth University, Richmond 23298-0678, USA
| | | | | |
Collapse
|
24
|
Requena JM, Soto M, Quijada L, Carrillo G, Alonso C. A region containing repeated elements is associated with transcriptional termination of Leishmania infantum ribosomal RNA genes. Mol Biochem Parasitol 1997; 84:101-10. [PMID: 9041525 DOI: 10.1016/s0166-6851(96)02785-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A novel repetitive DNA element has been isolated from the Leishmania infantum genome. The 348 bp long element, designated LiR3, was found to be located downstream from the 3'-end of the ribosomal RNA (rRNA) genes. This LiR3 element has short sequences with potential to form stem-loop structures similar to those of the bacterial rho-independent transcriptional terminators. Given both the structural features and the genomic location of this element we searched for a possible functional implication of these structures in the termination of rRNA transcription. Nuclear run-on assays indicated that indeed there is a transcriptional blockage associated with the LiR3 element. Several chi-like elements, resembling the recombination-promoting sites of Escherichia coli, were identified within the sequences associated with the stem-loop structures. A possible implication of these chi-like elements in rRNA gene conversion events is discussed.
Collapse
Affiliation(s)
- J M Requena
- Centro de Biología Molecular, Severo Ochoa, Universidad Autónoma de Madrid, Spain.
| | | | | | | | | |
Collapse
|
25
|
Pulido M, Martínez-Calvillo S, Hernández R. Trypanosoma cruzi rRNA genes: a repeated element from the non-transcribed spacer is locus specific. Acta Trop 1996; 62:163-70. [PMID: 9025984 DOI: 10.1016/s0001-706x(96)00034-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To determine the occurrence of conserved domains of presumed functional selection, a genomic restriction analysis was carried out in the region surrounding a transcription start point (tsp) from the rRNA cistron in T. cruzi. The transcribed spacer was found highly conserved among several isolates, whereas at 146 bp upstream from the tsp a highly polymorphic pattern was evidenced with a probe that contains sequences of a repetitive element (172 bp). Both genomic and chromosomal hybridizations indicated the linkage of the repetitive element to coding regions of the rRNA cistron. This represents the first example of a repetitive element not interspersed throughout the genome of T. cruzi, and strongly suggests that a functional role is being selected.
Collapse
Affiliation(s)
- M Pulido
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F., México
| | | | | |
Collapse
|
26
|
Gay LS, Wilson ME, Donelson JE. The promoter for the ribosomal RNA genes of Leishmania chagasi. Mol Biochem Parasitol 1996; 77:193-200. [PMID: 8813665 DOI: 10.1016/0166-6851(96)02594-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A promoter for the rRNA genes of Leishmania chagasi was found to be located about 1 kb upstream of the 18S rRNA coding region and immediately downstream of 64 bp tandem repeats. Its approximate boundaries and corresponding transcription start site were determined by transient transfections and primer extension assays. This promoter for RNA polymerase I has differing activities when transfected into various Leishmania species and no activity in Trypanosoma cruzi. Its sequence has no obvious similarities with other known rRNA promoters in Trypanosomatids. Depending on the species, this promoter can be used to increase expression of a protein from a plasmid in Leishmania by as much as 45-fold over that from a plasmid lacking a promoter.
Collapse
MESH Headings
- Animals
- Base Sequence
- DNA, Protozoan/genetics
- DNA, Ribosomal/genetics
- Gene Expression Regulation/genetics
- Genes, Protozoan/genetics
- Genes, Reporter
- Leishmania infantum/genetics
- Luciferases/genetics
- Luciferases/metabolism
- Molecular Sequence Data
- Promoter Regions, Genetic/genetics
- RNA Polymerase I
- RNA, Protozoan/genetics
- RNA, Ribosomal, 18S/genetics
- Sequence Analysis, DNA
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- L S Gay
- Department of Biochemistry, University of Iowa, Iowa City 52242, USA
| | | | | |
Collapse
|
27
|
Uliana SR, Fischer W, Stempliuk VA, Floeter-Winter LM. Structural and functional characterization of the Leishmania amazonensis ribosomal RNA promoter. Mol Biochem Parasitol 1996; 76:245-55. [PMID: 8920010 DOI: 10.1016/0166-6851(95)02562-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The promoter region of the ribosomal RNA (rRNA) genes of Leishmania amazonensis was characterised and the transcription start point, defined by primer extension, was shown to be a T residue, 1048 nucleotides upstream of the beginning of the 18S sequence. A repetitive element of 60 bp was identified in the intergenic spacer. This element did not show sequence similarity with the region around the transcription start point. Conserved sequences were found in the external transcribed spacer of L. amazonensis, Trypanosoma cruzi and Crithidia fasciculata rRNA genes, 150 nucleotides downstream of the transcription start point. These sequences might be involved in processing events of the rRNA precursor molecule. The general organisation of the gene resembles the pattern observed for the ribosomal cistron in eukaryotic cells. Constructs containing the L. amazonensis promoter region upstream of the chloramphenicol acetyltransferase (cat) gene were able to drive the expression of the reporter gene in transient transfection experiments. CAT expression could be detected even when no trans-splicing acceptor sequence was added to the constructs, although its presence enhanced 5-fold the level of CAT activity. Species-specificity of the RNA polymerase I promoter activity was also demonstrated since constructs containing the L. amazonensis promoter region were unable to drive CAT expression when transfected into the related trypanosomatids, T. cruzi, C. fasciculata and Endotrypanum schaudini.
Collapse
Affiliation(s)
- S R Uliana
- Departamento Parasitologia, Universidade de Sao Paulo, Brazil
| | | | | | | |
Collapse
|
28
|
Abstract
Trypanosomes are protozoan agents of major parasitic diseases such as Chagas' disease in South America and sleeping sickness of humans and nagana disease of cattle in Africa. They are transmitted to mammalian hosts by specific insect vectors. Their life cycle consists of a succession of differentiation and growth phases requiring regulated gene expression to adapt to the changing extracellular environment. Typical of such stage-specific expression is that of the major surface antigens of Trypanosoma brucei, procyclin in the procyclic (insect) form and the variant surface glycoprotein (VSG) in the bloodstream (mammalian) form. In trypanosomes, the regulation of gene expression is effected mainly at posttranscriptional levels, since primary transcription of most of the genes occurs in long polycistronic units and is constitutive. The transcripts are processed by transsplicing and polyadenylation under the influence of intergenic polypyrimidine tracts. These events show some developmental regulation. Untranslated sequences of the mRNAs seem to play a prominent role in the stage-specific control of individual gene expression, through a modulation of mRNA abundance. The VSG and procyclin transcription units exhibit particular features that are probably related to the need for a high level of expression. The promoters and RNA polymerase driving the expression of these units resemble those of the ribosomal genes. Their mutually exclusive expression is ensured by controls operating at several levels, including RNA elongation. Antigenic variation in the bloodstream is achieved through DNA rearrangements or alternative activation of the telomeric VSG gene expression sites. Recent discoveries, such as the existence of a novel nucleotide in telomeric DNA and the generation of point mutations in VSG genes, have shed new light on the mechanisms and consequences of antigenic variation.
Collapse
Affiliation(s)
- L Vanhamme
- Department of Molecular Biology, Free University of Brussels, Rhode Saint Genèse, Belgium
| | | |
Collapse
|