1
|
Feng M, Schaff AC, Cuadra Aruguete SA, Riggs HE, Distelhorst SL, Balish MF. Development of Mycoplasma pneumoniae biofilms in vitro and the limited role of motility. Int J Med Microbiol 2018; 308:324-334. [PMID: 29426802 DOI: 10.1016/j.ijmm.2018.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/19/2017] [Accepted: 01/23/2018] [Indexed: 10/18/2022] Open
Abstract
Mycoplasma pneumoniae is a bacterial pathogen of humans that is a major causative agent of chronic respiratory disease. M. pneumoniae infections often recur even after successful treatment of symptoms with antibiotics, and resistance to antibiotics is increasing worldwide, with nearly complete resistance in some places. Although biofilms often contribute to chronicity and resistance, M. pneumoniae biofilms remain poorly characterized. Scanning electron microscopy revealed that cells of wild-type (WT) M. pneumoniae strain M129 biofilms, as well as mutants II-3 and II-3R, in vitro became increasingly rounded as the biofilm towers matured over 5 days. The role of gliding motility in biofilm formation was addressed by analyzing differences in biofilm architecture in non-motile mutant II-3R and hypermotile mutant prpC-and by using time-lapse microcinematography to measure flux of cells around biofilm towers. There were no major differences in biofilm architecture between WT and motility mutants, with perhaps a slight tendency for the prpC- cells to spread outside towers during early stages of biofilm formation. Consistent with an insignificant role of motility in biofilm development, flux of cells near towers, which was low, was dominated by exit of cells. Immunofluorescence microscopy revealed that motility-associated attachment organelle (AO) proteins exhibited no discernable changes in localization to foci over time, but immunoblotting identified a decrease in steady-state levels of protein P200, which is required for normal gliding speed, as the WT culture aged. Non-adherent strain II-3 and non-motile strain II-3R also exhibited a steady decrease in P200 steady-state levels, suggesting that the decrease in P200 levels was not a response to changes in gliding behavior during maturation. We conclude that M. pneumoniae cells undergo morphological changes as biofilms mature, motility plays no major role in biofilm development, and P200 loss might be related to maturation of cells. This study helps to characterize potential therapeutic targets for M. pneumoniae infections.
Collapse
Affiliation(s)
- Monica Feng
- Department of Microbiology, Miami University, Pearson Hall, 700 E. High St., Oxford, OH, 45056, USA.
| | - Andrew C Schaff
- Department of Microbiology, Miami University, Pearson Hall, 700 E. High St., Oxford, OH, 45056, USA.
| | - Sara A Cuadra Aruguete
- Department of Microbiology, Miami University, Pearson Hall, 700 E. High St., Oxford, OH, 45056, USA.
| | - Hailey E Riggs
- Department of Microbiology, Miami University, Pearson Hall, 700 E. High St., Oxford, OH, 45056, USA.
| | - Steven L Distelhorst
- Department of Microbiology, Miami University, Pearson Hall, 700 E. High St., Oxford, OH, 45056, USA.
| | - Mitchell F Balish
- Department of Microbiology, Miami University, Pearson Hall, 700 E. High St., Oxford, OH, 45056, USA.
| |
Collapse
|
2
|
Affiliation(s)
- Søren A Ladefoged
- Department of Medical Microbiology and Immunology University of Aarhus, Denmark.,Department of Clinical Biochemistry University Hospital of Aarhus, Denmark
| |
Collapse
|
3
|
Martinelli L, Lalli D, García-Morales L, Ratera M, Querol E, Piñol J, Fita I, Calisto BM. A major determinant for gliding motility in Mycoplasma genitalium: the interaction between the terminal organelle proteins MG200 and MG491. J Biol Chem 2015; 290:1699-711. [PMID: 25471372 PMCID: PMC4340413 DOI: 10.1074/jbc.m114.594762] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several mycoplasmas, such as the emergent human pathogen Mycoplasma genitalium, developed a complex polar structure, known as the terminal organelle (TO), responsible for a new type of cellular motility, which is involved in a variety of cell functions: cell division, adherence to host cells, and virulence. The TO cytoskeleton is organized as a multisubunit dynamic motor, including three main ultrastructures: the terminal button, the electrodense core, and the wheel complex. Here, we describe the interaction between MG200 and MG491, two of the main components of the TO wheel complex that connects the TO with the cell body and the cell membrane. The interaction between MG200 and MG491 has a KD in the 80 nm range, as determined by surface plasmon resonance. The interface between the two partners was confined to the "enriched in aromatic and glycine residues" (EAGR) box of MG200, previously described as a protein-protein interaction domain, and to a 25-residue-long peptide from the C-terminal region of MG491 by surface plasmon resonance and NMR spectroscopy studies. An atomic description of the MG200 EAGR box binding surface was also provided by solution NMR. An M. genitalium mutant lacking the MG491 segment corresponding to the peptide reveals specific alterations in cell motility and cell morphology indicating that the MG200-MG491 interaction plays a key role in the stability and functioning of the TO.
Collapse
Affiliation(s)
- Luca Martinelli
- From the Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Daniela Lalli
- the Magnetic Resonance Center and Department of Chemistry, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Luis García-Morales
- the Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Mercè Ratera
- the Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Enrique Querol
- the Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Jaume Piñol
- the Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Ignacio Fita
- From the Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Bárbara M Calisto
- the Structural Biology Group, European Synchrotron Radiation Facility, CS 40220, 38043 Grenoble, France, and the Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4150-180 Porto, Portugal
| |
Collapse
|
4
|
Protein kinase/phosphatase function correlates with gliding motility in Mycoplasma pneumoniae. J Bacteriol 2013; 195:1750-7. [PMID: 23396910 DOI: 10.1128/jb.02277-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma pneumoniae exhibits a novel form of gliding motility that is mediated by the terminal organelle, a differentiated polar structure. Given that genes known to be involved in gliding in other organisms are absent in M. pneumoniae, random transposon mutagenesis was employed to generate mutants with gliding-deficient phenotypes. Transposon insertions in the only annotated Ser/Thr protein kinase gene (prkC; MPN248) and its cognate phosphatase gene (prpC; MPN247) in M. pneumoniae resulted in significant and contrasting effects on gliding frequencies. prkC mutant cells glided at approximately half the frequency of wild-type cells, while prpC mutant cells glided more than twice as frequently as wild-type cells. Phosphoprotein staining confirmed the association between phosphorylation of the cytoskeletal proteins HMW1 and HMW2 and membrane protein P1 and the gliding phenotype. When the prpC mutant was complemented by transposon delivery of a wild-type copy of the prpC allele, gliding frequencies and phosphorylation levels returned to the wild-type standard. Surprisingly, delivery of the recombinant wild-type prkC allele dramatically increased gliding frequency to a level approximately 3-fold greater than that of wild-type in the prkC mutant. Collectively, these data suggest that PrkC and PrpC work in opposition in M. pneumoniae to influence gliding frequency.
Collapse
|
5
|
Calisto BM, Broto A, Martinelli L, Querol E, Piñol J, Fita I. The EAGR box structure: a motif involved in mycoplasma motility. Mol Microbiol 2012; 86:382-93. [DOI: 10.1111/j.1365-2958.2012.08200.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2012] [Indexed: 12/17/2022]
Affiliation(s)
- Bárbara M. Calisto
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC) and Institute for Research in Biomedicine (IRB Barcelona); Parc Científic de Barcelona; Baldiri Reixac 10; 08028; Barcelona; Spain
| | - Alícia Broto
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular; Universitat Autònoma de Barcelona; 08193 Bellaterra; Barcelona; Spain
| | - Luca Martinelli
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC) and Institute for Research in Biomedicine (IRB Barcelona); Parc Científic de Barcelona; Baldiri Reixac 10; 08028; Barcelona; Spain
| | - Enrique Querol
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular; Universitat Autònoma de Barcelona; 08193 Bellaterra; Barcelona; Spain
| | - Jaume Piñol
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular; Universitat Autònoma de Barcelona; 08193 Bellaterra; Barcelona; Spain
| | - Ignacio Fita
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC) and Institute for Research in Biomedicine (IRB Barcelona); Parc Científic de Barcelona; Baldiri Reixac 10; 08028; Barcelona; Spain
| |
Collapse
|
6
|
Dumke R, Strubel A, Cyncynatus C, Nuyttens H, Herrmann R, Lück C, Jacobs E. Optimized serodiagnosis of Mycoplasma pneumoniae infections. Diagn Microbiol Infect Dis 2012; 73:200-3. [PMID: 22502960 DOI: 10.1016/j.diagmicrobio.2012.02.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 02/08/2012] [Accepted: 02/17/2012] [Indexed: 11/17/2022]
Abstract
Serologic methods are well established for the diagnosis of Mycoplasma pneumoniae infections in humans, but they are less sensitive than polymerase chain reaction (PCR). To improve their sensitivity, a new panel of antigens was tested. Compared with PCR results, up to 92% of PCR-positive patients were confirmed by our immunoblotting approach having a specificity between 92.6% and 100%.
Collapse
Affiliation(s)
- Roger Dumke
- Institute of Medical Microbiology and Hygiene, Dresden University of Technology, Fetscherstrasse 74, Dresden, Germany.
| | | | | | | | | | | | | |
Collapse
|
7
|
Bogema DR, Scott NE, Padula MP, Tacchi JL, Raymond BBA, Jenkins C, Cordwell SJ, Minion FC, Walker MJ, Djordjevic SP. Sequence TTKF ↓ QE defines the site of proteolytic cleavage in Mhp683 protein, a novel glycosaminoglycan and cilium adhesin of Mycoplasma hyopneumoniae. J Biol Chem 2011; 286:41217-41229. [PMID: 21969369 DOI: 10.1074/jbc.m111.226084] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycoplasma hyopneumoniae colonizes the ciliated respiratory epithelium of swine, disrupting mucociliary function and inducing chronic inflammation. P97 and P102 family members are major surface proteins of M. hyopneumoniae and play key roles in colonizing cilia via interactions with glycosaminoglycans and mucin. The p102 paralog, mhp683, and homologs in strains from different geographic origins encode a 135-kDa pre-protein (P135) that is cleaved into three fragments identified here as P45(683), P48(683), and P50(683). A peptide sequence (TTKF↓QE) was identified surrounding both cleavage sites in Mhp683. N-terminal sequences of P48(683) and P50(683), determined by Edman degradation and mass spectrometry, confirmed cleavage after the phenylalanine residue. A similar proteolytic cleavage site was identified by mass spectrometry in another paralog of the P97/P102 family. Trypsin digestion and surface biotinylation studies showed that P45(683), P48(683), and P50(683) reside on the M. hyopneumoniae cell surface. Binding assays of recombinant proteins F1(683)-F5(683), spanning Mhp683, showed saturable and dose-dependent binding to biotinylated heparin that was inhibited by unlabeled heparin, fucoidan, and mucin. F1(683)-F5(683) also bound porcine epithelial cilia, and antisera to F2(683) and F5(683) significantly inhibited cilium binding by M. hyopneumoniae cells. These data suggest that P45(683), P48(683), and P50(683) each display cilium- and proteoglycan-binding sites. Mhp683 is the first characterized glycosaminoglycan-binding member of the P102 family.
Collapse
Affiliation(s)
- Daniel R Bogema
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Camden 2567, New South Wales, Australia; School of Biological Sciences, University of Wollongong, Wollongong 2522, New South Wales, Australia
| | - Nichollas E Scott
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney 2006, New South Wales, Australia
| | - Matthew P Padula
- The ithree Institute, University of Technology, Sydney 2007, New South Wales, Australia
| | - Jessica L Tacchi
- The ithree Institute, University of Technology, Sydney 2007, New South Wales, Australia
| | - Benjamin B A Raymond
- The ithree Institute, University of Technology, Sydney 2007, New South Wales, Australia
| | - Cheryl Jenkins
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Camden 2567, New South Wales, Australia
| | - Stuart J Cordwell
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney 2006, New South Wales, Australia
| | - F Chris Minion
- Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa 50011
| | - Mark J Walker
- School of Biological Sciences, University of Wollongong, Wollongong 2522, New South Wales, Australia; School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane 4072, Queensland, Australia
| | - Steven P Djordjevic
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Camden 2567, New South Wales, Australia; The ithree Institute, University of Technology, Sydney 2007, New South Wales, Australia.
| |
Collapse
|
8
|
Cloward JM, Krause DC. Functional domain analysis of the Mycoplasma pneumoniae co-chaperone TopJ. Mol Microbiol 2010; 77:158-69. [PMID: 20487283 DOI: 10.1111/j.1365-2958.2010.07196.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Colonization of conducting airways of humans by the prokaryote Mycoplasma pneumoniae is mediated by a differentiated terminal organelle important in cytadherence, gliding motility and cell division. TopJ is a predicted J-domain co-chaperone also having domains unique to mycoplasma terminal organelle proteins and is essential for terminal organelle function, as well as stabilization of protein P24, which is required for normal initiation of terminal organelle formation. J-domains activate the ATPase of DnaK chaperones, facilitating peptide binding and proper protein folding. We performed mutational analysis of the predicted J-domain, central acidic and proline-rich (APR) domain, and C-terminal domain of TopJ and assessed the phenotypic consequences when introduced into an M. pneumoniae topJ mutant. A TopJ derivative with amino acid substitutions in the canonical J-domain histidine-proline-aspartic acid motif restored P24 levels but not normal motility, morphology or cytadherence, consistent with a J-domain co-chaperone function. In contrast, TopJ derivatives having APR or C-terminal domain deletions were less stable and failed to restore P24, but resulted in normal morphology, intermediate gliding motility and cytadherence levels exceeding that of wild-type cells. Results from immunofluorescence microscopy suggest that both the APR and C-terminal domains, but not the histidine-proline-aspartic acid motif, are critical for TopJ localization to the terminal organelle.
Collapse
Affiliation(s)
- Jason M Cloward
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
9
|
Jordan JL, Chang HY, Balish MF, Holt LS, Bose SR, Hasselbring BM, Waldo RH, Krunkosky TM, Krause DC. Protein P200 is dispensable for Mycoplasma pneumoniae hemadsorption but not gliding motility or colonization of differentiated bronchial epithelium. Infect Immun 2007; 75:518-22. [PMID: 17043103 PMCID: PMC1828431 DOI: 10.1128/iai.01344-06] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 09/19/2006] [Accepted: 10/06/2006] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma pneumoniae protein P200 was localized to the terminal organelle, which functions in cytadherence and gliding motility. The loss of P200 had no impact on binding to erythrocytes and A549 cells but resulted in impaired gliding motility and colonization of differentiated bronchial epithelium. Thus, gliding may be necessary to overcome mucociliary clearance.
Collapse
Affiliation(s)
- Jarrat L Jordan
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Balish MF, Krause DC. Mycoplasmas: a distinct cytoskeleton for wall-less bacteria. J Mol Microbiol Biotechnol 2006; 11:244-55. [PMID: 16983199 DOI: 10.1159/000094058] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The bacterial genus Mycoplasma includes a large number of highly genomically-reduced species which in nature are associated with hosts either commensally or pathogenically. Several Mycoplasma species, including Mycoplasma pneumoniae, feature a multifunctional polar structure, the terminal organelle. Essential for colonization of the host and for gliding motility, the terminal organelle is associated with an internal cytoskeleton crucial to its assembly and function. This cytoskeleton is structurally and compositionally novel as compared with the cytoskeletons of other organisms, including other bacteria, is also involved in the cell division process. In this review we discuss the cytoskeletal structures and protein components of the attachment organelle and how they might interact and contribute to its various functions.
Collapse
Affiliation(s)
- Mitchell F Balish
- Department of Microbiology, Miami University, Oxford, Ohio 45056, USA.
| | | |
Collapse
|
11
|
Burgos R, Pich OQ, Ferrer-Navarro M, Baseman JB, Querol E, Piñol J. Mycoplasma genitalium P140 and P110 cytadhesins are reciprocally stabilized and required for cell adhesion and terminal-organelle development. J Bacteriol 2006; 188:8627-37. [PMID: 17028283 PMCID: PMC1698224 DOI: 10.1128/jb.00978-06] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma genitalium is a human pathogen that mediates cell adhesion by a complex structure known as the attachment organelle. This structure is composed of cytadhesins and cytadherence-associated proteins, but few data are available about the specific role of these proteins in M. genitalium cytadherence. We have deleted by homologous recombination the mg191 and mg192 genes from the MgPa operon encoding the P140 and P110 cytadhesins. Molecular characterization of these mutants has revealed a reciprocal posttranslational stabilization between the two proteins. Loss of either P140 or P110 yields a hemadsorption-negative phenotype and correlates with decreased or increased levels of cytoskeleton-related proteins MG386 and DnaK, respectively. Scanning electron microscopy analysis reveals the absolute requirement of P140 and P110 for the proper development of the attachment organelle. The phenotype described for these mutants resembles that of the spontaneous class I and class II cytadherence-negative mutants [G. R. Mernaugh, S. F. Dallo, S. C. Holt, and J. B. Baseman, Clin. Infect. Dis. 17(Suppl. 1):S69-S78, 1993], whose genetic basis remained undetermined until now. Complementation assays and sequencing analysis demonstrate that class I and class II mutants are the consequence of large deletions affecting the mg192 and mg191-mg192 genes, respectively. These deletions originated from single-recombination events involving sequences of the MgPa operon and the MgPa island located immediately downstream. We also demonstrate the translocation of MgPa sequences to a particular MgPa island by double-crossover events. Based on these observations, we propose that in addition to being a source of antigenic variation, MgPa islands could be also involved in a general phase variation mechanism switching on and off, in a reversible or irreversible way, the adhesion properties of M. genitalium.
Collapse
Affiliation(s)
- Raul Burgos
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
12
|
Pich OQ, Burgos R, Ferrer-Navarro M, Querol E, Piñol J. Mycoplasma genitalium mg200 and mg386 genes are involved in gliding motility but not in cytadherence. Mol Microbiol 2006; 60:1509-19. [PMID: 16796684 DOI: 10.1111/j.1365-2958.2006.05187.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Isolation and characterization of transposon-generated Mycoplasma genitalium gliding-deficient mutants has implicated mg200 and mg386 genes in gliding motility. The proposed role of these genes was confirmed by restoration of the gliding phenotype in deficient mutants through gene complementation with their respective mg386 or mg200 wild-type copies. mg200 and mg386 are the first reported gliding-associated mycoplasma genes not directly involved in cytadherence. Orthologues of MG200 and MG386 proteins are also found in the slow gliding mycoplasmas, Mycoplasma pneumoniae and Mycoplasma gallisepticum, suggesting the existence of a unique set of proteins involved in slow gliding motility. MG200 and MG386 proteins share common features, such as the presence of enriched in aromatic and glycine residues boxes and an acidic and proline-rich domain, suggesting that these motifs could play a significant role in gliding motility.
Collapse
Affiliation(s)
- Oscar Q Pich
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular. Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | |
Collapse
|
13
|
|
14
|
Ferreon JC, Ferreon ACM, Li K, Lemon SM. Molecular determinants of TRIF proteolysis mediated by the hepatitis C virus NS3/4A protease. J Biol Chem 2005; 280:20483-92. [PMID: 15767257 DOI: 10.1074/jbc.m500422200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Persistent infections with hepatitis C virus (HCV) are a major cause of liver disease and reflect its ability to disrupt virus-induced signaling pathways activating cellular antiviral defenses. HCV evasion of double-stranded RNA signaling through Toll-like receptor 3 is mediated by the viral protease NS3/4A, which directs proteolysis of its proline-rich adaptor protein, Toll-IL-1 receptor domain containing adaptor-inducing interferon-beta (TRIF). The TRIF cleavage site has remarkable homology with the viral NS4B/5A substrate, although an 8-residue polyproline track extends upstream from the P(6) position in lieu of the acidic residue present in viral substrates. Circular dichroism (CD) spectroscopy confirmed that a substantial fraction of TRIF exists as polyproline II helices, and inclusion of the polyproline track increased affinity of P side TRIF peptides for the HCV-BK protease. A polyproline II peptide representing an SH3 binding motif (PPPVPPRRR, Sos) bound NS3 with moderate affinity, resulting in inhibition of proteolytic activity. Chemical shift perturbations in NMR spectra indicated that Sos binds a 3(10) helix close to the protease active site. Thus, a polyproline II interaction with the 3(10) helix likely facilitates NS3/4A recognition of TRIF, indicating a significant difference from NS3/4A recognition of viral substrates. Because SH3 binding motifs are also present in NS5A, a viral protein that interacts with NS3, we speculate that the NS3 3(10) helix may be a site of interaction with other viral proteins.
Collapse
Affiliation(s)
- Josephine C Ferreon
- Department of Microbiology and Immunology, Center for Hepatitis Research, Institute for Human Infections and Immunity, University of Texas Medical Branch at Galveston, Galveston, Texas 77555-1019, USA
| | | | | | | |
Collapse
|
15
|
Kenri T, Seto S, Horino A, Sasaki Y, Sasaki T, Miyata M. Use of fluorescent-protein tagging to determine the subcellular localization of mycoplasma pneumoniae proteins encoded by the cytadherence regulatory locus. J Bacteriol 2004; 186:6944-55. [PMID: 15466048 PMCID: PMC522203 DOI: 10.1128/jb.186.20.6944-6955.2004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma pneumoniae lacks a cell wall but has internal cytoskeleton-like structures that are assumed to support the attachment organelle and asymmetric cell shape of this bacterium. To explore the fine details of the attachment organelle and the cytoskeleton-like structures, a fluorescent-protein tagging technique was applied to visualize the protein components of these structures. The focus was on the four proteins--P65, HMW2, P41, and P24--that are encoded in the crl operon (for "cytadherence regulatory locus"), which is known to be essential for the adherence of M. pneumoniae to host cells. When the P65 and HMW2 proteins were fused to enhanced yellow fluorescent protein (EYFP), a variant of green fluorescent protein, the fused proteins became localized at the attachment organelle, enabling visualization of the organelles of living cells by fluorescence microscopy. The leading end of gliding M. pneumoniae cells, expressing the EYFP-P65 fusion, was observed as a focus of fluorescence. On the other hand, when the P41 and P24 proteins were labeled with EYFP, the fluorescence signals of these proteins were observed at the proximal end of the attachment organelle. Coexpression of the P65 protein labeled with enhanced cyan fluorescent protein clearly showed that the sites of localization of P41 and P24 did not overlap that of P65. The localization of P41 and P24 suggested that they are also cytoskeletal proteins that function in the formation of unknown structures at the proximal end of the attachment organelle. The fluorescent-protein fusion technique may serve as a powerful tool for identifying components of cytoskeleton-like structures and the attachment organelle. It can also be used to analyze their assembly.
Collapse
Affiliation(s)
- Tsuyoshi Kenri
- Department of Bacterial Pathogenesis and Infection Control, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan.
| | | | | | | | | | | |
Collapse
|
16
|
Balish MF, Hahn TW, Popham PL, Krause DC. Stability of Mycoplasma pneumoniae cytadherence-accessory protein HMW1 correlates with its association with the triton shell. J Bacteriol 2001; 183:3680-8. [PMID: 11371532 PMCID: PMC95245 DOI: 10.1128/jb.183.12.3680-3688.2001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma pneumoniae adsorbs to host respiratory epithelium primarily by its attachment organelle, the proper function of which depends upon mycoplasma adhesin and cytoskeletal proteins. Among the latter are the cytadherence-associated proteins HMW1 and HMW2, whose specific roles in this process are unknown. In the M. pneumoniae cytadherence mutant I-2, loss of HMW2 results in accelerated turnover of HMW1 and other cytadherence-accessory proteins, probably by proteolysis. However, both the mechanism of degradation and the means by which these proteins are rendered susceptible to it are not understood. In this study, we addressed whether HMW1 degradation is a function of its presence among specific subcellular fractions and established that HMW1 is a peripheral membrane protein that is antibody accessible on the outer surfaces of both wild-type and mutant I-2 M. pneumoniae but to a considerably lesser extent in the mutant. Quantitation of HMW1 in Triton X-100-fractionated extracts from cells pulse-labeled with [(35)S]methionine indicated that HMW1 is synthesized in a Triton X-100-soluble form that exists in equilibrium with an insoluble (cytoskeletal) form. Pulse-chase analysis demonstrated that over time, HMW1 becomes stabilized in the cytoskeletal fraction and associated with the cell surface in wild-type M. pneumoniae. The less efficient transition to the cytoskeleton and mycoplasma cell surface in mutant I-2 leads to accelerated degradation of HMW1. These data suggest a role for HMW2 in promoting export of HMW1 to the cell surface, where it is stable and fully functional.
Collapse
Affiliation(s)
- M F Balish
- Department of Microbiology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | |
Collapse
|
17
|
Wijffels G, Eisemann C, Riding G, Pearson R, Jones A, Willadsen P, Tellam R. A novel family of chitin-binding proteins from insect type 2 peritrophic matrix. cDNA sequences, chitin binding activity, and cellular localization. J Biol Chem 2001; 276:15527-36. [PMID: 11278497 DOI: 10.1074/jbc.m009393200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The peritrophic matrix is a prominent feature of the digestive tract of most insects, but its function, formation, and even its composition remain contentious. This matrix is a molecular sieve whose toughness and elasticity are generated by glycoproteins, proteoglycans, and chitin fibrils. We now describe a small, highly conserved protein, peritrophin-15, which is an abundant component of the larval peritrophic matrices of the Old World screwworm fly, Chrysomya bezziana, and sheep blowfly, Lucilia cuprina. Their deduced amino acid sequences code for a 8-kDa secreted protein characterized by a highly conserved and novel register of six cysteines. Two Drosophila homologues have also been identified from unannotated genomic sequences. Recombinant peritrophin-15 binds strongly and specifically to chitin; however, the stoichiometry of binding is low (1:10,000 N-acetyl glucosamine). We propose that peritrophin-15 caps the ends of the chitin polymer. Immunogold studies localized peritrophin-15 to the peritrophic matrix and specific vesicles in cells of the cardia, the small organ of the foregut responsible for peritrophic matrix synthesis. The vesicular contents are disgorged at the base of microvilli underlying the newly formed peritrophic matrix. This is the first time that the process of synthesis and integration of a peritrophic matrix protein into the nascent peritrophic matrix has been observed.
Collapse
Affiliation(s)
- G Wijffels
- Commonwealth Scientific and Industrial Research Organization Livestock Industries, Molecular Animal Genetics Centre, St. Lucia, Queensland, 4072, Australia.
| | | | | | | | | | | | | |
Collapse
|
18
|
Krause DC, Balish MF. Structure, function, and assembly of the terminal organelle of Mycoplasma pneumoniae. FEMS Microbiol Lett 2001; 198:1-7. [PMID: 11325545 DOI: 10.1111/j.1574-6968.2001.tb10610.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mycoplasmas are cell wall-less bacteria at the low extreme in genome size in the known prokaryote world, and the minimal nature of their genomes is clearly reflected in their metabolic and regulatory austerity. Despite this apparent simplicity, certain species such as Mycoplasma pneumoniae possess a complex terminal organelle that functions in cytadherence, gliding motility, and cell division. The attachment organelle is a membrane-bound extension of the cell and is characterized by an electron-dense core that is part of the mycoplasma cytoskeleton, defined here for working purposes as the protein fraction that remains after extraction with the detergent Triton X-100. This review focuses on the architecture and assembly of the terminal organelle of M. pneumoniae. Characterizing the downstream consequences of defects involving attachment organelle components has made it possible to begin to elucidate the probable sequence of certain events in the biogenesis of this structure.
Collapse
Affiliation(s)
- D C Krause
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
19
|
Regula JT, Boguth G, Görg A, Hegermann J, Mayer F, Frank R, Herrmann R. Defining the mycoplasma 'cytoskeleton': the protein composition of the Triton X-100 insoluble fraction of the bacterium Mycoplasma pneumoniae determined by 2-D gel electrophoresis and mass spectrometry. MICROBIOLOGY (READING, ENGLAND) 2001; 147:1045-1057. [PMID: 11283300 DOI: 10.1099/00221287-147-4-1045] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
After treating Mycoplasma pneumoniae cells with the nonionic detergent Triton X-100, an undefined, structured protein complex remains that is called the 'Triton X-100 insoluble fraction' or 'Triton shell'. By analogy with eukaryotic cells and supported by ultrastructural analyses it is supposed that this fraction contains the components of a bacterial cytoskeleton-like structure. In this study, the composition of the Triton X-100 insoluble fraction was defined by electron microscopic screening for possible structural elements, and by two-dimensional (2-D) gel electrophoresis and MS to identify the proteins present. Silver staining of 2-D gels revealed about 100 protein spots. By staining with colloidal Coomassie blue, about 50 protein spots were visualized, of which 41 were identified by determining the mass and partial sequence of tryptic peptides of individual proteins. The identified proteins belonged to several functional categories, mainly energy metabolism, translation and heat-shock response. In addition, lipoproteins were found and most of the proteins involved in cytadherence that were previously shown to be components of the Triton X-100 insoluble fraction. There were also 11 functionally unassigned proteins. Based on sequence-derived predictions, some of these might be potential candidates for structural components. Quantitatively, the most prevalent proteins were the heat-shock protein DnaK, elongation factor Tu and subunits alpha and beta of the pyruvate dehydrogenase complex (PdhA, PdhB), but definite conclusions regarding the composition of the observed structures can only be drawn after specific proteins are assigned to them, for example by immunocytochemistry.
Collapse
Affiliation(s)
- J T Regula
- Zentrum für molekulare Biologie Heidelberg (ZMBH) Mikrobiologie, Universität Heidelberg, Im Neuenheimer Feld 282,D-69120 Heidelberg, Germany1
| | - G Boguth
- Technische Universität München, Institut für Lebensmitteltechnologie und Analytische Chemie, Germany2
| | - A Görg
- Technische Universität München, Institut für Lebensmitteltechnologie und Analytische Chemie, Germany2
| | - J Hegermann
- Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Germany3
| | - F Mayer
- Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Germany3
| | - R Frank
- Zentrum für molekulare Biologie Heidelberg (ZMBH) Mikrobiologie, Universität Heidelberg, Im Neuenheimer Feld 282,D-69120 Heidelberg, Germany1
| | - R Herrmann
- Zentrum für molekulare Biologie Heidelberg (ZMBH) Mikrobiologie, Universität Heidelberg, Im Neuenheimer Feld 282,D-69120 Heidelberg, Germany1
| |
Collapse
|
20
|
Wasinger VC, Pollack JD, Humphery-Smith I. The proteome of Mycoplasma genitalium. Chaps-soluble component. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:1571-82. [PMID: 10712586 DOI: 10.1046/j.1432-1327.2000.01183.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mycoplasma genitalium is the smallest member of the class Mollicutes, with a genome size of 580 kb. It has the potential to express 480 gene products, and is therefore considered to be an excellent model to assess: (a) the minimum metabolism required by a free living cell; and (b) proteomic technologies and the information obtained by proteome analysis. Here, we report on the most complete proteome observed at 73% (expected proteome), and analysed at 33% (reported proteome). The use of four overlapping pH windows in conjunction with SDS/PAGE has allowed 427 distinct proteins to be resolved in association with the exponential growth of M. genitalium. Proof of expression for 201 proteins of sufficient abundance on silver stained two-dimensional gels was obtained using peptide mass fingerprinting (PMF) of which 158 were identified. The potential for gene product modification in even the simplest known self-replicating organism was quantified at a ratio of 1.22 : 1, more proteins than genes. A reduction in protein expression of 42% was observed for post-exponentially-grown cells. DnaK, GroEL, DNA gyrase, and a cytadherence accessory protein were significantly elevated, while some ribosomal proteins were reduced in relative abundance. The strengths and weaknesses of techniques employed were assessed with respect to the observed and predicted proteome derived from DNA sequence information. Proteomics was shown to provide a perspective into the biochemical and metabolic activities of this organism, beyond that obtainable by sequencing alone.
Collapse
Affiliation(s)
- V C Wasinger
- University of Sydney, Centre for Proteome Research and Gene-Product Mapping, National Innovation Centre, Australian Technology Park, Eveleigh, Australia.
| | | | | |
Collapse
|
21
|
Washburn LR, Miller EJ, Weaver KE. Molecular characterization of Mycoplasma arthritidis membrane lipoprotein MAA1. Infect Immun 2000; 68:437-42. [PMID: 10639401 PMCID: PMC97160 DOI: 10.1128/iai.68.2.437-442.2000] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genes encoding the Mycoplasma arthritidis surface-exposed lipoprotein MAA1 were cloned and sequenced from MAA1-expressing strains 158p10p9 and PG6, from a low-adherence (LA) variant derived from 158p10p9 that expresses a truncated version of MAA1 (MAA1Delta) and from two MAA1-negative strains, 158 and H39. The deduced amino acid sequences of maa1 from 158p10p9 and PG6 predicted, respectively, 86.5- and 86.4-kDa basic, largely hydrophilic lipoproteins with 29-amino-acid signal peptides and predicted cleavage sites for signal peptidase II (Ala-Ala-Ala downward arrowCys). The truncation in the LA variant resulted from a G-->T substitution at nucleotide 695, which created a premature stop codon. This, in turn, generated a predicted 26.6-kDa prolipoprotein (23.6 kDa after processing), consistent with an M(r) of approximately 24,000 calculated for MAA1Delta. Similarly, absence of MAA1 expression in H39 and 158 resulted from C-->A substitutions at nucleotide 208, generating premature stop codons at that site in both strains.
Collapse
Affiliation(s)
- L R Washburn
- Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, South Dakota 57069-2390, USA.
| | | | | |
Collapse
|
22
|
Waldo RH, Popham PL, Romero-Arroyo CE, Mothershed EA, Lee KK, Krause DC. Transcriptional analysis of the hmw gene cluster of Mycoplasma pneumoniae. J Bacteriol 1999; 181:4978-85. [PMID: 10438770 PMCID: PMC93987 DOI: 10.1128/jb.181.16.4978-4985.1999] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma pneumoniae adherence to host cells is a multifactorial process that requires the cytadhesin P1 and additional accessory proteins. The hmw gene cluster consists of the genes p30, hmw3, and hmw1, the products of which are known to be essential for cytadherence, the rpsD gene, and six open reading frames of unknown function. Putative transcriptional terminators flank this locus, raising the possibility that these genes are expressed as a single transcriptional unit. However, S1 nuclease protection and primer extension experiments identified probable transcriptional start sites upstream of the p32, p21, p50, and rpsD genes. Each was preceded at the appropriate spacing by the -10-like sequence TTAAAATT, but the -35 regions were not conserved. Analysis of the M. pneumoniae genome sequence indicated that this promoter-like sequence is found upstream of only a limited number of open reading frames, including the genes for P65 and P200, which are structurally related to HMW1 and HMW3. Promoter deletion studies demonstrated that the promoter-like region upstream of p21 was necessary for the expression of p30 and an hmw3-cat fusion in M. pneumoniae, while deletion of the promoter-like region upstream of p32 had no apparent effect. Analysis by reverse transcription-PCR confirmed transcriptional linkage of all the open reading frames in the hmw gene cluster. Taken together, these findings suggest that the genes of this locus constitute an operon expressed from overlapping transcripts.
Collapse
Affiliation(s)
- R H Waldo
- Department of Microbiology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
The recent sequencing of the entire genomes of Mycoplasma genitalium and M. pneumoniae has attracted considerable attention to the molecular biology of mycoplasmas, the smallest self-replicating organisms. It appears that we are now much closer to the goal of defining, in molecular terms, the entire machinery of a self-replicating cell. Comparative genomics based on comparison of the genomic makeup of mycoplasmal genomes with those of other bacteria, has opened new ways of looking at the evolutionary history of the mycoplasmas. There is now solid genetic support for the hypothesis that mycoplasmas have evolved as a branch of gram-positive bacteria by a process of reductive evolution. During this process, the mycoplasmas lost considerable portions of their ancestors' chromosomes but retained the genes essential for life. Thus, the mycoplasmal genomes carry a high percentage of conserved genes, greatly facilitating gene annotation. The significant genome compaction that occurred in mycoplasmas was made possible by adopting a parasitic mode of life. The supply of nutrients from their hosts apparently enabled mycoplasmas to lose, during evolution, the genes for many assimilative processes. During their evolution and adaptation to a parasitic mode of life, the mycoplasmas have developed various genetic systems providing a highly plastic set of variable surface proteins to evade the host immune system. The uniqueness of the mycoplasmal systems is manifested by the presence of highly mutable modules combined with an ability to expand the antigenic repertoire by generating structural alternatives, all compressed into limited genomic sequences. In the absence of a cell wall and a periplasmic space, the majority of surface variable antigens in mycoplasmas are lipoproteins. Apart from providing specific antimycoplasmal defense, the host immune system is also involved in the development of pathogenic lesions and exacerbation of mycoplasma induced diseases. Mycoplasmas are able to stimulate as well as suppress lymphocytes in a nonspecific, polyclonal manner, both in vitro and in vivo. As well as to affecting various subsets of lymphocytes, mycoplasmas and mycoplasma-derived cell components modulate the activities of monocytes/macrophages and NK cells and trigger the production of a wide variety of up-regulating and down-regulating cytokines and chemokines. Mycoplasma-mediated secretion of proinflammatory cytokines, such as tumor necrosis factor alpha, interleukin-1 (IL-1), and IL-6, by macrophages and of up-regulating cytokines by mitogenically stimulated lymphocytes plays a major role in mycoplasma-induced immune system modulation and inflammatory responses.
Collapse
Affiliation(s)
- S Razin
- Department of Membrane and Ultrastructure Research, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | | | | |
Collapse
|
24
|
Hnatow LL, Keeler CL, Tessmer LL, Czymmek K, Dohms JE. Characterization of MGC2, a Mycoplasma gallisepticum cytadhesin with homology to the Mycoplasma pneumoniae 30-kilodalton protein P30 and Mycoplasma genitalium P32. Infect Immun 1998; 66:3436-42. [PMID: 9632619 PMCID: PMC108366 DOI: 10.1128/iai.66.7.3436-3442.1998] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/1997] [Accepted: 04/21/1998] [Indexed: 02/07/2023] Open
Abstract
A second cytadhesin-like protein, MGC2, was identified in the avian respiratory pathogen Mycoplasma gallisepticum. The 912-nucleotide mgc2 gene encodes a 32.6-kDa protein with 40.9 and 31.4% identity with the M. pneumoniae P30 and M. genitalium P32 cytadhesins, respectively. Functional studies with reverse transcription-PCR, immunoblotting, double-sided immunogold labeling, and attachment inhibition assays demonstrated homology to the human mycoplasmal P30 and P32 cytadhesins. These findings suggest that there is a family of cytadhesin genes conserved among pathogenic mycoplasmas infecting widely divergent hosts.
Collapse
Affiliation(s)
- L L Hnatow
- Department of Animal and Food Sciences, College of Agriculture and Natural Resources, University of Delaware, Newark, Delaware 19717-1303, USA
| | | | | | | | | |
Collapse
|
25
|
Washburn LR, Weaver KE, Weaver EJ, Donelan W, Al-Sheboul S. Molecular characterization of Mycoplasma arthritidis variable surface protein MAA2. Infect Immun 1998; 66:2576-86. [PMID: 9596719 PMCID: PMC108241 DOI: 10.1128/iai.66.6.2576-2586.1998] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Earlier studies implied a role for Mycoplasma arthritidis surface protein MAA2 in cytadherence and virulence and showed that it exhibited both size and phase variability. Here we report the further analysis of MAA2 and the cloning and sequencing of the maa2 gene from two M. arthritidis strains, 158p10p9 and H606, expressing two size variants of MAA2. Triton X-114 partitioning and metabolic labeling with [3H]palmitic acid suggested lipid modification of MAA2. Surface exposure of the C terminus was indicated by cleavage of monoclonal antibody-specific epitopes from intact cells by carboxypeptidase Y. The maa2 genes from both strains were highly conserved, consisting largely of six (for 158p10p9) or five (for H606) nearly identical, 264-bp tandem direct repeats. The deduced amino acid sequence predicted a largely hydrophilic, highly basic protein with a 29-amino-acid lipoprotein signal peptide. The maa2 gene was expressed in Escherichia coli from the lacZ promoter of vector pGEM-T. The recombinant product was approximately 3 kDa larger than the native protein, suggesting that the signal peptide was not processed in E. coli. The maa2 gene and upstream DNA sequences were cloned from M. arthritidis clonal variants differing in MAA2 expression state. Expression state correlated with the length of a poly(T) tract just upstream of a putative -10 box. Full-sized recombinant MAA2 was expressed in E. coli from genes derived from both ON and OFF expression variants, indicating that control of expression did not include alterations within the coding region.
Collapse
Affiliation(s)
- L R Washburn
- Department of Microbiology, University of South Dakota, Vermillion, South Dakota 57069, USA.
| | | | | | | | | |
Collapse
|
26
|
Krause DC, Proft T, Hedreyda CT, Hilbert H, Plagens H, Herrmann R. Transposon mutagenesis reinforces the correlation between Mycoplasma pneumoniae cytoskeletal protein HMW2 and cytadherence. J Bacteriol 1997; 179:2668-77. [PMID: 9098066 PMCID: PMC179017 DOI: 10.1128/jb.179.8.2668-2677.1997] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A new genetic locus associated with Mycoplasma pneumoniae cytadherence was previously identified by transposon mutagenesis with Tn4001. This locus maps approximately 160 kbp from the genes encoding cytadherence-associated proteins HMW1 and HMW3, and yet insertions therein result in loss of these proteins and a hemadsorption-negative (HA-) phenotype, prompting the designation cytadherence-regulatory locus (crl). In the current study, passage of transformants in the absence of antibiotic selection resulted in loss of the transposon, a wild-type protein profile, and a HA+ phenotype, underscoring the correlation between crl and M. pneumoniae cytadherence. Nucleotide sequence analysis of crl revealed open reading frames (ORFs) orfp65, orfp216, orfp41, and orfp24, arranged in tandem and flanked by a promoter-like and a terminator-like sequence, suggesting a single transcriptional unit, the P65 operon. The 5' end of orfp65 mRNA was mapped by primer extension, and a likely promoter was identified just upstream. The product of each ORF was identified by using antisera prepared against fusion proteins. The previously characterized surface protein P65 is encoded by orfp65, while the 190,000 Mr cytadherence-associated protein HMW2 is a product of orfp216. Proteins with sizes of 47,000 and 41,000 Mr and unknown function were identified for orfp41 and orfp24, respectively. Structural analyses of HMW2 predict a periodicity highly characteristic of a coiled-coil conformation and five leucine zipper motifs, indicating that HMW2 probably forms dimers in vivo, which is consistent with a structural role in cytadherence. Each transposon insertion mapped to orfp216 but affected the levels of all products of the P65 operon. HMW2 is thought to form a disulfide-linked dimer, formerly designated HMW5, and examination of an hmw2 deletion mutant confirms that HMW5 is a product of the hmw2 gene.
Collapse
Affiliation(s)
- D C Krause
- Department of Microbiology, University of Georgia, Athens 30602, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Himmelreich R, Hilbert H, Plagens H, Pirkl E, Li BC, Herrmann R. Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. Nucleic Acids Res 1996; 24:4420-49. [PMID: 8948633 PMCID: PMC146264 DOI: 10.1093/nar/24.22.4420] [Citation(s) in RCA: 871] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The entire genome of the bacterium Mycoplasma pneumoniae M129 has been sequenced. It has a size of 816,394 base pairs with an average G+C content of 40.0 mol%. We predict 677 open reading frames (ORFs) and 39 genes coding for various RNA species. Of the predicted ORFs, 75.9% showed significant similarity to genes/proteins of other organisms while only 9.9% did not reveal any significant similarity to gene sequences in databases. This permitted us tentatively to assign a functional classification to a large number of ORFs and to deduce the biochemical and physiological properties of this bacterium. The reduction of the genome size of M. pneumoniae during its reductive evolution from ancestral bacteria can be explained by the loss of complete anabolic (e.g. no amino acid synthesis) and metabolic pathways. Therefore, M. pneumoniae depends in nature on an obligate parasitic lifestyle which requires the provision of exogenous essential metabolites. All the major classes of cellular processes and metabolic pathways are briefly described. For a number of activities/functions present in M. pneumoniae according to experimental evidence, the corresponding genes could not be identified by similarity search. For instance we failed to identify genes/proteins involved in motility, chemotaxis and management of oxidative stress.
Collapse
Affiliation(s)
- R Himmelreich
- Zentrum für Molekulare Biologie Heidelberg, Mikrobiologie, Universität Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|