1
|
Mobile Genetic Elements in Pseudomonas stutzeri. Curr Microbiol 2019; 77:179-184. [PMID: 31754823 DOI: 10.1007/s00284-019-01812-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022]
Abstract
Mobile genetic elements (MGE) play a large role in the plasticity of genomes, participating in several phenomena which involve genes acquisition. Pseudomonas stutzeri is an environmental widely distributed bacteria. This bacteria has a very large genomic plasticity, which would explain its occurrence in several different environments. NCBI data bank and online programs were used to build an inventory to investigate diversity and structure of MGE in Pseudomonas stutzeri, searching for insertion sequences (IS), integrases/transposases, plasmids and prophages. Five hundred and forty-eight ISs, 62 integrases, 166 transposases, five plasmids and eight complete prophages were found. MGE location and adjacent genes were investigated. Possible implications of the presence of these mobile elements explaining phenotypic diversity of Pseudomonas stutzeri were discussed. The study showed that MGEs might be good clues to understand the dynamics of genomes and their phenotypic plasticity, although they are not the only elements responsible for these characteristics.
Collapse
|
2
|
Cardoso K, Gandra RF, Wisniewski ES, Osaku CA, Kadowaki MK, Felipach-Neto V, Haus LFAÁ, Simão RDCG. DnaK and GroEL are induced in response to antibiotic and heat shock in Acinetobacter baumannii. J Med Microbiol 2010; 59:1061-1068. [DOI: 10.1099/jmm.0.020339-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We studied the expression of DnaK and GroEL in Acinetobacter baumannii cells (strains ATCC 19606 and RS4) under stress caused by heat shock or antibiotics. A Western blot assay showed that DnaK and GroEL levels increased transiently more than 2-fold after exposure of bacterial cells to heat shock for 20 min at 50 °C. Heat induction of DnaK and GroEL was blocked completely when an inhibitor of transcription, rifampicin, was added 1 min before a temperature upshift to 50 °C, suggesting that the induction of these chaperones depends on transcription. A. baumannii cells pretreated at 45 °C for 30 min were better able to survive at 50 °C for 60 min than cells pretreated at 37 °C, indicating that A. baumannii is able to acquire thermotolerance. DnaK and GroEL were successfully induced in cells pre-incubated with a subinhibitory concentration of streptomycin. Moreover, bacterial cells pretreated for 30 min at 45 °C were better able to survive streptomycin exposure than cells pretreated at physiological temperatures. DnaK expression was upregulated in a multidrug-resistant strain of A. baumannii (RS4) in the presence of different antimicrobials (ampicillin+sulbactam, cefepime, meropenem and sulphamethoxazole+trimethoprim). This study is to the best of our knowledge the first to show that A. baumannii DnaK and GroEL could play an important role in the stress response induced by antibiotics.
Collapse
Affiliation(s)
- Karen Cardoso
- Laboratório de Bioquímica Molecular, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel, PR 85814-110, Brazil
| | - Rinaldo Ferreira Gandra
- Laboratório de Microbiologia Clínica, Hospital Universitário do Oeste do Paraná, Cascavel, PR 85806-470, Brazil
| | - Edirlene Sara Wisniewski
- Laboratório de Bioquímica Molecular, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel, PR 85814-110, Brazil
| | - Clarice Aoki Osaku
- Laboratório de Bioquímica Molecular, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel, PR 85814-110, Brazil
| | - Marina Kimiko Kadowaki
- Laboratório de Bioquímica Molecular, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel, PR 85814-110, Brazil
| | - Vicente Felipach-Neto
- Laboratório de Bioquímica Molecular, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel, PR 85814-110, Brazil
| | - Leandro Fávero Aby-Ázar Haus
- Laboratório de Bioquímica Molecular, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel, PR 85814-110, Brazil
| | - Rita de Cássia Garcia Simão
- Laboratório de Bioquímica Molecular, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel, PR 85814-110, Brazil
| |
Collapse
|
3
|
Fan XY, Ma H, Guo J, Li ZM, Cheng ZH, Guo SQ, Zhao GP. A novel differential expression system for gene modulation in Mycobacteria. Plasmid 2008; 61:39-46. [PMID: 18835406 DOI: 10.1016/j.plasmid.2008.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 08/05/2008] [Accepted: 09/10/2008] [Indexed: 11/25/2022]
Abstract
Tuberculosis (TB) remains a major global health problem, and successful genetic manipulation of mycobacteria is crucial for developing new approaches to study the mechanism of pathogenesis of Mycobacterium tuberculosis (M.tb) and to combat TB. In this study, a series of M.tb furA gene operator/promoter (pfurA) mutants were generated aiming at optimization of the promoter activities in mycobacterial strains. Measured by the lacZ gene-fusion reporter system, change of the initial codon GTG to the preferred ATG resulted in a double increase of beta-galactosidase activity, while a 6-bp substitution in the conserved FurA binding AT-rich region upstream of furA gene led to 4-6 folds increase of the activity. It is significant that combination of both mutations showed about 10 folds of beta-galactosidase activity higher than that of the prototype pfurA. Furthermore, all of the furA promoters were expressed continuously in vivo during intracellular growth of Mycobacterium bovis BCG, and were induced early upon infection in macrophages. Employing the series of pfurA-based differential expression vectors, M.tb chimeric antigen Ag856A2 known for its excellent immunogenicity, was shown to be expressed at different levels in the recombinant Mycobacterium smegmatis and BCG strains. These results indicated that this differential expression system is feasible to express any target antigen of interest in a modular fashion for the study of gene regulation in mycobacterial strains, and also for the development of different recombinant BCG vaccine candidates against TB or other infectious diseases, which would be beneficial for elicitation of optimal immune response.
Collapse
Affiliation(s)
- Xiao-Yong Fan
- Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, China.
| | | | | | | | | | | | | |
Collapse
|
4
|
Ribeiro-Guimarães ML, Tempone AJ, Amaral JJ, Nery JA, Gomes Antunes SL, Pessolani MCV. Expression analysis of proteases of Mycobacterium leprae in human skin lesions. Microb Pathog 2007; 43:249-54. [PMID: 17624714 DOI: 10.1016/j.micpath.2007.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 05/05/2007] [Accepted: 05/12/2007] [Indexed: 11/28/2022]
Abstract
Proteases are commonly involved in bacterial pathogenesis and their inhibition has represented a successful therapeutic approach to treat infectious diseases. However, there is little information on the role of proteases in the pathogenesis of Mycobacteria. Five of these genes, three coding for putative secreted proteases, were selected in the present study to investigate their expression in Mycobacterium leprae isolated from skin biopsies of multibacillary leprosy patients. Via nested-PCR, it was demonstrated that mycP1 or ML0041, htrA2 or ML0176, htrA4 or ML2659, gcp or ML0379 and clpC or ML0235 are transcribed in vivo during the course of human infection. Moreover, the expression of Gcp in leprosy lesions was further confirmed by immunohistochemistry using a specific hyperimmune serum. This observation reinforces the potential role of mycobacterial proteases in the context of leprosy pathogenesis.
Collapse
Affiliation(s)
- Michelle Lopes Ribeiro-Guimarães
- Laboratory of Cellular Microbiology, Department of Mycobacterioses-Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Av. Brasil 4365, Manguinhos, 21040-900 Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | |
Collapse
|
5
|
Ferreira NL, Labbé D, Monot F, Fayolle-Guichard F, Greer CW. Genes involved in the methyl tert-butyl ether (MTBE) metabolic pathway of Mycobacterium austroafricanum IFP 2012. Microbiology (Reading) 2006; 152:1361-1374. [PMID: 16622053 DOI: 10.1099/mic.0.28585-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Methyltert-butyl ether (MTBE) is a persistent pollutant of surface and groundwater, and the reasons for its low biodegradability are poorly documented. Using one of the rare bacterial strains able to grow in the presence of MTBE,Mycobacterium austroafricanumIFP 2012, the protein profiles of crude extracts after growth in the presence of MTBE and glucose were compared by SDS-PAGE. Ten proteins with molecular masses of 67, 64, 63, 55, 50, 27, 24, 17, 14 and 11 kDa were induced after growth in the presence of MTBE. Partial amino acid sequences of N-terminal and internal peptide fragments of the 64 kDa protein were used to design degenerate oligonucleotide primers to amplify total DNA by PCR, yielding a DNA fragment that was used as a probe for cloning. A two-step cloning procedure was performed to obtain a 10 327 bp genomic DNA fragment containing seven ORFs, including a putative regulator,mpdR, and four genes,mpdC,orf1,mpdBandorf2, in the same cluster. The MpdB protein (64 kDa) was related to a flavoprotein of the glucose–methanol–choline oxidoreductase family, and the MpdC protein (55 kDa) showed a high similarity with NAD(P) aldehyde dehydrogenases. Heterologous expression of these gene products was performed inMycobacterium smegmatismc2 155. The recombinant strain was able to degrade an intermediate of MTBE biodegradation, 2-methyl 1,2-propanediol, to hydroxyisobutyric acid. This is believed to be the first report of the cloning and characterization of a cluster of genes specifically involved in the MTBE biodegradation pathway ofM. austroafricanumIFP 2012.
Collapse
MESH Headings
- Bacterial Proteins/analysis
- Bacterial Proteins/isolation & purification
- Biodegradation, Environmental
- Cloning, Molecular
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- Electrophoresis, Polyacrylamide Gel
- Flavoproteins/genetics
- Gene Expression Regulation, Bacterial
- Genes, Bacterial
- Glucose/metabolism
- Hydroxybutyrates/metabolism
- Methyl Ethers/metabolism
- Molecular Sequence Data
- Molecular Weight
- Mycobacterium/genetics
- Mycobacterium/growth & development
- Mycobacterium/metabolism
- Mycobacterium smegmatis/genetics
- Mycobacterium smegmatis/metabolism
- Open Reading Frames
- Oxidoreductases/genetics
- Propylene Glycols/metabolism
- Proteome/analysis
- Proteome/isolation & purification
- Sequence Analysis, DNA
- Sequence Analysis, Protein
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Nicolas Lopes Ferreira
- Biotechnology Research Institute, NRCC, 6100 Royalmount Avenue, Montreal, Quebec, Canada H4P2R2
- Institut Français du Pétrole, 1-4, avenue de Bois-Préau, F-92852 Rueil-Malmaison, France
| | - Diane Labbé
- Biotechnology Research Institute, NRCC, 6100 Royalmount Avenue, Montreal, Quebec, Canada H4P2R2
| | - Frédéric Monot
- Institut Français du Pétrole, 1-4, avenue de Bois-Préau, F-92852 Rueil-Malmaison, France
| | | | - Charles W Greer
- Biotechnology Research Institute, NRCC, 6100 Royalmount Avenue, Montreal, Quebec, Canada H4P2R2
| |
Collapse
|
6
|
Abstract
The major adaptive response to elevation in temperature is the heat shock response that involves the induction of many proteins--called heat shock proteins. These include chaperones, proteases, alternative sigma factors and other regulatory and structural proteins. The heat shock response is also turned on by other stress conditions, such as oxidative stress or pH changes. Bacterial entry into the host organism involves a significant environmental change, which is expected to induce the heat shock response. Indeed, some of the heat shock proteins are themselves virulence factors while others affect pathogenesis indirectly, by increasing bacterial resistance to host defenses or regulating virulence genes. The cross talk between heat shock and virulence genes is discussed.
Collapse
Affiliation(s)
- Uri Gophna
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel 69978
| | | |
Collapse
|
7
|
Chastanet A, Fert J, Msadek T. Comparative genomics reveal novel heat shock regulatory mechanisms in Staphylococcus aureus and other Gram-positive bacteria. Mol Microbiol 2003; 47:1061-73. [PMID: 12581359 DOI: 10.1046/j.1365-2958.2003.03355.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Multiple regulatory mechanisms for coping with stress co-exist in low G+C Gram-positive bacteria. Among these, the HrcA and CtsR repressors control distinct regulons in the model organism, Bacillus subtilis. We recently identified an orthologue of the CtsR regulator of stress response in the major pathogen, Staphylococcus aureus. Sequence analysis of the S. aureus genome revealed the presence of potential CtsR operator sites not only upstream from genes encoding subunits of the Clp ATP-dependent protease, as in B. subtilis, but also, unexpectedly, within the promoter regions of the dnaK and groESL operons known to be specifically controlled by HrcA. The tandem arrangement of the CtsR and HrcA operators suggests a novel mode of dual heat shock regulation by these two repressors. The S. aureus ctsR and hrcA genes were cloned under the control of the PxylA xylose-inducible promoter and used to demonstrate dual regulation of the dnaK and groESL operons by both CtsR and HrcA, using B. subtilis as a heterologous host. Direct binding by both repressors was shown in vitro by gel mobility shift and DNase I footprinting experiments using purified S. aureus CtsR and HrcA proteins. DeltactsR, DeltahrcA and DeltactsRDeltahrcA mutants of S. aureus were constructed, indicating that the two repressors are not redundant but, instead, act together synergistically to maintain low basal levels of expression of the dnaK and groESL operons in the absence of stress. This novel regulatory mode appears to be specific to Staphylococci.
Collapse
Affiliation(s)
- Arnaud Chastanet
- Unité de Biochimie Microbienne, CNRS URA 2172, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | |
Collapse
|
8
|
Chastanet A, Prudhomme M, Claverys JP, Msadek T. Regulation of Streptococcus pneumoniae clp genes and their role in competence development and stress survival. J Bacteriol 2001; 183:7295-307. [PMID: 11717289 PMCID: PMC95579 DOI: 10.1128/jb.183.24.7295-7307.2001] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In vitro mariner transposon mutagenesis of Streptococcus pneumoniae chromosomal DNA was used to isolate regulatory mutants affecting expression of the comCDE operon, encoding the peptide quorum-sensing two-component signal transduction system controlling competence development. A transposon insertion leading to increased comC expression was found to lie directly upstream from the S. pneumoniae clpP gene, encoding the proteolytic subunit of the Clp ATP-dependent protease, whose expression in Bacillus subtilis is controlled by the CtsR repressor. In order to examine clp gene regulation in S. pneumoniae, a detailed analysis of the complete genome sequence was performed, indicating that there are five likely CtsR-binding sites located upstream from the clpE, clpP, and clpL genes and the ctsR-clpC and groESL operons. The S. pneumoniae ctsR gene was cloned under the control of an inducible promoter and used to demonstrate regulation of the S. pneumoniae clpP and clpE genes and the clpC and groESL operons by using B. subtilis as a heterologous host. The CtsR protein of S. pneumoniae was purified and shown to bind specifically to the clpP, clpC, clpE, and groESL regulatory regions. S. pneumoniae Delta ctsR, Delta clpP, Delta clpC, and Delta clpE mutants were constructed by gene deletion/replacement. ClpP was shown to act as a negative regulator, preventing competence gene expression under inappropriate conditions. Phenotypic analyses also indicated that ClpP and ClpE are both required for thermotolerance. Contrary to a previous report, we found that ClpC does not play a major role in competence development, autolysis, pneumolysin production, or growth at high temperature of S. pneumoniae.
Collapse
Affiliation(s)
- A Chastanet
- Unité de Biochimie Microbienne, Institut Pasteur, URA 2172 du Centre National de la Recherche Scientifique, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
9
|
Brown GD, Dave JA, Gey van Pittius NC, Stevens L, Ehlers MR, Beyers AD. The mycosins of Mycobacterium tuberculosis H37Rv: a family of subtilisin-like serine proteases. Gene 2000; 254:147-55. [PMID: 10974545 DOI: 10.1016/s0378-1119(00)00277-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is little information regarding the role of proteolysis in Mycobacterium tuberculosis and no studies on the potential involvement of proteases in the pathogenesis of tuberculosis. We identified five M. tuberculosis genes (mycP1-5) that encode a family of serine proteases (mycosins-1 to 5), ranging from 36 to 47% identity. Each protein contains a catalytic triad (Asp, His, Ser) within highly conserved sequences, typical of proteases of the subtilisin family. These genes are also present in M. bovis BCG and other virulent mycobacteria, but only one homologue (mycP3) was detected in M. smegmatis. The mycosins have N-terminal signal sequences and C-terminal transmembrane anchors, and the localisation of the mycosins to the membrane/cell wall was verified by Western blot analysis of heterologously expressed proteins in cellular fractions of M. smegmatis. In M. tuberculosis, all the mycosins were expressed constitutively during growth in broth. Mycosins-2 and 3 were also expressed constitutively in M. bovis BCG, but no expression of mycosin-1 was detected. Mycosin-2 was modified by cleavage in all three mycobacterial species. The multiplicity and constitutive expression of these proteins suggests that they have an important role in the biology of M. tuberculosis.
Collapse
Affiliation(s)
- G D Brown
- Department of Medical Biochemistry/MRC Centre for Molecular and Cellular Biology, University of Stellenbosch, 7505, Tygerberg, South Africa.
| | | | | | | | | | | |
Collapse
|
10
|
Nair S, Derré I, Msadek T, Gaillot O, Berche P. CtsR controls class III heat shock gene expression in the human pathogen Listeria monocytogenes. Mol Microbiol 2000; 35:800-11. [PMID: 10692157 DOI: 10.1046/j.1365-2958.2000.01752.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Stress proteins play an important role in virulence, yet little is known about the regulation of stress response in pathogens. In the facultative intracellular pathogen Listeria monocytogenes, the Clp ATPases, including ClpC, ClpP and ClpE, are required for stress survival and intracellular growth. The first gene of the clpC operon of L. monocytogenes encodes a homologue of the Bacillus subtilis CtsR repressor of stress response genes. An L. monocytogenes ctsR-deleted mutant displayed enhanced survival under stress conditions (growth in the presence of 2% NaCl or at 42 degrees C), but its level of virulence in the mouse was not affected. The virulence of a wild-type strain constitutively expressing CtsR is significantly attenuated, presumably because of repression of the stress response. Regulation of the L. monocytogenes clpC, clpP and clpE genes was investigated using transcriptional fusions in B. subtilis as a host. The L. monocytogenes ctsR gene was placed under the control of an inducible promoter, and regulation by CtsR and heat shock was demonstrated in vivo in B. subtilis. The purified CtsR protein of L. monocytogenes binds specifically to the clpC, clpP and clpE regulatory regions, and the extent of the CtsR binding sites was defined by DNase I footprinting. Our results demonstrate that this human pathogen possesses a CtsR regulon controlling class III heat shock genes, strikingly similar to that of the saprophyte B. subtilis. This is the first description of a stress response regulatory gene in a pathogen.
Collapse
Affiliation(s)
- S Nair
- Unité de Physiopathologie Moléculaire des Infections Microbiennes, INSERM U411, Faculté de Médicine Necker, 156 rue de Vaugirard, 75730 Paris Cedex 15,
| | | | | | | | | |
Collapse
|
11
|
Porankiewicz J, Wang J, Clarke AK. New insights into the ATP-dependent Clp protease: Escherichia coli and beyond. Mol Microbiol 1999; 32:449-58. [PMID: 10320569 DOI: 10.1046/j.1365-2958.1999.01357.x] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Proteolysis functions as a precise regulatory mechanism for a broad spectrum of cellular processes. Such control impacts not only on the stability of key metabolic enzymes but also on the effective removal of terminally damaged polypeptides. Much of this directed protein turnover is performed by proteases that require ATP and, of those in bacteria, the Clp protease from Escherichia coli is one of the best characterized to date. The Clp holoenzyme consists of two adjacent heptameric rings of the proteolytic subunit known as ClpP, which are flanked by a hexameric ring of a regulatory subunit from the Clp/Hsp100 chaperone family at one or both ends. The recently resolved three-dimensional structure of the E. coli ClpP protein has provided new insights into its interaction with the regulatory/chaperone subunits. In addition, an increasing number of studies over the last few years have recognized the added complexity and functional importance of ClpP proteins in other eubacteria and, in particular, in photosynthetic organisms ranging from cyanobacteria to higher plants. The goal of this review is to summarize these recent findings and to highlight those areas that remain unresolved.
Collapse
Affiliation(s)
- J Porankiewicz
- Department of Plant Physiology, University of Umeå, Umeå S-901 87, Sweden
| | | | | |
Collapse
|
12
|
Thies FL, Karch H, Hartung HP, Giegerich G. The ClpB protein from Campylobacter jejuni: molecular characterization of the encoding gene and antigenicity of the recombinant protein. Gene X 1999; 230:61-7. [PMID: 10196475 DOI: 10.1016/s0378-1119(99)00054-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The ClpB heat-shock protein is necessary for the survival of Escherichia coli cells upon sudden increase of temperature. Using a PCR-based genomic walking method, the nucleotide sequence of a clpB homolog from Campylobacter jejuni was determined. The clpB gene encodes a protein of 857 amino acid (aa) residues, with a predicted molecular mass of 95.3kDa. Alignment of the deduced aa sequence with other known bacterial ClpB proteins revealed overall identity from 47% (E. coli) to 61% (Helicobacter pylori). Within the clpB promoter region, as indicated by primer extension analysis, we identified a sequence identical to the E. coli sigma70 consensus promoter. Northern blot analysis confirmed that clpB is heat-inducible in C. jejuni. The ClpB protein, fused to a 6xHis tag, was synthesized in E. coli and purified by metal-affinity and size exclusion chromatography. In ELISA studies, IgA levels reactive to recombinant ClpB were significantly higher in sera of patients with prior C. jejuni infections than in sera obtained from healthy control persons.
Collapse
Affiliation(s)
- F L Thies
- Department of Neurology, University of Würzburg, D-97080, Würzburg, Germany
| | | | | | | |
Collapse
|
13
|
Derré I, Rapoport G, Msadek T. CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in gram-positive bacteria. Mol Microbiol 1999; 31:117-31. [PMID: 9987115 DOI: 10.1046/j.1365-2958.1999.01152.x] [Citation(s) in RCA: 323] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
clpP and clpC of Bacillus subtillis encode subunits of the Clp ATP-dependent protease and are required for stress survival, including growth at high temperature. They play essential roles in stationary phase adaptive responses such as the competence and sporulation developmental pathways, and belong to the so-called class III group of heat shock genes, whose mode of regulation is unknown and whose expression is induced by heat shock or general stress conditions. The product of ctsR, the first gene of the clpC operon, has now been shown to act as a repressor of both clpP and clpC, as well as clpE, which encodes a novel member of the Hsp100 Clp ATPase family. The CtsR protein was purified and shown to bind specifically to the promoter regions of all three clp genes. Random mutagenesis, DNasel footprinting and DNA sequence deletions and comparisons were used to define a consensus CtsR recognition sequence as a directly repeated heptad upstream from the three clp genes. This target sequence was also found upstream from clp and other heat shock genes of several Gram-positive bacteria, including Listeria monocytogenes, Streptococcus salivarius, S. pneumoniae, S. pyogenes, S. thermophilus, Enterococcus faecalis, Staphylococcus aureus, Leuconostoc oenos, Lactobacillus sake, Lactococcus lactis and Clostridium acetobutylicum. CtsR homologues were also identified in several of these bacteria, indicating that heat shock regulation by CtsR is highly conserved in Gram-positive bacteria.
Collapse
Affiliation(s)
- I Derré
- URA 1300 du Centre National de la Recherche Scientifique, Institut Pasteur, Paris, France
| | | | | |
Collapse
|