1
|
Aspects of the Neurospora crassa Sulfur Starvation Response Are Revealed by Transcriptional Profiling and DNA Affinity Purification Sequencing. mSphere 2021; 6:e0056421. [PMID: 34523983 PMCID: PMC8550094 DOI: 10.1128/msphere.00564-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Accurate nutrient sensing is important for rapid fungal growth and exploitation of available resources. Sulfur is an important nutrient source found in a number of biological macromolecules, including proteins and lipids. The model filamentous fungus Neurospora crassa is capable of utilizing sulfur found in a variety of sources from amino acids to sulfate. During sulfur starvation, the transcription factor CYS-3 is responsible for upregulation of genes involved in sulfur uptake and assimilation. Using a combination of RNA sequencing and DNA affinity purification sequencing, we performed a global survey of the N. crassa sulfur starvation response and the role of CYS-3 in regulating sulfur-responsive genes. The CYS-3 transcription factor bound the promoters and regulated genes involved in sulfur metabolism. Additionally, CYS-3 directly activated the expression of a number of uncharacterized transporter genes, suggesting that regulation of sulfur import is an important aspect of regulation by CYS-3. CYS-3 also directly regulated the expression of genes involved in mitochondrial electron transfer. During sulfur starvation, genes involved in nitrogen metabolism, such as amino acid and nucleic acid metabolic pathways, along with genes encoding proteases and nucleases that are necessary for scavenging nitrogen, were activated. Sulfur starvation also caused changes in the expression of genes involved in carbohydrate metabolism, such as those encoding glycosyl hydrolases. Thus, our data suggest a connection between sulfur metabolism and other aspects of cellular metabolism. IMPORTANCE Identification of nutrients present in the environment is a challenge common to all organisms. Sulfur is an important nutrient source found in proteins, lipids, and electron carriers that are required for the survival of filamentous fungi such as Neurospora crassa. Here, we transcriptionally profiled the response of N. crassa to characterize the global response to sulfur starvation. We also used DNA affinity purification sequencing to identify the direct downstream targets of the transcription factor responsible for regulating genes involved in sulfur uptake and assimilation. Along with genes involved in sulfur metabolism, this transcription factor regulated a number of uncharacterized transporter genes and genes involved in mitochondrial electron transfer. Our data also suggest a connection between sulfur, nitrogen, and carbon metabolism, indicating that the regulation of a number of metabolic pathways is intertwined.
Collapse
|
2
|
Resistance to Aflatoxin Accumulation in Maize Mediated by Host-Induced Silencing of the Aspergillus flavus Alkaline Protease ( alk) Gene. J Fungi (Basel) 2021; 7:jof7110904. [PMID: 34829193 PMCID: PMC8622731 DOI: 10.3390/jof7110904] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/29/2022] Open
Abstract
Aspergillus flavus is a fungal pathogen that infects maize and produces aflatoxins. Host-Induced Gene Silencing (HIGS) has been shown to reduce host infection by various fungal pathogens. Here, the A. flavus alkaline protease (alk) gene was targeted for silencing through HIGS. An RNAi vector carrying a portion of the alk gene was incorporated into the B104 maize genome. Four out of eight transformation events containing the alk gene, Alk-3, Alk-4, Alk-7 and Alk-9, were self-pollinated to T4/T6 generations. At T3, the Alk-transgenic lines showed up to 87% reduction in aflatoxin accumulation under laboratory conditions. T4 transgenic Alk-3 and Alk-7 lines, and T5 and T6 Alk-4 and Alk-9 showed an average of 84% reduction in aflatoxin accumulation compared to their null controls under field inoculations (p < 0.05). F1 hybrids of three elite maize inbred lines and the transgenic lines also showed significant improvement in aflatoxin resistance (p < 0.006 to p < 0.045). Reduced A. flavus growth and levels of fungal ß-tubulin DNA were observed in transgenic kernels during in vitro inoculation. Alk-4 transgenic leaf and immature kernel tissues also contained about 1000-fold higher levels of alk-specific small RNAs compared to null controls, indicating that the enhanced aflatoxin resistance in the transgenic maize kernels is due to suppression of A. flavus infection through HIGS of alk gene.
Collapse
|
3
|
Šimonovičová A, Vojtková H, Nosalj S, Piecková E, Švehláková H, Kraková L, Drahovská H, Stalmachová B, Kučová K, Pangallo D. Aspergillus niger Environmental Isolates and Their Specific Diversity Through Metabolite Profiling. Front Microbiol 2021; 12:658010. [PMID: 34248871 PMCID: PMC8261049 DOI: 10.3389/fmicb.2021.658010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/20/2021] [Indexed: 11/17/2022] Open
Abstract
We present a biological profile of 16 Aspergillus niger environmental isolates from different types of soils and solid substrates across a pH range, from an ultra-acidic (<3.5) to a very strongly alkaline (>9.0) environment. The soils and solid substrates also differ in varying degrees of anthropic pollution, which in most cases is caused by several centuries of mining activity at old mining sites, sludge beds, ore deposits, stream sediments, and coal dust. The values of toxic elements (As, Sb, Zn, Cu, Pb) very often exceed the limit values. The isolates possess different macro- and micromorphological features. All the identifications of Aspergillus niger isolates were confirmed by molecular PCR analysis and their similarity was expressed by RAMP analysis. The biochemical profile of isolates based on FF-MicroPlate tests from the Biolog system showed identical biochemical reactions in 50 tests, while in 46 tests the utilisation reactions differed. The highest similarity of strains isolated from substrates with the same pH, as well as the most suitable biochemical tests for analysis of the phenotypic similarity of isolated strains, were confirmed when evaluating the biochemical profile using multicriterial analysis in the Canoco program. The isolates were screened for mycotoxin production by thin-layer chromatography (TLC), as well. Two of them were able to synthesise ochratoxin A, while none produced fumonisins under experimental conditions. Presence of toxic compounds in contaminated sites may affect environmental microscopic fungi and cause the genome alteration, which may result in changes of their physiology, including the production of different (secondary) metabolites, such as mycotoxins.
Collapse
Affiliation(s)
- Alexandra Šimonovičová
- Department of Soil Science, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Hana Vojtková
- Department of Environmental Engineering, Faculty of Mining and Geology, VSB - Technical University of Ostrava, Ostrava, Czechia
| | - Sanja Nosalj
- Department of Soil Science, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Elena Piecková
- Department of Microbiology, Slovak Medical University in Bratislava, Bratislava, Slovakia
| | - Hana Švehláková
- Department of Environmental Engineering, Faculty of Mining and Geology, VSB - Technical University of Ostrava, Ostrava, Czechia
| | - Lucia Kraková
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Hana Drahovská
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Barbara Stalmachová
- Department of Environmental Engineering, Faculty of Mining and Geology, VSB - Technical University of Ostrava, Ostrava, Czechia
| | - Kateřina Kučová
- Department of Environmental Engineering, Faculty of Mining and Geology, VSB - Technical University of Ostrava, Ostrava, Czechia
| | - Domenico Pangallo
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
4
|
Improving cellulases production by Myceliophthora thermophila through disruption of protease genes. Biotechnol Lett 2019; 42:219-229. [DOI: 10.1007/s10529-019-02777-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023]
|
5
|
Budak SO, Zhou M, Brouwer C, Wiebenga A, Benoit I, Di Falco M, Tsang A, de Vries RP. A genomic survey of proteases in Aspergilli. BMC Genomics 2014; 15:523. [PMID: 24965873 PMCID: PMC4102723 DOI: 10.1186/1471-2164-15-523] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 06/18/2014] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Proteases can hydrolyze peptides in aqueous environments. This property has made proteases the most important industrial enzymes by taking up about 60% of the total enzyme market. Microorganisms are the main sources for industrial protease production due to their high yield and a wide range of biochemical properties. Several Aspergilli have the ability to produce a variety of proteases, but no comprehensive comparative study has been carried out on protease productivity in this genus so far. RESULTS We have performed a combined analysis of comparative genomics, proteomics and enzymology tests on seven Aspergillus species grown on wheat bran and sugar beet pulp. Putative proteases were identified by homology search and Pfam domains. These genes were then clusters based on orthology and extracellular proteases were identified by protein subcellular localization prediction. Proteomics was used to identify the secreted enzymes in the cultures, while protease essays with and without inhibitors were performed to determine the overall protease activity per protease class. All this data was then integrated to compare the protease productivities in Aspergilli. CONCLUSIONS Genomes of Aspergillus species contain a similar proportion of protease encoding genes. According to comparative genomics, proteomics and enzymatic experiments serine proteases make up the largest group in the protease spectrum across the species. In general wheat bran gives higher induction of proteases than sugar beet pulp. Interesting differences of protease activity, extracellular enzyme spectrum composition, protein occurrence and abundance were identified for species. By combining in silico and wet-lab experiments, we present the intriguing variety of protease productivity in Aspergilli.
Collapse
Affiliation(s)
- Sebnem Ozturkoglu Budak
- />CBS-KNAW Fungal Biodiversity Center, Uppsalalaan 8, Utrecht, 3584 CT The Netherlands
- />Faculty of Agriculture, Department of Dairy Technology, University of Ankara, Ankara, Turkey
- />Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Miaomiao Zhou
- />CBS-KNAW Fungal Biodiversity Center, Uppsalalaan 8, Utrecht, 3584 CT The Netherlands
- />Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Carlo Brouwer
- />CBS-KNAW Fungal Biodiversity Center, Uppsalalaan 8, Utrecht, 3584 CT The Netherlands
| | - Ad Wiebenga
- />CBS-KNAW Fungal Biodiversity Center, Uppsalalaan 8, Utrecht, 3584 CT The Netherlands
- />Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Isabelle Benoit
- />CBS-KNAW Fungal Biodiversity Center, Uppsalalaan 8, Utrecht, 3584 CT The Netherlands
- />Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Marcos Di Falco
- />Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC H4B 1R6 Canada
| | - Adrian Tsang
- />Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC H4B 1R6 Canada
| | - Ronald P de Vries
- />CBS-KNAW Fungal Biodiversity Center, Uppsalalaan 8, Utrecht, 3584 CT The Netherlands
- />Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
6
|
Katz ME, Braunberger K, Yi G, Cooper S, Nonhebel HM, Gondro C. A p53-like transcription factor similar to Ndt80 controls the response to nutrient stress in the filamentous fungus, Aspergillus nidulans. F1000Res 2013; 2:72. [PMID: 24358888 PMCID: PMC3821154 DOI: 10.12688/f1000research.2-72.v1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/28/2013] [Indexed: 12/11/2022] Open
Abstract
The
Aspergillus nidulans xprG gene encodes a putative transcriptional activator that is a member of the Ndt80 family in the p53-like superfamily of proteins. Previous studies have shown that XprG controls the production of extracellular proteases in response to starvation. We undertook transcriptional profiling to investigate whether XprG has a wider role as a global regulator of the carbon nutrient stress response. Our microarray data showed that the expression of a large number of genes, including genes involved in secondary metabolism, development, high-affinity glucose uptake and autolysis, were altered in an
xprGΔ null mutant. Many of these genes are known to be regulated in response to carbon starvation. We confirmed that sterigmatocystin and penicillin production is reduced in
xprG
- mutants. The loss of fungal mass and secretion of pigments that accompanies fungal autolysis in response to nutrient depletion was accelerated in an
xprG1 gain-of-function mutant and decreased or absent in an
xprG
- mutant. The results support the hypothesis that XprG plays a major role in the response to carbon limitation and that nutrient sensing may represent one of the ancestral roles for the p53-like superfamily. Disruption of the AN6015 gene, which encodes a second Ndt80-like protein, showed that it is required for sexual reproduction in
A. nidulans.
Collapse
Affiliation(s)
- Margaret E Katz
- Department of Molecular and Cellular Biology, University of New England, Armidale, NSW 2351, Australia
| | - Kathryn Braunberger
- Department of Molecular and Cellular Biology, University of New England, Armidale, NSW 2351, Australia
| | - Gauncai Yi
- Department of Molecular and Cellular Biology, University of New England, Armidale, NSW 2351, Australia ; Current address: Nanjing Hospital for Women & Children's Health, Nanjing Medical University, Nanjing City, 210004, China
| | - Sarah Cooper
- Department of Molecular and Cellular Biology, University of New England, Armidale, NSW 2351, Australia
| | - Heather M Nonhebel
- Department of Molecular and Cellular Biology, University of New England, Armidale, NSW 2351, Australia
| | - Cedric Gondro
- The Centre for Genetic Analysis and Applications, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
7
|
Evaluation of strategies to improve the production of alkaline protease PrtA from Aspergillus nidulans. Appl Biochem Biotechnol 2013; 169:1672-82. [PMID: 23334783 DOI: 10.1007/s12010-013-0091-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 01/01/2013] [Indexed: 10/27/2022]
Abstract
Aspergillus nidulans produces several proteases. The prtA gene encodes a major protease, and two approaches were explored to achieve the overproduction of this enzyme. Molecular cloning of the mature form of this enzyme in Pichia pastoris resulted in the production of an inactive form. In addition, the presence of this enzyme was toxic for the host and resulted in cell lysis. The modification of the culture medium constituents resulted in a 6.4-fold increase in enzyme production. The main effect was achieved through the use of organic nitrogen sources. Although it was previously shown that the PrtA protease shows promiscuous esterase activity, the production of this enzyme was not induced by lipidic sources.
Collapse
|
8
|
Morya VK, Yadav S, Kim EK, Yadav D. In silico characterization of alkaline proteases from different species of Aspergillus. Appl Biochem Biotechnol 2011; 166:243-57. [PMID: 22072140 DOI: 10.1007/s12010-011-9420-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Accepted: 10/18/2011] [Indexed: 11/29/2022]
Abstract
A total of 49 protein sequences of alkaline proteases retrieved from GenBank representing different species of Aspergillus have been characterized for various physiochemical properties, homology search, multiple sequence alignment, motif, and super family search and phylogenetic tree construction. The sequence level homology was obtained among different groups of alkaline protease enzymes, viz alkaline serine protease, oryzin, calpain-like protease, serine protease, subtilisin-like alkaline proteases. Multiple sequence alignment of alkaline protease protein sequence of different Aspergillus species revealed a stretch of conserved region for amino acid residues from 69 to 110 and 130-204. The phylogenetic tree constructed indicated several Aspergillus species-specific clusters for alkaline proteases namely Aspergillus fumigatus, Aspergillus niger, Aspergillus oryzae, Aspergillus clavatus. The distributions of ten commonly observed motifs were analyzed among these proteases. Motif 1 with a signature amino acid sequence of 50 amino acids, i.e., ASFSNYGKVVDIFAPGQDILSCWIGSTTATNTISGTSMATPHIVGLSCYL, was uniformly observed in proteases protein sequences indicating its involvement with the structure and enzymatic function. Motif analysis of acidic proteases of Aspergillus and bacterial alkaline proteases has revealed different signature amino acid sequences. The superfamily search for these proteases revealed the presence of subtilases, serine-carboxyl proteinase, calpain large subunit, and thermolysin-like superfamilies with 45 representing the subtilases superfamily.
Collapse
Affiliation(s)
- Vivek Kumar Morya
- Department of Biological Engineering, Inha University, Incheon, South Korea
| | | | | | | |
Collapse
|
9
|
Hajji M, Hmidet N, Jellouli K, Vallaeys T, Nasri M, Sellami-Kamoun A. Gene cloning and expression of a detergent stable alkaline protease from Aspergillus clavatus ES1. Process Biochem 2010. [DOI: 10.1016/j.procbio.2010.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Szilágyi M, Kwon NJ, Dorogi C, Pócsi I, Yu JH, Emri T. The extracellular β-1,3-endoglucanase EngA is involved in autolysis of Aspergillus nidulans. J Appl Microbiol 2010; 109:1498-508. [PMID: 20602653 DOI: 10.1111/j.1365-2672.2010.04782.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To elucidate the roles of the β-1,3-endoglucanase EngA in autolysis of the filamentous fungus Aspergillus nidulans and to identify the common regulatory elements of autolytic hydrolases. METHODS AND RESULTS A β-1,3-endoglucanase was purified from carbon-starving cultures of A. nidulans. This enzyme is found to be encoded by the engA gene (locus ID: AN0472.3). Functional and gene-expression studies demonstrated that EngA is involved in the autolytic cell wall degradation resulting from carbon starvation of the fungus. Moreover, regulation of engA is found to be dependent on the FluG/BrlA asexual sporulation signalling pathway in submerged culture. The deletion of either engA or chiB (encoding an endochitinase) caused highly reduced production of hydrolases in general. CONCLUSIONS The β-1,3-endoglucanase EngA plays a pivotal role in fungal autolysis, and activities of both EngA and ChiB are necessary to orchestrate the expression of autolytic hydrolases. The production of cell wall-degrading enzymes was coordinately controlled in a highly sophisticated and complex manner. SIGNIFICANCE AND IMPACT OF THE STUDY No information was available on the autolytic glucanase(s) of the euascomycete A. nidulans. This study demonstrates that EngA is a key element in fungal autolysis, and normal activities of both EngA and ChiB are crucial for balanced production of hydrolases.
Collapse
Affiliation(s)
- M Szilágyi
- Department of Microbial Biotechnology and Cell Biology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | |
Collapse
|
11
|
Chen ZY, Brown RL, Cary JW, Damann KE, Cleveland TE. Characterization of anAspergillus flavusalkaline protease and its role in the infection of maize kernels. TOXIN REV 2009. [DOI: 10.1080/15569540903089221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
The Aspergillus nidulans pigP gene encodes a subunit of GPI-N-acetylglucosaminyltransferase which influences filamentation and protein secretion. Curr Genet 2009; 55:301-9. [PMID: 19421754 DOI: 10.1007/s00294-009-0246-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 04/16/2009] [Accepted: 04/19/2009] [Indexed: 10/20/2022]
Abstract
Glycosylphosphatidylinositol (GPI) anchoring is the main mechanism allowing proper localization of secretory proteins in cell membranes. We have isolated an Aspergillus nidulans homolog of the human PIG-P gene, which encodes a subunit of acetylglucosaminyltransferase (GPI-GnT)-an enzyme involved in the synthesis of GPI anchors. A. nidulans pigP mutants have significantly decreased GPI synthesis. On solid media they show strong growth retardation (the "button" phenotype) while in liquid minimal media they show overall good growth but with hyperbranched and bulbous hyphae with impaired septation. Furthermore, the pigP strains, in contrast to the wild-type, abundantly secrete a 33-kDa alkaline serine protease (ALP) into the liquid medium.
Collapse
|
13
|
Mutations in genes encoding sorting nexins alter production of intracellular and extracellular proteases in Aspergillus nidulans. Genetics 2009; 181:1239-47. [PMID: 19204378 DOI: 10.1534/genetics.108.095315] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
XprG, a putative p53-like transcriptional activator, regulates production of extracellular proteases in response to nutrient limitation and may also have a role in programmed cell death. To identify genes that may be involved in the XprG regulatory pathway, xprG2 revertants were isolated and shown to carry mutations in genes which we have named sogA-C (suppressors of xprG). The translocation breakpoint in the sogA1 mutant was localized to a homolog of Saccharomyces cerevisiae VPS5 and mapping data indicated that sogB was tightly linked to a VPS17 homolog. Complementation of the sogA1 and sogB1 mutations and identification of nonsense mutations in the sogA2 and sogB1 alleles confirmed the identification. Vps17p and Vps5p are part of a complex involved in sorting of vacuolar proteins in yeast and regulation of cell-surface receptors in mammals. Protease zymograms indicate that mutations in sogA-C permit secretion of intracellular proteases, as in S. cerevisiae vps5 and vps17 mutants. In contrast to S. cerevisiae, the production of intracellular protease was much higher in the mutants. Analysis of serine protease gene expression suggests that an XprG-independent mechanism for regulation of extracellular protease gene expression in response to carbon starvation exists and is activated in the pseudorevertants.
Collapse
|
14
|
Rolland SG, Bruel CA. Sulphur and nitrogen regulation of the protease-encoding ACP1 gene in the fungus Botrytis cinerea: correlation with a phospholipase D activity. MICROBIOLOGY-SGM 2008; 154:1464-1473. [PMID: 18451055 DOI: 10.1099/mic.0.2007/012005-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Sulphur and nitrogen catabolic repressions are regulations that have long been recognized in fungi, but whose molecular bases remain largely elusive. This paper shows that catabolic repression of a protease-encoding gene correlates with the modulation of a phosphatidylethanolamine (PE)-specific phospholipase D (PLD) activity in the pathogenic fungus Botrytis cinerea. Our results first demonstrate that the ACP1 gene is subject to sulphur catabolic repression, with sulphate and cysteine inhibiting its expression. Sulphate and cysteine also cause a decrease of the total cellular PLD activity and, reciprocally, the two PLD inhibitors AEBSF [4-(2-aminoethyl)benzenesulphonyl fluoride] and curcumin negatively affect ACP1 expression in vivo. Cysteine moreover inhibits the PE-specific PLD activity in cell extracts. ACP1 is regulated by nitrogen, but here we show that this regulation does not rely on the proximal AREA binding site in its promoter, and that glutamine does not play a particular role in the process. A decrease in the total cellular PLD activity is also observed when the cells are fed ammonia, but this effect is smaller than that produced by sulphur. RNA-interference experiments finally suggest that the enzyme responsible for the PE-specific PLD activity is encoded by a gene that does not belong to the known HKD gene family of PLDs.
Collapse
Affiliation(s)
- Stéphane G Rolland
- Génomique fonctionnelle des champignons pathogènes des plantes, UMR5240 Microbiologie, Adaptation et Pathogénie, Université Lyon 1, CNRS, Bayer CropScience, Université de Lyon, 14 Rue Pierre Baizet, 69263 Lyon Cedex 9, France
| | - Christophe A Bruel
- Génomique fonctionnelle des champignons pathogènes des plantes, UMR5240 Microbiologie, Adaptation et Pathogénie, Université Lyon 1, CNRS, Bayer CropScience, Université de Lyon, 14 Rue Pierre Baizet, 69263 Lyon Cedex 9, France
| |
Collapse
|
15
|
Emri T, Szilágyi M, Justyák A, Pócsi I. Heterotrimeric G protein mediated regulation of proteinase production in Aspergillus nidulans. Acta Microbiol Immunol Hung 2008; 55:111-7. [PMID: 18595316 DOI: 10.1556/amicr.55.2008.2.3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Extracellular proteinase production induced by carbon starvation was studied in a series of heterotrimeric G protein signaling pathway mutants of Aspergillus nidulans. All the mutants tested--including deltafadA (Galpha), deltasfaD (Gbeta), deltagpgA (Ggamma) and deltasfgA (regulator of FadA signaling)--showed an elevated proteinase production after glucose depletion. Our results strongly support the view that during growth, FadA/SfaD/GpgA G protein signaling inhibits proteinase production via both Galpha and Gbetagamma subunits, and all conditions, which are not sufficient to support vegetative growth and, hence, inhibit this type of G protein signaling, elevate extracellular proteinase activities.
Collapse
Affiliation(s)
- Tamás Emri
- Department of Microbial Biotechnology and Cell Biology, Faculty of Science and Technology, University of Debrecen, P.O. Box 63, H-4010 Debrecen, Hungary.
| | | | | | | |
Collapse
|
16
|
Katz ME, Bernardo SM, Cheetham BF. The interaction of induction, repression and starvation in the regulation of extracellular proteases in Aspergillus nidulans: evidence for a role for CreA in the response to carbon starvation. Curr Genet 2008; 54:47-55. [PMID: 18512059 DOI: 10.1007/s00294-008-0198-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 05/14/2008] [Accepted: 05/15/2008] [Indexed: 11/26/2022]
Abstract
In Aspergillus nidulans, production of extracellular proteases in response to carbon starvation and to a lesser extent nitrogen starvation is controlled by XprG, a putative transcriptional activator. In this study the role of genes involved in carbon catabolite repression and the role of protein as an inducer of extracellular protease gene expression were examined. The addition of exogenous protein to the growth medium did not increase extracellular protease activity whether or not additional carbon or nitrogen sources were present indicating that induction does not play a major role in the regulation of extracellular proteases. Northern blot analysis confirmed that protein is not an inducer of the major A. nidulans protease, PrtA. Mutations in the creA, creB and creC genes increased extracellular protease levels in medium lacking a carbon source suggesting that they may have a role in the response to carbon starvation as well as carbon catabolite repression. Analysis of glkA4 frA2 and creADelta4 mutants showed that the loss of glucose signalling or the DNA-binding protein which mediates carbon catabolite repression did not abolish glucose repression but did increase extracellular protease activity. This increase was XprG-dependent indicating that the effect of these genes may be through modulation of XprG activity.
Collapse
Affiliation(s)
- Margaret E Katz
- Molecular and Cellular Biology, University of New England, Armidale, NSW 2351, Australia.
| | | | | |
Collapse
|
17
|
Regulation of autolysis in Aspergillus nidulans. Appl Biochem Biotechnol 2008; 151:211-20. [PMID: 18975147 DOI: 10.1007/s12010-008-8174-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 02/05/2008] [Indexed: 10/22/2022]
Abstract
In terms of cell physiology, autolysis is the centerpiece of carbon-starving fungal cultures. In the filamentous fungus model organism Aspergillus nidulans, the last step of carbon-starvation-triggered autolysis was the degradation of the cell wall of empty hyphae, and this process was independent of concomitantly progressing cell death at the level of regulation. Autolysis-related proteinase and chitinase activities were induced via FluG signaling, which initiates sporulation and inhibits vegetative growth in surface cultures of A. nidulans. Extracellular hydrolase production was also subjected to carbon repression, which was only partly dependent on CreA, the main carbon catabolite repressor in this fungus. These data support the view that one of the main functions of autolysis is supplying nutrients for sporulation, when no other sources of nutrients are available. The divergent regulation of cell death and cell wall degradation provides the fungus with the option to keep dead hyphae intact to help surviving cells to absorb biomaterials from dead neighboring cells before these are released into the extracellular space. The industrial significance of these observations is also discussed in this paper.
Collapse
|
18
|
Peña-Montes C, González A, Castro-Ochoa D, Farrés A. Purification and biochemical characterization of a broad substrate specificity thermostable alkaline protease from Aspergillus nidulans. Appl Microbiol Biotechnol 2008; 78:603-12. [PMID: 18224318 DOI: 10.1007/s00253-007-1324-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 12/05/2007] [Accepted: 12/08/2007] [Indexed: 10/22/2022]
Abstract
Aspergillus nidulans PW1 produces an extracellular carboxylesterase activity that acts on several lipid esters when cultured in liquid media containing olive oil as a carbon source. The enzyme was purified by gel filtration and ion exchange chromatography. It has an apparent MW and pI of 37 kDa and 4.5, respectively. The enzyme efficiently hydrolyzed all assayed glycerides, but showed preference toward short- and medium-length chain fatty acid esters. Maximum activity was obtained at pH 8.5 at 40 degrees C. The enzyme retained activity after incubation at pHs ranging from 8 to 11 for 12 h at 37 degrees C and 6 to 8 for 24 h at 37 degrees C. It retained 80% of its activity after incubation at 30 to 70 degrees C for 30 min and lost 50% of its activity after incubation for 15 min at 80 degrees C. Noticeable activation of the enzyme is observed when Fe(2+) ion is present at a concentration of 1 mM. Inhibition of the enzyme is observed in the presence of Cu(2+), Fe(3+), Hg(2+), and Zn(2+) ions. Even though the enzyme showed strong carboxylesterase activity, the deduced N-terminal amino acid sequence of the purified protein corresponded to the protease encoded by prtA gene.
Collapse
Affiliation(s)
- Carolina Peña-Montes
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, D.F. 04510, Mexico
| | | | | | | |
Collapse
|
19
|
Kim JD. Purification and Characterization of a Keratinase from a Feather-Degrading Fungus, Aspergillus flavus Strain K-03. MYCOBIOLOGY 2007; 35:219-225. [PMID: 24015101 PMCID: PMC3763176 DOI: 10.4489/myco.2007.35.4.219] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Indexed: 05/31/2023]
Abstract
A keratinolytic enzyme secreted by Aspergillus flavus K-03 cultured in feather meal basal medium (FMBM) containing 2% (w/v) chicken feather was purified and characterized. Keratinolytic enzyme secretion was the maximal at day 16 of the incubation period at pH 8 and 28℃. No relationship was detected between enzyme yield and increase of fungal biomass. The fraction obtained at 80% ammonium sulfate saturation showed 2.39-fold purification and was further purified by gel filtration in Sephadex G-100 followed by ion exchange chromatography on DEAE-Sephadex A-50, yielding an active protein peak showing 11.53-fold purification. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and zymograms indicated that the purified keratinase is a monomeric enzyme with 31 kDa molecular weight. The extracellular keratinase of A. flavus was active in a board range of pH (7~10) and temperature (30℃~70℃) profiles with the optimal for keratinase activity at pH 8 and 45℃. The keratinase activity was totally inhibited by protease inhibitors such as phenylmethylsulfonyl fluoride (PMSF), iodoacetic acid, and ethylenediaminetetraacetate (EDTA) while no reduction of activity by the addition of dithiothreitol (DTT) was observed. N-terminal amino acid sequences were up to 80% homologous with the fungal subtilisins produced by Fusarium culmorum. Therefore, on the basis of these characteristics, the keratinase of A. flavus K-03 is determined to be subtilisins-like.
Collapse
Affiliation(s)
- Jeong-Dong Kim
- Institute of Industrial Biotechnology, Department of Biological Engineering, Inha University, Incheon 402-751, Korea
| |
Collapse
|
20
|
Molnár Z, Emri T, Zavaczki E, Pusztahelyi T, Pócsi I. Effects of mutations in the GanB/RgsA G protein mediated signalling on the autolysis of Aspergillus nidulans. J Basic Microbiol 2007; 46:495-503. [PMID: 17139616 DOI: 10.1002/jobm.200610174] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Physiological changes taking place in carbon-starved, autolysing cultures of Aspergillus (Emericella) nidulans strains with mutations in the GanB/RgsA heterotrimeric G protein signalling pathway were studied and compared. Deletion of the ganB, rgsA or both genes did not alter markedly either the autolytic loss of biomass or the extracellular chitinase production. However, they caused a significant decrease in the proteinase formation, which was detected by measuring both extracellular enzyme activity and the transcription of the prtA gene. The deletion mutants also showed significantly higher specific gamma -glutamyltranspeptidase activities than the control strain. Deletion of the rgsA gene affected the glutathione peroxidase and catalase formation, as well as the peroxide content of the cells. The concomitant initiations of cell death and developmental genomic programmes may be interconnected via heterotrimeric G-protein signalling and subsequent changes in intracellular ROS levels in ageing A. nidulans.
Collapse
Affiliation(s)
- Zsolt Molnár
- Department of Microbiology and Biotechnology, Faculty of Science, University of Debrecen, H-4010 Debrecen, P.O. Box: 63, Hungary
| | | | | | | | | |
Collapse
|
21
|
Katz ME, Gray KA, Cheetham BF. The Aspergillus nidulans xprG (phoG) gene encodes a putative transcriptional activator involved in the response to nutrient limitation. Fungal Genet Biol 2006; 43:190-9. [PMID: 16464624 DOI: 10.1016/j.fgb.2005.12.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Revised: 12/07/2005] [Accepted: 12/14/2005] [Indexed: 11/17/2022]
Abstract
The Aspergillus nidulans xprG gene is involved in the regulation of extracellular proteases. A plasmid which complemented the xprG2 mutation was shown to carry the phoG gene, reported to encode an acid phosphatase. Two phoGDelta mutants were constructed and were identical in phenotype to an xprG2 mutant. Null mutants were unable to use protein as a carbon or nitrogen source, have lost a repressible acid phosphatase and have pale conidial color. XprG shows similarity to the Ndt80 transcriptional activator, which regulates the expression of genes during meiosis in Saccharomyces cerevisiae. The xprG1 gain-of-function mutant contains a missense mutation in the region encoding the putative DNA-binding domain. The response to carbon, nitrogen, sulfur, and phosphate limitation is altered in xprG(-) mutants suggesting that XprG is involved in a general response to starvation. Ndt80 may also be involved in sensing nutritional status and control of commitment to meiosis in S. cerevisiae.
Collapse
Affiliation(s)
- Margaret E Katz
- Molecular and Cellular Biology, University of New England, Armidale, NSW, Australia.
| | | | | |
Collapse
|
22
|
Katz ME, Dougall AM, Weeks K, Cheetham BF. Multiple genetically distinct groups revealed among clinical isolates identified as atypical Aspergillus fumigatus. J Clin Microbiol 2005; 43:551-5. [PMID: 15695644 PMCID: PMC548029 DOI: 10.1128/jcm.43.2.551-555.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate whether genetic variants of A. fumigatus are found among clinical isolates, four isolates that were originally identified as poorly sporulating strains of Aspergillus fumigatus were subjected to molecular analysis. DNA sequence analysis of the alkaline protease genes of these isolates showed that each is genetically distinct and each shows substantial variation (7 to 11%) from the A. fumigatus nucleotide sequence. Subsequent morphological examination suggested that all of the isolates could be classified as Aspergillus viridinutans. To clarify the taxonomic status of these four clinical isolates and of two previously identified as atypical A. fumigatus isolates, partial beta-tubulin and 18S rRNA gene sequences were determined. Each of the six atypical strains had a unique beta-tubulin sequence, whereas the sequences of three standard isolates of A. fumigatus, which were included as controls, were identical to the published A. fumigatus beta-tubulin sequence. The very low level of DNA sequence variation detected in standard isolates of A. fumigatus compared with other isolates from members of Aspergillus section Fumigati suggests that it may be a relatively recently evolved species. The 18S rRNA gene of two of the atypical isolates differed from that of A. fumigatus at a single nucleotide position. Phylogenetic analyses do not support the classification of all of these isolates as A. viridinutans. Thus, some of these isolates represent new species which are potential opportunistic pathogens.
Collapse
Affiliation(s)
- Margaret E Katz
- Department of Molecular and Cellular Biology, University of New England, Armidale, NSW 2351, Australia.
| | | | | | | |
Collapse
|
23
|
Brouta F, Descamps F, Monod M, Vermout S, Losson B, Mignon B. Secreted metalloprotease gene family of Microsporum canis. Infect Immun 2002; 70:5676-83. [PMID: 12228297 PMCID: PMC128366 DOI: 10.1128/iai.70.10.5676-5683.2002] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Keratinolytic proteases secreted by dermatophytes are likely to be virulence-related factors. Microsporum canis, the main agent of dermatophytosis in dogs and cats, causes a zoonosis that is frequently reported. Using Aspergillus fumigatus metalloprotease genomic sequence (MEP) as a probe, three genes (MEP1, MEP2, and MEP3) were isolated from an M. canis genomic library. They presented a quite-high percentage of identity with both A. fumigatus MEP and Aspergillus oryzae neutral protease I genes. At the amino acid level, they all contained an HEXXH consensus sequence, confirming that these M. canis genes (MEP genes) encode a zinc-containing metalloprotease gene family. Furthermore, MEP3 was found to be the gene encoding a previously isolated M. canis 43.5-kDa keratinolytic metalloprotease, and was successfully expressed as an active recombinant enzyme in Pichia pastoris. Reverse transcriptase nested PCR performed on total RNA extracted from the hair of M. canis-infected guinea pigs showed that at least MEP2 and MEP3 are produced during the infection process. This is the first report describing the isolation of a gene family encoding potential virulence-related factors in dermatophytes.
Collapse
Affiliation(s)
- Frédéric Brouta
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | | | | | | | | | | |
Collapse
|
24
|
Descamps F, Brouta F, Monod M, Zaugg C, Baar D, Losson B, Mignon B. Isolation of a Microsporum canis gene family encoding three subtilisin-like proteases expressed in vivo. J Invest Dermatol 2002; 119:830-5. [PMID: 12406327 DOI: 10.1046/j.1523-1747.2002.01784.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Microsporum canis is the main agent of dermatophytosis in dogs and cats and is responsible for frequent zoonosis. The pathogenesis of the disease remains largely unknown, however. Among potential fungal virulence factors are secreted keratinolytic proteases, whose molecular characterization would be an important step towards the understanding of dermatophytic infection pathogenesis. M. canis secretes a 31.5 kDa keratinolytic subtilisin-like protease as the major component in a culture medium containing cat keratin as the sole nitrogen source. Using a probe corresponding to a gene's internal fragment, which was obtained by polymerase chain reaction, the entire gene encoding this protease named SUB3 was cloned from a M. canislambdaEMBL3 genomic library. Two closely related genes, termed SUB1 and SUB2, were also cloned from the library using as a probe the gene coding for Aspergillus fumigatus 33 kDa alkaline protease (ALP). Deduced amino acid sequence analysis revealed that SUB1, SUB2, and SUB3 are secreted proteases and show large regions of identity between themselves and with subtilisin-like proteases of other filamentous fungi. Interest ingly, mRNA of SUB1, SUB2, and SUB3 were detected by reverse transcriptase nested-polymerase chain reaction from hair of experimentally infected guinea pigs. These results show that SUB1, SUB2, and SUB3 encode a family of subtilisin-like proteases and strongly suggest that these proteases are produced by M. canis during the invasion of keratinized structures. This is the first report describing the isolation of a gene family encoding potential virulence-related factors in dermatophytes.
Collapse
Affiliation(s)
- Frédéric Descamps
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, Belgium
| | | | | | | | | | | | | |
Collapse
|
25
|
Wu Z, Blomquist G, Westermark SO, Wang XR. Application of PCR and probe hybridization techniques in detection of airborne fungal spores in environmental samples. JOURNAL OF ENVIRONMENTAL MONITORING : JEM 2002; 4:673-8. [PMID: 12400913 DOI: 10.1039/b203048a] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Specific PCR amplification and probe hybridization techniques were applied to examine the compositions of airborne fungi in samples from three different environments. The results from microscopic and CFU counting were compared to those of the molecular-based detections. The detection sensitivity for PCR amplifications was 9 to 73 spores and 1.3 to 19.3 CFUs per PCR reaction. The hybridization detection limit was 2 to 4 spores and 0.2 to 1.2 CFU. The hybridization method was more sensitive than PCR amplification and showed less variation among samples. Using specific PCR primers and probes we identified the presence of several fungal groups and species in the air samples. Specific detections through probe hybridization to PCR products amplified with universal or group-specific fungal primers have promising applications in the examination of air samples for environmental monitoring.
Collapse
Affiliation(s)
- Zhihong Wu
- Programme for Chemical Exposure Assessment, National Institute for Working Life, Umeå, Sweden
| | | | | | | |
Collapse
|
26
|
Peñalva MA, Arst HN. Regulation of gene expression by ambient pH in filamentous fungi and yeasts. Microbiol Mol Biol Rev 2002; 66:426-46, table of contents. [PMID: 12208998 PMCID: PMC120796 DOI: 10.1128/mmbr.66.3.426-446.2002] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Life, as we know it, is water based. Exposure to hydroxonium and hydroxide ions is constant and ubiquitous, and the evolutionary pressure to respond appropriately to these ions is likely to be intense. Fungi respond to their environments by tailoring their output of activities destined for the cell surface or beyond to the ambient pH. We are beginning to glimpse how they sense ambient pH and transmit this information to the transcription factor, whose roles ensure that a suitable collection of gene products will be made. Although relatively little is known about pH signal transduction itself, its consequences for the cognate transcription factor are much clearer. Intriguingly, homologues of components of this system mediating the regulation of fungal gene expression by ambient pH are to be found in the animal kingdom. The potential applied importance of this regulatory system lies in its key role in fungal pathogenicity of animals and plants and in its control of fungal production of toxins, antibiotics, and secreted enzymes.
Collapse
|
27
|
Pekkarinen AI, Jones BL, Niku-Paavola ML. Purification and properties of an alkaline proteinase of Fusarium culmorum. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:798-807. [PMID: 11846781 DOI: 10.1046/j.0014-2956.2001.02697.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The disease Fusarium head blight (scab) causes severe problems for farmers and for the industries that use cereals. It is likely that the fungi that cause scab (Fusarium spp.) use various enzymes when they invade grains. We are studying enzymes that the fungi may use to hydrolyze grain proteins. To do this, Fusarium culmorum was grown in a gluten-containing medium from which an alkaline serine proteinase with a molecular mass of 28.7 kDa was purified by size-exclusion and cation exchange chromatographies. The enzyme was maximally active at pH 8.3-9.6 and 50 degrees C, but was unstable under these conditions. It hydrolyzed the synthetic substrates N-succinyl-Ala-Ala-Pro-Phe p-nitroanilide and, to a lesser extent, N-succinyl-Ala-Ala-Pro-Leu p-nitroanilide. It was inhibited by phenylmethanesulfonyl fluoride and chymostatin, but not by soybean trypsin or Bowman-Birk inhibitors. Parts of the amino-acid sequence were up to 82% homologous with those of several fungal subtilisins. One of the active site amino acids was detected and it occupied the same relative position as in the other subtilisins. Therefore, on the basis of these characteristics, the proteinase is subtilisin-like. Purification of the enzyme was complicated by the fact that, when purified, it apparently underwent autolysis. The presence of extraneous protein stabilized the activity.
Collapse
|
28
|
Brouta F, Descamps F, Fett T, Losson B, Gerday C, Mignon B. Purification and characterization of a 43.5 kDa keratinolytic metalloprotease from Microsporum canis. Med Mycol 2001; 39:269-75. [PMID: 11446530 DOI: 10.1080/mmy.39.3.269.275] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
A keratinolytic protease secreted by a feline clinical isolate of Microsporum canis cultivated in a broth containing feline keratin as the sole nitrogen source was purified from the culture filtrate by affinity chromatography on bacitracin-agarose and by hydrophobic chromatography on octyl-agarose. The enzyme had an apparent molecular mass of 43.5 kDa and the pI was 7.7. It had a significant activity against keratin azure, elastin-Congo red and denatured type I collagen (azocoll). Using the latter substrate, the optimum pH was around 8 and the apparent optimum temperature around 50 degrees C. The protease was strongly inhibited by 1,10-phenanthroline, phosphoramidon and EDTA. The first 13 N-terminal amino acid sequence showed a 61% homology with that of the extracellular metalloprotease of Aspergillus fumigatus and with the neutral protease I of A. oryzae, confirming that this 43.5 kDa keratinase is a metalloprotease. This keratinolytic metalloprotease could be a virulence-related factor involved in pathophysiological mechanisms of M. canis dermatophytosis.
Collapse
Affiliation(s)
- F Brouta
- Department of Parasitology & Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, Belgium
| | | | | | | | | | | |
Collapse
|
29
|
Katz ME, Masoumi A, Burrows SR, Shirtliff CG, Cheetham BF. The Aspergillus nidulans xprF gene encodes a hexokinase-like protein involved in the regulation of extracellular proteases. Genetics 2000; 156:1559-71. [PMID: 11102357 PMCID: PMC1461378 DOI: 10.1093/genetics/156.4.1559] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The extracellular proteases of Aspergillus nidulans are produced in response to limitation of carbon, nitrogen, or sulfur, even in the absence of exogenous protein. Mutations in the A. nidulans xprF and xprG genes have been shown to result in elevated levels of extracellular protease in response to carbon limitation. The xprF gene was isolated and sequence analysis indicates that it encodes a 615-amino-acid protein, which represents a new type of fungal hexokinase or hexokinase-like protein. In addition to their catalytic role, hexokinases are thought to be involved in triggering carbon catabolite repression. Sequence analysis of the xprF1 and xprF2 alleles showed that both alleles contain nonsense mutations. No loss of glucose or fructose phosphorylating activity was detected in xprF1 or xprF2 mutants. There are two possible explanations for this observation: (1) the xprF gene may encode a minor hexokinase or (2) the xprF gene may encode a protein with no hexose phosphorylating activity. Genetic evidence suggests that the xprF and xprG genes are involved in the same regulatory pathway. Support for this hypothesis was provided by the identification of a new class of xprG(-) mutation that suppresses the xprF1 mutation and results in a protease-deficient phenotype.
Collapse
Affiliation(s)
- M E Katz
- Molecular and Cellular Biology Division, School of Biological Sciences, University of New England, Armidale, New South Wales 2351, Australia.
| | | | | | | | | |
Collapse
|
30
|
|
31
|
vanKuyk PA, Cheetham BF, Katz ME. Analysis of two Aspergillus nidulans genes encoding extracellular proteases. Fungal Genet Biol 2000; 29:201-10. [PMID: 10882536 DOI: 10.1006/fgbi.2000.1195] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Characterization of prtADelta mutants, generated by gene disruption, showed that the prtA gene is responsible for the majority of extracellular protease activity secreted by Aspergillus nidulans at both neutral and acid pH. The prtA delta mutation was used to map the prtA gene to chromosome V. Though aspartic protease activity has never been reported in A. nidulans and the prtADelta mutants appear to lack detectable acid protease activity, a gene (prtB) encoding a putative aspartic protease was isolated from this species. Comparison of the deduced amino acid sequence of PrtB to the sequence of other aspergillopepsins suggests that the putative prtB gene product contains an eight-amino-acid deletion prior to the second active site Asp residue of the protease. RT-PCR experiments showed that the prtB gene is expressed, albeit at a low level.
Collapse
Affiliation(s)
- P A vanKuyk
- Molecular and Cellular Biology Division, University of New England, Armidale, New South Wales, 2351, Australia
| | | | | |
Collapse
|
32
|
MIGNON B, SWINNEN M, BOUCHARA JP, HOFINGER M, NIKKELS A, PIERARD G, GERDAY CH, LOSSON B. Purification and characterization of a 315 kDa keratinolytic subtilisin-like serine protease from Microsporum canis and evidence of its secretion in naturally infected cats. Med Mycol 1998. [DOI: 10.1046/j.1365-280x.1998.00179.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
33
|
Rao MB, Tanksale AM, Ghatge MS, Deshpande VV. Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 1998; 62:597-635. [PMID: 9729602 PMCID: PMC98927 DOI: 10.1128/mmbr.62.3.597-635.1998] [Citation(s) in RCA: 1039] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Proteases represent the class of enzymes which occupy a pivotal position with respect to their physiological roles as well as their commercial applications. They perform both degradative and synthetic functions. Since they are physiologically necessary for living organisms, proteases occur ubiquitously in a wide diversity of sources such as plants, animals, and microorganisms. Microbes are an attractive source of proteases owing to the limited space required for their cultivation and their ready susceptibility to genetic manipulation. Proteases are divided into exo- and endopeptidases based on their action at or away from the termini, respectively. They are also classified as serine proteases, aspartic proteases, cysteine proteases, and metalloproteases depending on the nature of the functional group at the active site. Proteases play a critical role in many physiological and pathophysiological processes. Based on their classification, four different types of catalytic mechanisms are operative. Proteases find extensive applications in the food and dairy industries. Alkaline proteases hold a great potential for application in the detergent and leather industries due to the increasing trend to develop environmentally friendly technologies. There is a renaissance of interest in using proteolytic enzymes as targets for developing therapeutic agents. Protease genes from several bacteria, fungi, and viruses have been cloned and sequenced with the prime aims of (i) overproduction of the enzyme by gene amplification, (ii) delineation of the role of the enzyme in pathogenecity, and (iii) alteration in enzyme properties to suit its commercial application. Protein engineering techniques have been exploited to obtain proteases which show unique specificity and/or enhanced stability at high temperature or pH or in the presence of detergents and to understand the structure-function relationships of the enzyme. Protein sequences of acidic, alkaline, and neutral proteases from diverse origins have been analyzed with the aim of studying their evolutionary relationships. Despite the extensive research on several aspects of proteases, there is a paucity of knowledge about the roles that govern the diverse specificity of these enzymes. Deciphering these secrets would enable us to exploit proteases for their applications in biotechnology.
Collapse
Affiliation(s)
- M B Rao
- Division of Biochemical Sciences, National Chemical Laboratory, Pune 411008, India
| | | | | | | |
Collapse
|
34
|
Katz ME, Mcloon M, Burrows S, Cheetham BF. Extreme DNA sequence variation in isolates of Aspergillus fumigatus. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 1998; 20:283-8. [PMID: 9626933 DOI: 10.1111/j.1574-695x.1998.tb01138.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA sequence analysis of the alkaline protease gene was used to investigate two Aspergillus fumigatus strains isolated from ostriches (QLD1 and NSW3) and one environmental isolate (FRR 1266) that have shown genetic variation in previous analyses. The results showed that the QLD1 sequence was virtually identical to the published sequences for three human isolates but NSW3 differed in > 6% and FRR 1266 in > 10% of the nucleotides that were analysed. An RFLP assay was designed to determine the distribution of these (and other) genetic variants among environmental and clinical isolates of A. fumigatus.
Collapse
Affiliation(s)
- M E Katz
- Department of Molecular and Cellular Biology, University of New England, Armidale, NSW, Australia.
| | | | | | | |
Collapse
|
35
|
Mignon B, Swinnen M, Bouchara J, Hofinger M, Nikkels A, Pierard G, Gerday C, Losson B. Purification and characterization of a 315 kDa keratinolytic subtilisin-like serine protease fromMicrosporum canisand evidence of its secretion in naturally infected cats. Med Mycol 1998. [DOI: 10.1080/02681219880000631] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
36
|
Joshi L, St Leger RJ, Roberts DW. Isolation of a cDNA encoding a novel subtilisin-like protease (Pr1B) from the entomopathogenic fungus, Metarhizium anisopliae using differential display-RT-PCR. Gene 1997; 197:1-8. [PMID: 9332344 DOI: 10.1016/s0378-1119(97)00132-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Reverse transcription differential display PCR (RT-DD-PCR) was used to identify genes that are specifically expressed by Metarhizium anisopliae when it contacts the host insect cuticle. Using a homology-based subtilisin-like protease primer we identified a hitherto unsuspected differentially expressed subtilisin-like protease (Pr1B) encoding gene. The deduced amino acid sequence shows 54% similarity to the well characterized Pr1A subtilisin of M. anisopliae and karyotype analysis revealed that Pr1A and Pr1B are located on separate chromosomes. Like Pr1A, Pr1B is synthesized as a large precursor (1158 nucleotides; deduced molecular mass = 40031 Da) containing a signal peptide, a propeptide and the mature protease (283 aa; deduced molecular mass = 28714 Da). However, Pr1B possesses several substitutions in the highly conserved sequences comprising the active sites of subtilisins. In particular, the substitution of Thr220 by serine is unique to Pr1B. Substitution of Asn155 by glycine is also very unusual, and we discuss the likely effects these changes will have on the catalytic efficiency of Pr1B.
Collapse
Affiliation(s)
- L Joshi
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
37
|
Katz ME, Love SC, Gill HS, Cheetham BF. Development of a method for the identification, using the polymerase chain reaction, of Aspergillus fumigatus isolated from ostriches. Aust Vet J 1996; 74:50-4. [PMID: 8894006 DOI: 10.1111/j.1751-0813.1996.tb13735.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To develop a method for identifying DNA of Aspergillus fumigatus from ostriches, using the polymerase chain reaction (PCR). A fumigatus is the principal causative agent of avian aspergillosis. DESIGN A biochemical trial. SAMPLE POPULATION Twelve Aspergillus fumigatus isolates and three other Aspergillus species. PROCEDURE PCR primers that were based on the sequence of the alkaline protease gene from human isolates of A fumigatus were used. RESULTS We successfully tested the method on ostrich isolates from five states and showed that the test is specific for A fumigatus. CONCLUSIONS In most cases the DNA sequence of A fumigatus isolates from ostriches is similar to that of human isolates. DNA sequences vary significantly among A fumigatus isolates, including those from affected ostriches in the same flock. The genetic variation may be used to trace aspergillus infections in ostrich flocks and determine if the disease is transmitted by contact with infected birds.
Collapse
Affiliation(s)
- M E Katz
- Department of Molecular and Cellular Biology, University of New England, Armidale, New South Wales
| | | | | | | |
Collapse
|
38
|
Ramesh MV, Kolattukudy PE. Disruption of the serine proteinase gene (sep) in Aspergillus flavus leads to a compensatory increase in the expression of a metalloproteinase gene (mep20). J Bacteriol 1996; 178:3899-907. [PMID: 8682796 PMCID: PMC232652 DOI: 10.1128/jb.178.13.3899-3907.1996] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The serine proteinase gene (sep) in Aspergillus flavus was disrupted by homologous recombination with a hygromycin resistance gene as the marker. The gene-disrupted mutant GR-2 contained a single-copy insertion of the marker gene and did not express the sep gene. Serine proteinase activity, 36-kDa protein labeled by 3H-diisopropylfluorophosphate, and immunologically detectable proteinase were not detected in the culture fluid of GR-2. Despite the absence of the serine proteinase, the total elastinolytic activity levels in the mutant and the wild-type A.flavus were comparable. Immunoblots revealed that the mutant secreted greater amounts of an elastinolytic metalloproteinase gene (mep20) product than did the wild type. Furthermore, mep20 mRNA levels, measured by RNase protection assay, in the mutant were higher than those in the wild type. Inhibition of the serine proteinase by Streptomyces subtilisin inhibitor (SSI) in the culture medium of wild-type A.flavus also resulted in an elevation of mep20 gene products. Although no serine proteinase activity could be detected, the level of elastinolytic activity of the SSI-treated culture was comparable to that of the control. Immunoblots revealed that the addition of SSI caused an elevation in the levels of metalloproteinase and its mRNA. These results suggest that the expression of the genes encoding serine and metalloproteinases are controlled by a common regulatory system and the fungus has a mechanism to sense the status of extracellular proteolytic activities.
Collapse
Affiliation(s)
- M V Ramesh
- Neurobiotechnology Center, Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
39
|
Katz ME, Flynn PK, vanKuyk PA, Cheetham BF. Mutations affecting extracellular protease production in the filamentous fungus Aspergillus nidulans. MOLECULAR & GENERAL GENETICS : MGG 1996; 250:715-24. [PMID: 8628232 DOI: 10.1007/bf02172983] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The extracellular proteases of Aspergillus nidulans are known to be regulated by carbon, nitrogen and sulphur metabolite repression. In this study, a mutant with reduced levels of extracellular protease was isolated by screening for loss of halo production on milk plates. Genetic analysis of the mutant showed that it contains a single, recessive mutation, in a gene which we have designated xprE, located on chromosome VI. The xprE1 mutation affected the production of extracellular proteases in response to carbon, nitrogen and, to a lesser extent, sulphur limitation. Three reversion mutations, xprF1, xprF2 and xprG1, which suppress xprE1, were characterised. Both xprF and xprG map to chromosome VII but the two genes are unlinked. The xprF1, xprF2 and xprG1 mutants showed high levels of milk-clearing activity on medium containing milk as a carbon source but reduced growth on a number of nitrogen sources. Evidence is presented that the xprE1 and xprG1 mutations alter expression of more than one protease and affect levels of alkaline protease gene mRNA.
Collapse
Affiliation(s)
- M E Katz
- Department of Molecular and Cellular Biology, University of New England, Armidale, N.S.W., Australia
| | | | | | | |
Collapse
|
40
|
Expression of anErwinia pectate lyase in three species ofAspergillus. Curr Genet 1996. [DOI: 10.1007/bf02221517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
Larcher G, Cimon B, Symoens F, Tronchin G, Chabasse D, Bouchara JP. A 33 kDa serine proteinase from Scedosporium apiospermum. Biochem J 1996; 315 ( Pt 1):119-26. [PMID: 8670095 PMCID: PMC1217159 DOI: 10.1042/bj3150119] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
An extracellular proteinase produced by the filamentous fungus Scedosporium apiospermum has been purified and characterized. Initially, in vitro conditions for enzyme synthesis were investigated. The highest yield of enzyme production was obtained when the fungus was cultivated in modified Czapek-Dox liquid medium supplemented with 0.1% bacteriological peptone and 1% (w/v) glucose as the nitrogen and carbon sources respectively. Purification to homogeneity of the proteinase was accomplished by (NH4)2SO4 precipitation, followed by gel filtration through Sephadex G-75 and finally affinity chromatography through immobilized phenylalanine. Analysis of the purified enzyme by SDS/PAGE revealed a single polypeptide chain with an apparent molecular mass of 33 kDa. Further investigation of its physical and biochemical properties disclosed numerous similarities with those of the previously described serine proteinase of Aspergillus fumigatus. The enzyme was not glycosylated and its pI was 9.3. Proteinase activity was optimum between 37 and 50 degrees C and at pH 9.0, but remained high within a large range of pH values between 7 and 11. The inhibition profile and N-terminal amino acid sequencing confirmed that this enzyme belongs to the subtilisin family of serine proteinases. In agreement with this, the specific synthetic substrate N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide proved to be an excellent substrate for the proteinase with an estimated Km of 0.35 mM. Like the alkaline proteinase of A. fumigatus, this enzyme was able to degrade human fibrinogen, and thus may act as a mediator of the severe chronic bronchopulmonary inflammation from which cystic fibrosis patients suffer.
Collapse
Affiliation(s)
- G Larcher
- Groupe d'Etude des Interactions, Hôte-Parasite, Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire, Angers, France
| | | | | | | | | | | |
Collapse
|