1
|
Qiu Y, Lei P, Wang R, Sun L, Luo Z, Li S, Xu H. Kluyveromyces as promising yeast cell factories for industrial bioproduction: From bio-functional design to applications. Biotechnol Adv 2023; 64:108125. [PMID: 36870581 DOI: 10.1016/j.biotechadv.2023.108125] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
As the two most widely used Kluyveromyces yeast, Kluyveromyces marxianus and K. lactis have gained increasing attention as microbial chassis in biocatalysts, biomanufacturing and the utilization of low-cost raw materials owing to their high suitability to these applications. However, due to slow progress in the development of molecular genetic manipulation tools and synthetic biology strategies, Kluyveromyces yeast cell factories as biological manufacturing platforms have not been fully developed. In this review, we provide a comprehensive overview of the attractive characteristics and applications of Kluyveromyces cell factories, with special emphasis on the development of molecular genetic manipulation tools and systems engineering strategies for synthetic biology. In addition, future avenues in the development of Kluyveromyces cell factories for the utilization of simple carbon compounds as substrates, the dynamic regulation of metabolic pathways, and for rapid directed evolution of robust strains are proposed. We expect that more synthetic systems, synthetic biology tools and metabolic engineering strategies will adapt to and optimize for Kluyveromyces cell factories to achieve green biofabrication of multiple products with higher efficiency.
Collapse
Affiliation(s)
- Yibin Qiu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Peng Lei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Rui Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Liang Sun
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Zhengshan Luo
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Sha Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Hong Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
2
|
Genetic and Physiological Characterization of Fructose-1,6-Bisphosphate Aldolase and Glyceraldehyde-3-Phosphate Dehydrogenase in the Crabtree-Negative Yeast Kluyveromyces lactis. Int J Mol Sci 2022; 23:ijms23020772. [PMID: 35054955 PMCID: PMC8776025 DOI: 10.3390/ijms23020772] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 02/01/2023] Open
Abstract
The milk yeast Kluyveromyces lactis degrades glucose through glycolysis and the pentose phosphate pathway and follows a mainly respiratory metabolism. Here, we investigated the role of two reactions which are required for the final steps of glucose degradation from both pathways, as well as for gluconeogenesis, namely fructose-1,6-bisphosphate aldolase (FBA) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In silico analyses identified one gene encoding the former (KlFBA1), and three genes encoding isoforms of the latter (KlTDH1, KlTDH2, KlGDP1). Phenotypic analyses were performed by deleting the genes from the haploid K. lactis genome. While Klfba1 deletions lacked detectable FBA activity, they still grew poorly on glucose. To investigate the in vivo importance of the GAPDH isoforms, different mutant combinations were analyzed for their growth behavior and enzymatic activity. KlTdh2 represented the major glycolytic GAPDH isoform, as its lack caused a slower growth on glucose. Cells lacking both KlTdh1 and KlTdh2 failed to grow on glucose but were still able to use ethanol as sole carbon sources, indicating that KlGdp1 is sufficient to promote gluconeogenesis. Life-cell fluorescence microscopy revealed that KlTdh2 accumulated in the nucleus upon exposure to oxidative stress, suggesting a moonlighting function of this isoform in the regulation of gene expression. Heterologous complementation of the Klfba1 deletion by the human ALDOA gene renders K. lactis a promising host for heterologous expression of human disease alleles and/or a screening system for specific drugs.
Collapse
|
3
|
Gündüz Ergün B, Hüccetoğulları D, Öztürk S, Çelik E, Çalık P. Established and Upcoming Yeast Expression Systems. Methods Mol Biol 2019; 1923:1-74. [PMID: 30737734 DOI: 10.1007/978-1-4939-9024-5_1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Yeast was the first microorganism used by mankind for biotransformation of feedstock that laid the foundations of industrial biotechnology. Long historical use, vast amount of data, and experience paved the way for Saccharomyces cerevisiae as a first yeast cell factory, and still it is an important expression platform as being the production host for several large volume products. Continuing special needs of each targeted product and different requirements of bioprocess operations have led to identification of different yeast expression systems. Modern bioprocess engineering and advances in omics technology, i.e., genomics, transcriptomics, proteomics, secretomics, and interactomics, allow the design of novel genetic tools with fine-tuned characteristics to be used for research and industrial applications. This chapter focuses on established and upcoming yeast expression platforms that have exceptional characteristics, such as the ability to utilize a broad range of carbon sources or remarkable resistance to various stress conditions. Besides the conventional yeast S. cerevisiae, established yeast expression systems including the methylotrophic yeasts Pichia pastoris and Hansenula polymorpha, the dimorphic yeasts Arxula adeninivorans and Yarrowia lipolytica, the lactose-utilizing yeast Kluyveromyces lactis, the fission yeast Schizosaccharomyces pombe, and upcoming yeast platforms, namely, Kluyveromyces marxianus, Candida utilis, and Zygosaccharomyces bailii, are compiled with special emphasis on their genetic toolbox for recombinant protein production.
Collapse
Affiliation(s)
- Burcu Gündüz Ergün
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey
| | - Damla Hüccetoğulları
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey
| | - Sibel Öztürk
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey
| | - Eda Çelik
- Department of Chemical Engineering, Hacettepe University, Ankara, Turkey
- Bioengineering Division, Institute of Science, Hacettepe University, Ankara, Turkey
| | - Pınar Çalık
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey.
- Industrial Biotechnology and Metabolic Engineering Laboratory, Department of Biotechnology, Graduate School of Natural and Applied Sciences, Middle East Technical University, Ankara, Turkey.
| |
Collapse
|
4
|
Mojardín L, Vega M, Moreno F, Schmitz HP, Heinisch JJ, Rodicio R. Lack of the NAD+-dependent glycerol 3-phosphate dehydrogenase impairs the function of transcription factors Sip4 and Cat8 required for ethanol utilization in Kluyveromyces lactis. Fungal Genet Biol 2018; 111:16-29. [DOI: 10.1016/j.fgb.2017.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 11/19/2017] [Accepted: 11/21/2017] [Indexed: 11/25/2022]
|
5
|
Rippert D, Backhaus K, Rodicio R, Heinisch JJ. Cell wall synthesis and central carbohydrate metabolism are interconnected by the SNF1/Mig1 pathway in Kluyveromyces lactis. Eur J Cell Biol 2017; 96:70-81. [DOI: 10.1016/j.ejcb.2016.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 11/12/2022] Open
|
6
|
Rippert D, Heinisch JJ. Investigation of the role of four mitotic septins and chitin synthase 2 for cytokinesis in Kluyveromyces lactis. Fungal Genet Biol 2016; 94:69-78. [PMID: 27422440 DOI: 10.1016/j.fgb.2016.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 07/08/2016] [Accepted: 07/12/2016] [Indexed: 11/15/2022]
Abstract
Septins are key components of the cell division machinery from yeast to humans. The model yeast Saccharomyces cerevisiae has five mitotic septins, Cdc3, Cdc10, Cdc11, Cdc12, and Shs1. Here we characterized the five orthologs from the genetically less-redundant milk yeast Kluyveromyces lactis. We found that except for KlSHS1 all septin genes are essential. Klshs1 deletions displayed temperature-sensitive growth and morphological defects. Heterologous complementation analyses revealed that all five K. lactis genes encode functional orthologs of their S. cerevisiae counterparts. Fluorophore-tagged versions of the K. lactis septins localized to a ring at the incipient bud site and split into two separate rings at the bud neck later in cytokinesis. One of the key proteins recruited to the bud neck by septins in S. cerevisiae is the chitin synthase Chs2, which synthesizes the primary septum. KlCHS2 was found to be essential and deletions showed cytokinetic defects upon spore germination. KlChs2-GFP also localized to the bud neck and to punctate structures in K. lactis. We conclude that cytokinesis in K. lactis is similar to S. cerevisiae and chimeric septin complexes are fully functional in both yeasts. In contrast to some S. cerevisiae strains, KlChs2 and KlCdc10 were found to be essential.
Collapse
Affiliation(s)
- Dorthe Rippert
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Genetik, 49076 Osnabrück, Germany
| | - Jürgen J Heinisch
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Genetik, 49076 Osnabrück, Germany.
| |
Collapse
|
7
|
Gombert AK, Madeira JV, Cerdán ME, González-Siso MI. Kluyveromyces marxianus as a host for heterologous protein synthesis. Appl Microbiol Biotechnol 2016; 100:6193-6208. [PMID: 27260286 DOI: 10.1007/s00253-016-7645-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/22/2016] [Accepted: 05/25/2016] [Indexed: 01/08/2023]
Abstract
The preferentially respiring and thermotolerant yeast Kluyveromyces marxianus is an emerging host for heterologous protein synthesis, surpassing the traditional preferentially fermenting yeast Saccharomyces cerevisiae in some important aspects: K . marxianus can grow at temperatures 10 °C higher than S. cerevisiae, which may result in decreased costs for cooling bioreactors and reduced contamination risk; has ability to metabolize a wider variety of sugars, such as lactose and xylose; is the fastest growing eukaryote described so far; and does not require special cultivation techniques (such as fed-batch) to avoid fermentative metabolism. All these advantages exist together with a high secretory capacity, performance of eukaryotic post-translational modifications, and with a generally regarded as safe (GRAS) status. In the last years, replication origins from several Kluyveromyces spp. have been used for the construction of episomal vectors, and also integrative strategies have been developed based on the tendency for non-homologous recombination displayed by K. marxianus. The recessive URA3 auxotrophic marker and the dominant Kan(R) are mostly used for selection of transformed cells, but other markers have been made available. Homologous and heterologous promoters and secretion signals have been characterized, with the K. marxianus INU1 expression and secretion system being of remarkable functionality. The efficient synthesis of roughly 50 heterologous proteins has been demonstrated, including one thermophilic enzyme. In this mini-review, we summarize the physiological characteristics of K. marxianus relevant for its use in the efficient synthesis of heterologous proteins, the efforts performed hitherto in the development of a molecular toolbox for this purpose, and some successful examples.
Collapse
Affiliation(s)
- Andreas K Gombert
- School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, SP, 13083-862, Brazil
| | - José Valdo Madeira
- School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, SP, 13083-862, Brazil
| | - María-Esperanza Cerdán
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, 15071, A Coruña, Spain
| | - María-Isabel González-Siso
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, 15071, A Coruña, Spain.
| |
Collapse
|
8
|
Lamas-Maceiras M, Rodríguez-Belmonte E, Becerra M, González-Siso MI, Cerdán ME. KlGcr1 controls glucose-6-phosphate dehydrogenase activity and responses to H2O2, cadmium and arsenate in Kluyveromyces lactis. Fungal Genet Biol 2015; 82:95-103. [PMID: 26164373 DOI: 10.1016/j.fgb.2015.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 07/07/2015] [Accepted: 07/08/2015] [Indexed: 12/01/2022]
Abstract
It has been previously reported that Gcr1 differentially controls growth and sugar utilization in Saccharomyces cerevisiae and Kluyveromyces lactis, although the regulatory mechanisms causing activation of glycolytic genes are conserved (Neil et al., 2004). We have found that KlGCR1 deletion diminishes glucose consumption and ethanol production, but increases resistance to oxidative stress caused by H2O2, cadmium and arsenate, glucose 6P dehydrogenase activity, and the NADPH/NADP(+) and GSH/GSSG ratios in K. lactis. The gene KlZWF1 that encodes for glucose 6P dehydrogenase, the first enzyme in the pentose phosphate pathway, is transcriptionally regulated by KlGcr1. The high resistance to oxidative stress observed in the ΔKlgcr1 mutant strain, could be explained as a consequence of an increased flux of glucose through the pentose phosphate pathway. Since mitochondrial respiration decreases in the ΔKlgcr1 mutant (García-Leiro et al., 2010), the reoxidation of the NADPH, produced through the pentose phosphate pathway, has to be achieved by the reduction of other molecules implied in the defense against oxidative stress, like GSSG. The higher GSH/GSSG ratio in the mutant would explain its phenotype of increased resistance to oxidative stress.
Collapse
Affiliation(s)
- Mónica Lamas-Maceiras
- Grupo de Investigación EXPRELA, Centro de Investigacions Cientificas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, 15071 A Coruña, Spain
| | - Esther Rodríguez-Belmonte
- Grupo de Investigación EXPRELA, Centro de Investigacions Cientificas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, 15071 A Coruña, Spain
| | - Manuel Becerra
- Grupo de Investigación EXPRELA, Centro de Investigacions Cientificas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, 15071 A Coruña, Spain
| | - Ma Isabel González-Siso
- Grupo de Investigación EXPRELA, Centro de Investigacions Cientificas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, 15071 A Coruña, Spain
| | - Ma Esperanza Cerdán
- Grupo de Investigación EXPRELA, Centro de Investigacions Cientificas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, 15071 A Coruña, Spain.
| |
Collapse
|
9
|
Cano-Prieto C, García-Salcedo R, Sánchez-Hidalgo M, Braña AF, Fiedler HP, Méndez C, Salas JA, Olano C. Genome Mining of Streptomyces sp. Tü 6176: Characterization of the Nataxazole Biosynthesis Pathway. Chembiochem 2015; 16:1461-73. [PMID: 25892546 DOI: 10.1002/cbic.201500153] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Indexed: 11/11/2022]
Abstract
Streptomyces sp. Tü 6176 produces the cytotoxic benzoxazole nataxazole. Bioinformatic analysis of the genome of this organism predicts the presence of 38 putative secondary-metabolite biosynthesis gene clusters, including those involved in the biosynthesis of AJI9561 and its derivative nataxazole, the antibiotic hygromycin B, and ionophores enterobactin and coelibactin. The nataxazole biosynthesis gene cluster was identified and characterized: it lacks the O-methyltransferase gene required to convert AJI9561 into nataxazole. This O-methyltransferase activity might act as a resistance mechanism, as AJI9561 shows antibiotic activity whereas nataxazole is inactive. Moreover, heterologous expression of the nataxazole biosynthesis gene cluster in S. lividans JT46 resulted in the production of AJI9561. Nataxazole biosynthesis requires the shikimate pathway to generate 3-hydroxyanthranilate and an iterative type I PKS to generate 6-methylsalicylate. Production of nataxazole was improved up to fourfold by disrupting one regulatory gene in the cluster. An additional benzoxazole, 5-hydroxynataxazole is produced by Streptomyces sp. Tü 6176. 5-Hydroxynataxazole derives from nataxazole by the activity of an as yet unidentified oxygenase; this implies cross-talk between the nataxazole biosynthesis pathway and an unknown pathway.
Collapse
Affiliation(s)
- Carolina Cano-Prieto
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, C/ Julian Clavería S/N, 33006 Oviedo (Spain)
| | - Raúl García-Salcedo
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, C/ Julian Clavería S/N, 33006 Oviedo (Spain)
| | - Marina Sánchez-Hidalgo
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, C/ Julian Clavería S/N, 33006 Oviedo (Spain)
| | - Alfredo F Braña
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, C/ Julian Clavería S/N, 33006 Oviedo (Spain)
| | - Hans-Peter Fiedler
- Mikrobiologisches Institut, Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen (Germany)
| | - Carmen Méndez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, C/ Julian Clavería S/N, 33006 Oviedo (Spain)
| | - José A Salas
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, C/ Julian Clavería S/N, 33006 Oviedo (Spain)
| | - Carlos Olano
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, C/ Julian Clavería S/N, 33006 Oviedo (Spain).
| |
Collapse
|
10
|
Schmitz HP, Jendretzki A, Wittland J, Wiechert J, Heinisch JJ. Identification of Dck1 and Lmo1 as upstream regulators of the small GTPase Rho5 inSaccharomyces cerevisiae. Mol Microbiol 2015; 96:306-24. [DOI: 10.1111/mmi.12937] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2015] [Indexed: 12/29/2022]
Affiliation(s)
- Hans-Peter Schmitz
- Faculty of Biology/Chemistry, Department of Genetics Barbarastr. 11; University of Osnabrueck; Osnabrueck D-49076 Germany
| | - Arne Jendretzki
- Faculty of Biology/Chemistry, Department of Genetics Barbarastr. 11; University of Osnabrueck; Osnabrueck D-49076 Germany
| | - Janina Wittland
- Faculty of Biology/Chemistry, Department of Genetics Barbarastr. 11; University of Osnabrueck; Osnabrueck D-49076 Germany
| | - Johanna Wiechert
- Faculty of Biology/Chemistry, Department of Genetics Barbarastr. 11; University of Osnabrueck; Osnabrueck D-49076 Germany
| | - Jürgen J. Heinisch
- Faculty of Biology/Chemistry, Department of Genetics Barbarastr. 11; University of Osnabrueck; Osnabrueck D-49076 Germany
| |
Collapse
|
11
|
Glycolysis controls plasma membrane glucose sensors to promote glucose signaling in yeasts. Mol Cell Biol 2014; 35:747-57. [PMID: 25512610 DOI: 10.1128/mcb.00515-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Sensing of extracellular glucose is necessary for cells to adapt to glucose variation in their environment. In the respiratory yeast Kluyveromyces lactis, extracellular glucose controls the expression of major glucose permease gene RAG1 through a cascade similar to the Saccharomyces cerevisiae Snf3/Rgt2/Rgt1 glucose signaling pathway. This regulation depends also on intracellular glucose metabolism since we previously showed that glucose induction of the RAG1 gene is abolished in glycolytic mutants. Here we show that glycolysis regulates RAG1 expression through the K. lactis Rgt1 (KlRgt1) glucose signaling pathway by targeting the localization and probably the stability of Rag4, the single Snf3/Rgt2-type glucose sensor of K. lactis. Additionally, the control exerted by glycolysis on glucose signaling seems to be conserved in S. cerevisiae. This retrocontrol might prevent yeasts from unnecessary glucose transport and intracellular glucose accumulation.
Collapse
|
12
|
Domesticated transposase Kat1 and its fossil imprints induce sexual differentiation in yeast. Proc Natl Acad Sci U S A 2014; 111:15491-6. [PMID: 25313032 DOI: 10.1073/pnas.1406027111] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Transposable elements (TEs) have had a major influence on shaping both prokaryotic and eukaryotic genomes, largely through stochastic events following random or near-random insertions. In the mammalian immune system, the recombination activation genes1/2 (Rag1/2) recombinase has evolved from a transposase gene, demonstrating that TEs can be domesticated by the host. In this study, we uncovered a domesticated transposase, Kluyveromyces lactis hobo/Activator/Tam3 (hAT) transposase 1 (Kat1), operating at the fossil imprints of an ancient transposon, that catalyzes the differentiation of cell type. Kat1 induces mating-type switching from mating type a (MATa) to MATα in the yeast K. lactis. Kat1 activates switching by introducing two hairpin-capped DNA double-strand breaks (DSBs) in the MATa1-MATa2 intergenic region, as we demonstrate both in vivo and in vitro. The DSBs stimulate homologous recombination with the cryptic hidden MAT left alpha (HMLα) locus resulting in a switch of the cell type. The sites where Kat1 acts in the MATa locus most likely are ancient remnants of terminal inverted repeats from a long-lost TE. The KAT1 gene is annotated as a pseudogene because it contains two overlapping ORFs. We demonstrate that translation of full-length Kat1 requires a programmed -1 frameshift. The frameshift limited Kat1 activity, because restoring the zero frame causes switching to the MATα genotype. Kat1 also was transcriptionally activated by nutrient limitation via the transcription factor mating type switch 1 (Mts1). A phylogenetic analysis indicated that KAT1 was domesticated specifically in the Kluyveromyces clade of the budding yeasts. We conclude that Kat1 is a highly regulated transposase-derived endonuclease vital for sexual differentiation.
Collapse
|
13
|
Rippert D, Heppeler N, Albermann S, Schmitz HP, Heinisch JJ. Regulation of cytokinesis in the milk yeast Kluyveromyces lactis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2685-97. [PMID: 25110348 DOI: 10.1016/j.bbamcr.2014.07.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 10/24/2022]
Abstract
Cytokinesis in yeast and mammalian cells is a highly coordinated process mediated by the constriction of an actomyosin ring. In yeasts, it is accompanied by the formation of a chitinous primary septum. Although much is known about the regulation of cytokinesis in budding yeast, overlapping functions of redundant genes complicates genetic analyses. Here, we investigated the effects of various deletion mutants on cytokinesis in the milk yeast Kluyveromyces lactis. To determine the spatiotemporal parameters of cytokinesis components, live-cell imaging of fluorophor-tagged KlMyo1 and a new Lifeact probe for KlAct1 was employed. In contrast to Saccharomyces cerevisiae, where deletion of ScMYO1 is lethal, Klmyo1 deletion was temperature-sensitive. Transmission and scanning electron microscopy demonstrated that the Klmyo1 deletion cells had a defect in the formation of the primary septum and in cell separation; this result was confirmed by FACS analyses. Deletion of KlCYK3 was lethal, whereas in S. cerevisiae a cyk3 deletion is synthetically lethal with hof1 deletion. Growth of Klhof1 mutants was osmoremedial at 25°C, as it is in S. cerevisiae. CYK3 and HOF1 genes cross-complemented in both species, suggesting that they are functional homologs. Inn1, a common interactor for these two regulators, was essential in both yeasts and the encoding genes did not cross-complement. The C2 domain of the Inn1 homologs conferred species specificity. Thus, our work establishes K. lactis as a model yeast to study cytokinesis with less genetic redundancy than S. cerevisiae. The viability of Klmyo1 deletions provides an advantage over budding yeast to study actomyosin-independent cytokinesis. Moreover, the lethality of Klcyk3 null mutants suggests that there are fewer functional redundancies with KlHof1 in K. lactis.
Collapse
Affiliation(s)
- Dorthe Rippert
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Genetik, 49076 Osnabrück, Germany
| | - Nele Heppeler
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Genetik, 49076 Osnabrück, Germany
| | - Sabine Albermann
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Genetik, 49076 Osnabrück, Germany
| | - Hans-Peter Schmitz
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Genetik, 49076 Osnabrück, Germany
| | - Jürgen J Heinisch
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Genetik, 49076 Osnabrück, Germany.
| |
Collapse
|
14
|
Ottaviano D, Micolonghi C, Tizzani L, Lemaire M, Wésolowski-Louvel M, De Stefano ME, Ranieri D, Bianchi MM. Autoregulation of the Kluyveromyces lactis pyruvate decarboxylase gene KlPDC1 involves the regulatory gene RAG3. MICROBIOLOGY-SGM 2014; 160:1369-1378. [PMID: 24763423 DOI: 10.1099/mic.0.078543-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the yeast Kluyveromyces lactis, the pyruvate decarboxylase gene KlPDC1 is strongly regulated at the transcription level by different environmental factors. Sugars and hypoxia act as inducers of transcription, while ethanol acts as a repressor. Their effects are mediated by gene products, some of which have been characterized. KlPDC1 transcription is also strongly repressed by its product--KlPdc1--through a mechanism called autoregulation. We performed a genetic screen that allowed us to select and identify the regulatory gene RAG3 as a major factor in the transcriptional activity of the KlPDC1 promoter in the absence of the KlPdc1 protein, i.e. in the autoregulatory mechanism. We also showed that the two proteins Rag3 and KlPdc1 interact, co-localize in the cell and that KlPdc1 may control Rag3 nuclear localization.
Collapse
Affiliation(s)
- Daniela Ottaviano
- Dip. Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, p.le Aldo Moro 5, 00185 Roma, Italy
| | - Chiara Micolonghi
- Dip. Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, p.le Aldo Moro 5, 00185 Roma, Italy
| | - Lorenza Tizzani
- Dip. Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, p.le Aldo Moro 5, 00185 Roma, Italy
| | - Marc Lemaire
- CNRS, Villeurbanne, France.,Université Lyon1, Lyon, France.,Génétique Moléculaire des Levures, UMR5240 Microbiologie, Adaptation et Pathogénie, Université de Lyon, Lyon, France
| | - Micheline Wésolowski-Louvel
- CNRS, Villeurbanne, France.,Université Lyon1, Lyon, France.,Génétique Moléculaire des Levures, UMR5240 Microbiologie, Adaptation et Pathogénie, Université de Lyon, Lyon, France
| | - Maria Egle De Stefano
- Istituto Pasteur Fondazione Cenci-Bolognetti, Sapienza Università di Roma, Roma, Italy.,Dip. Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, p.le Aldo Moro 5, 00185 Roma, Italy
| | - Danilo Ranieri
- Dip. Medicina clinica e molecolare, Sapienza Università di Roma, via di Grottarossa 1035, 00189 Roma, Italy
| | - Michele M Bianchi
- Istituto Pasteur Fondazione Cenci-Bolognetti, Sapienza Università di Roma, Roma, Italy.,Dip. Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, p.le Aldo Moro 5, 00185 Roma, Italy
| |
Collapse
|
15
|
Abstract
We describe a series of CEN/ARS episomal plasmids containing different Candida glabrata promoters, allowing for a range of constitutive or regulated expression of proteins in C. glabrata. The set of promoters includes three constitutive promoters (EGD2pr, HHT2pr, PDC1pr), two macrophage/phagocytosis-induced promoters (ACO2pr, LYS21pr), and one nutritionally regulated promoter (MET3pr). Each promoter was cloned into two plasmid backbones that differ in their selectable marker, URA3, or the dominant-selectable NAT1 gene, which confers resistance to the drug nourseothricin. Expression from the 12 resulting plasmids was assessed using GFP as a reporter and flow cytometry or quantitative reverse-transcription polymerase chain reaction to assess expression levels. Together this set of plasmids expands the toolkit of expression vectors available for use with C. glabrata.
Collapse
|
16
|
Mutations on the N-terminal edge of the DELSEED loop in either the α or β subunit of the mitochondrial F1-ATPase enhance ATP hydrolysis in the absence of the central γ rotor. EUKARYOTIC CELL 2013; 12:1451-61. [PMID: 24014764 DOI: 10.1128/ec.00177-13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
F(1)-ATPase is a rotary molecular machine with a subunit stoichiometry of α(3)β(3)γ(1)δ(1)ε(1). It has a robust ATP-hydrolyzing activity due to effective cooperativity between the three catalytic sites. It is believed that the central γ rotor dictates the sequential conformational changes to the catalytic sites in the α(3)β(3) core to achieve cooperativity. However, recent studies of the thermophilic Bacillus PS3 F(1)-ATPase have suggested that the α(3)β(3) core can intrinsically undergo unidirectional cooperative catalysis (T. Uchihashi et al., Science 333:755-758, 2011). The mechanism of this γ-independent ATP-hydrolyzing mode is unclear. Here, a unique genetic screen allowed us to identify specific mutations in the α and β subunits that stimulate ATP hydrolysis by the mitochondrial F(1)-ATPase in the absence of γ. We found that the F446I mutation in the α subunit and G419D mutation in the β subunit suppress cell death by the loss of mitochondrial DNA (ρ(o)) in a Kluyveromyces lactis mutant lacking γ. In organello ATPase assays showed that the mutant but not the wild-type γ-less F(1) complexes retained 21.7 to 44.6% of the native F(1)-ATPase activity. The γ-less F(1) subcomplex was assembled but was structurally and functionally labile in vitro. Phe446 in the α subunit and Gly419 in the β subunit are located on the N-terminal edge of the DELSEED loops in both subunits. Mutations in these two sites likely enhance the transmission of catalytically required conformational changes to an adjacent α or β subunit, thereby allowing robust ATP hydrolysis and cell survival under ρ(o) conditions. This work may help our understanding of the structural elements required for ATP hydrolysis by the α(3)β(3) subcomplex.
Collapse
|
17
|
Rodicio R, Heinisch JJ. Yeast on the milky way: genetics, physiology and biotechnology of Kluyveromyces lactis. Yeast 2013; 30:165-77. [PMID: 23576126 DOI: 10.1002/yea.2954] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 03/08/2013] [Accepted: 03/12/2013] [Indexed: 11/08/2022] Open
Abstract
The milk yeast Kluyveromyces lactis has a life cycle similar to that of Saccharomyces cerevisiae and can be employed as a model eukaryote using classical genetics, such as the combination of desired traits, by crossing and tetrad analysis. Likewise, a growing set of vectors, marker cassettes and tags for fluorescence microscopy are available for manipulation by genetic engineering and investigating its basic cell biology. We here summarize these applications, as well as the current knowledge regarding its central metabolism, glucose and extracellular stress signalling pathways. A short overview on the biotechnological potential of K. lactis concludes this review.
Collapse
Affiliation(s)
- Rosaura Rodicio
- Departamento de Bioquímica y Biología Molecular and Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, Spain
| | | |
Collapse
|
18
|
Balazfyova Z, Hervay NT, Gbelska Y. Gain-of-function mutation in the KlPDR1 gene encoding multidrug resistance regulator in Kluyveromyces lactis. Yeast 2013; 30:71-80. [PMID: 23361926 DOI: 10.1002/yea.2941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/28/2012] [Indexed: 11/10/2022] Open
Abstract
KlPdr1p is a single Kluyveromyces lactis homologue of Saccharomyces cerevisiae ScPdr1p/ScPdr3p, the main transcriptional regulators of genes involved in S. cerevisiae multidrug resistance. KlPDR1 deletion leads to a sharp increase in K. lactis drug susceptibility. The presence of putative PDRE and YRE regulatory elements in the KlPDR1 gene promoter suggests an autoregulation of its transcription as well as its control by KlYap1p, the transcription factor involved in oxidative stress response. In this study, one plasmid-borne Klpdr1-1 allele that led to amino acid substitution (L273P) in the KlPdr1p was isolated. Overexpression of the Klpdr1-1 allele from a multicopy plasmid in the K. lactis wild-type and Klpdr1Δ mutant strain increased the tolerance of transformants to oligomycin. The plasmid-borne Klpdr1-1 allele increased the activation of the ScPDR5 promoter and complemented the drug hypersensitivity of the S. cerevisiae pdr1Δ pdr3Δ mutant strain. The results indicate that L273P amino acid substitution is the result of a gain-of-function mutation in the KlPDR1 gene that confers KlPdr1p hyperactivity, as revealed by a high expression of the ABC transporter gene KlPDR5, leading to multidrug resistance and rhodamine 6G efflux out of the cells.
Collapse
Affiliation(s)
- Zuzana Balazfyova
- Department of Microbiology and Virology, Comenius University in Bratislava, Slovak Republic
| | | | | |
Collapse
|
19
|
Xu J, McEachern MJ. Long telomeres produced by telomerase-resistant recombination are established from a single source and are subject to extreme sequence scrambling. PLoS Genet 2012; 8:e1003017. [PMID: 23133400 PMCID: PMC3486848 DOI: 10.1371/journal.pgen.1003017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 07/30/2012] [Indexed: 11/18/2022] Open
Abstract
Considerable evidence now supports the idea that the moderate telomere lengthening produced by recombinational telomere elongation (RTE) in a Kluyveromyces lactis telomerase deletion mutant occurs through a roll-and-spread mechanism. However, it is unclear whether this mechanism can account for other forms of RTE that produce much longer telomeres such as are seen in human alternative lengthening of telomere (ALT) cells or in the telomerase-resistant type IIR “runaway” RTE such as occurs in the K. lactis stn1-M1 mutant. In this study we have used mutationally tagged telomeres to examine the mechanism of RTE in an stn1-M1 mutant both with and without telomerase. Our results suggest that the establishment stage of the mutant state in newly generated stn1-M1 ter1-Δ mutants surprisingly involves a first stage of sudden telomere shortening. Our data also show that, as predicted by the roll-and-spread mechanism, all lengthened telomeres in a newly established mutant cell commonly emerge from a single telomere source. However, in sharp contrast to the RTE of telomerase deletion survivors, we show that the RTE of stn1-M1 ter1-Δ cells produces telomeres whose sequences undergo continuous intense scrambling via recombination. While telomerase was not necessary for the long telomeres in stn1-M1 cells, its presence during their establishment was seen to interfere with the amplification of repeats via recombination, a result consistent with telomerase retaining its ability to add repeats during active RTE. Finally, we observed that the presence of active mismatch repair or telomerase had important influences on telomeric amplification and/or instability. Indefinite growth of tumor cells requires a mechanism to maintain telomeres. While most cancers use telomerase for this, some maintain long and heterogeneous telomeres using a recombination-dependent mechanism termed alternative lengthening of telomeres (ALT). What causes ALT and how their long and heterogeneous telomeres form and are maintained are not well understood. In this study, we use mutationally tagged telomeric repeats to probe the mechanisms by which highly elongated telomeres are generated by recombination in an ALT–like yeast mutant. Our data show that most or all lengthened telomeres in a newly established mutant cell are commonly generated by amplifying sequence from a single telomere source. This is consistent with the roll-and-spread model, which proposes that a single circle of telomeric DNA can be the ultimate source of all newly amplified telomeres. Other evidence showed that the telomeres of the mutant are exceptionally dynamic. Rapid terminal deletions preceded telomere elongation at the establishment of the mutant state. Also, patterns of telomeric repeats present in long telomeres became rapidly scrambled. These findings may have implications for the establishment and maintenance of long telomeres in human ALT cells.
Collapse
Affiliation(s)
| | - Michael J. McEachern
- Department of Genetics, Fred Davision Life Science Complex, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
20
|
The SWI/SNF KlSnf2 subunit controls the glucose signaling pathway to coordinate glycolysis and glucose transport in Kluyveromyces lactis. EUKARYOTIC CELL 2012; 11:1382-90. [PMID: 23002104 DOI: 10.1128/ec.00210-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In Kluyveromyces lactis, the expression of the major glucose permease gene RAG1 is controlled by extracellular glucose through a signaling cascade similar to the Saccharomyces cerevisiae Snf3/Rgt2/Rgt1 pathway. We have identified a key component of the K. lactis glucose signaling pathway by characterizing a new mutation, rag20-1, which impairs the regulation of RAG1 and hexokinase RAG5 genes by glucose. Functional complementation of the rag20-1 mutation identified the KlSNF2 gene, which encodes a protein 59% identical to S. cerevisiae Snf2, the major subunit of the SWI/SNF chromatin remodeling complex. Reverse transcription-quantitative PCR and chromatin immunoprecipitation analyses confirmed that the KlSnf2 protein binds to RAG1 and RAG5 promoters and promotes the recruitment of the basic helix-loop-helix Sck1 activator. Besides this transcriptional effect, KlSnf2 is also implicated in the glucose signaling pathway by controlling Sms1 and KlRgt1 posttranscriptional modifications. When KlSnf2 is absent, Sms1 is not degraded in the presence of glucose, leading to constitutive RAG1 gene repression by KlRgt1. Our work points out the crucial role played by KlSnf2 in the regulation of glucose transport and metabolism in K. lactis, notably, by suggesting a link between chromatin remodeling and the glucose signaling pathway.
Collapse
|
21
|
Xu J, McEachern MJ. Maintenance of very long telomeres by recombination in the Kluyveromyces lactis stn1-M1 mutant involves extreme telomeric turnover, telomeric circles, and concerted telomeric amplification. Mol Cell Biol 2012; 32:2992-3008. [PMID: 22645309 PMCID: PMC3434524 DOI: 10.1128/mcb.00430-12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 05/09/2012] [Indexed: 01/26/2023] Open
Abstract
Some cancers utilize the recombination-dependent process of alternative lengthening of telomeres (ALT) to maintain long heterogeneous telomeres. Here, we studied the recombinational telomere elongation (RTE) of the Kluyveromyces lactis stn1-M1 mutant. We found that the total amount of the abundant telomeric DNA in stn1-M1 cells is subject to rapid variation and that it is likely to be primarily extrachromosomal. Rad50 and Rad51, known to be required for different RTE pathways in Saccharomyces cerevisiae, were not essential for the production of either long telomeres or telomeric circles in stn1-M1 cells. Circles of DNA containing telomeric repeats (t-circles) either present at the point of establishment of long telomeres or introduced later into stn1-M1 cells each led to the formation of long tandem arrays of the t-circle's sequence, which were incorporated at multiple telomeres. These tandem arrays were extraordinarily unstable and showed evidence of repeated rounds of concerted amplification. Our results suggest that the maintenance of telomeres in the stn1-M1 mutant involves extreme turnover of telomeric sequences from processes including both large deletions and the copying of t-circles.
Collapse
Affiliation(s)
- Jianing Xu
- Department of Genetics, Fred Davison Life Science Complex, University of Georgia, Athens, Georgia
| | | |
Collapse
|
22
|
Zanni E, Franco M, Nakano M, Iida H, Palleschi C, Uccelletti D. KlMID1, a relevant key player between endoplasmic reticulum homeostasis and mitochondrial dysfunction in Kluyveromyces lactis. Microbiology (Reading) 2012; 158:1694-1701. [DOI: 10.1099/mic.0.056283-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Elena Zanni
- Department Biology and Biotechnology University of Rome LA SAPIENZA, 00185 Rome, Italy
| | - Milena Franco
- Department Biology and Biotechnology University of Rome LA SAPIENZA, 00185 Rome, Italy
| | - Masataka Nakano
- Department Biology, Tokyo Gakugei University, Koganei-shi, Tokyo 184-8501, Japan
| | - Hidetoshi Iida
- Department Biology, Tokyo Gakugei University, Koganei-shi, Tokyo 184-8501, Japan
| | - Claudio Palleschi
- Department Biology and Biotechnology University of Rome LA SAPIENZA, 00185 Rome, Italy
| | - Daniela Uccelletti
- Department Biology and Biotechnology University of Rome LA SAPIENZA, 00185 Rome, Italy
| |
Collapse
|
23
|
Chee MK, Haase SB. New and Redesigned pRS Plasmid Shuttle Vectors for Genetic Manipulation of Saccharomycescerevisiae. G3 (BETHESDA, MD.) 2012; 2:515-26. [PMID: 22670222 PMCID: PMC3362935 DOI: 10.1534/g3.111.001917] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 02/25/2012] [Indexed: 11/18/2022]
Abstract
We have constructed a set of 42 plasmid shuttle vectors based on the widely used pRS series for use in the budding yeast Saccharomyces cerevisiae and the bacterium Escherichia coli. This set of pRSII plasmids includes new shuttle vectors that can be used with histidine and adenine auxotrophic laboratory yeast strains carrying mutations in the genes HIS2 and ADE1, respectively. Our pRSII plasmids also include updated versions of commonly used pRS plasmids from which common restriction sites that occur within their yeast-selectable biosynthetic marker genes have been removed to increase the availability of unique restriction sites within their polylinker regions. Hence, our pRSII plasmids are a complete set of integrating, centromere and 2μ episomal plasmids with the biosynthetic marker genes ADE2, HIS3, TRP1, LEU2, URA3, HIS2, and ADE1 and a standardized selection of at least 16 unique restriction sites in their polylinkers. Additionally, we have expanded the range of drug selection options that can be used for PCR-mediated homologous replacement using pRS plasmid templates by replacing the G418-resistance kanMX4 cassette of pRS400 with MX4 cassettes encoding resistance to phleomycin, hygromycin B, nourseothricin, and bialaphos. Finally, in the process of generating the new plasmids, we have determined several errors in existing publicly available sequences for several commonly used yeast plasmids. Using our updated sequences, we constructed pRS plasmid backbones with a unique restriction site for inserting new markers to facilitate future expansion of the pRS series.
Collapse
Affiliation(s)
- Mark K. Chee
- Department of Biology, Duke University, Durham, North Carolina 27708
| | - Steven B. Haase
- Department of Biology, Duke University, Durham, North Carolina 27708
| |
Collapse
|
24
|
Functional analysis of the single Est1/Ebs1 homologue in Kluyveromyces lactis reveals roles in both telomere maintenance and rapamycin resistance. EUKARYOTIC CELL 2012; 11:932-42. [PMID: 22544908 DOI: 10.1128/ec.05319-11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Est1 and Ebs1 in Saccharomyces cerevisiae are paralogous proteins that arose through whole-genome duplication and that serve distinct functions in telomere maintenance and translational regulation. Here we present our functional analysis of the sole Est1/Ebs1 homologue in the related budding yeast Kluyveromyces lactis (named KlEst1). We show that similar to other Est1s, KlEst1 is required for normal telomere maintenance in vivo and full telomerase primer extension activity in vitro. KlEst1 also associates with telomerase RNA (Ter1) and an active telomerase complex in cell extracts. Both the telomere maintenance and the Ter1 association functions of KlEst1 require its N-terminal domain but not its C terminus. Analysis of clusters of point mutations revealed residues in both the N-terminal TPR subdomain and the downstream helical subdomain (DSH) that are important for telomere maintenance and Ter1 association. A UV cross-linking assay was used to establish a direct physical interaction between KlEst1 and a putative stem-loop in Ter1, which also requires both the TPR and DSH subdomains. Moreover, similar to S. cerevisiae Ebs1 (ScEbs1) (but not ScEst1), KlEst1 confers rapamycin sensitivity and may be involved in nonsense-mediated decay. Interestingly, unlike telomere regulation, this apparently separate function of KlEst1 requires its C-terminal domain. Our findings provide insights on the mechanisms and evolution of Est1/Ebs1 homologues in budding yeast and present an attractive model system for analyzing members of this multifunctional protein family.
Collapse
|
25
|
Hervay NT, Hodurova Z, Balazfyova Z, Gbelska Y. Autoactivated KlPDR1 gene in the control of multidrug resistance in Kluyveromyces lactis. Can J Microbiol 2011; 57:844-9. [PMID: 21950796 DOI: 10.1139/w11-071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The KlPDR1 gene encodes a zinc finger transcription factor that has recently been shown to be involved in the control of multidrug resistance of Kluyveromyces lactis . In this work, we provide evidence that the K. lactis KlPDR1 gene is under positive autoregulation by KlPdr1p, which plays a role in the activation of the main multidrug resistance transporter gene KlPDR5. Electrophoretic mobility shift assays, as well as the use of gusA reporter constructs, enabled us to identify the 5'-tataTCCGGGTAactt-3' sequence motif in the KlPDR1 promoter (in the position -326 to -319 bp) as the PDRE (pleiotropic drug responsive element) for the binding of KlPdr1p. The drug sensitivity of Klpdr1Δ mutant cells was complemented by introducing the plasmid-born KlPDR1 gene. The KlPdr1p activated the expression of the P(KlPDR1)-gusA fusion gene, and the expression of the KlPDR1 gene was induced by fluconazole. The PDRE was also found in the promoter of KlPDR5, a gene encoding the ATP-dependent efflux pump responsible for the drug resistance phenomenon in K. lactis.
Collapse
Affiliation(s)
- Nora Toth Hervay
- Comenius University in Bratislava, Department of Microbiology and Virology, Slovak Republic
| | | | | | | |
Collapse
|
26
|
RAS/cyclic AMP and transcription factor Msn2 regulate mating and mating-type switching in the yeast Kluyveromyces lactis. EUKARYOTIC CELL 2011; 10:1545-52. [PMID: 21890818 DOI: 10.1128/ec.05158-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In response to harsh environmental conditions, ascomycetes produce stress-resistant spores to promote survival. As sporulation requires a diploid DNA content, species with a haploid lifestyle, such as Kluyveromyces lactis, first induce mating in response to stress. In K. lactis, mating and mating-type switching are induced by the DNA-binding protein Mts1. Mts1 expression is known to be upregulated by nutrient limitation, but the mechanism is unknown. We show that a ras2 mutation results in a hyperswitching phenotype. In contrast, strains lacking the phosphodiesterase Pde2 had lower switching rates compared to that of the wild type (WT). As Ras2 promotes cyclic AMP (cAMP) production and Pde2 degrades cAMP, these data suggest that low cAMP levels induce switching. Because the MTS1 regulatory region contains several Msn2 binding sites and Msn2 is a transcription factor that is activated by low cAMP levels, we investigated if Msn2 regulates MTS1 transcription. Consistently with this idea, an msn2 mutant strain displayed lower switching rates than the WT strain. The transcription of MTS1 is highly induced in the ras2 mutant strain. In contrast, an msn2 ras2 double mutant strain displays WT levels of the MTS1 transcript, showing that Msn2 is a critical inducer of MTS1 transcription. Strains lacking Msn2 and Pde2 also exhibit mating defects that can be complemented by the ectopic expression of Mts1. Finally, we show that MTS1 is subjected to negative autoregulation, presumably adding robustness to the mating and switching responses. We suggest a model in which Ras2/cAMP/Msn2 mediates the stress-induced mating and mating-type switching responses in K. lactis.
Collapse
|
27
|
Two proteins with different functions are derived from the KlHEM13 gene. EUKARYOTIC CELL 2011; 10:1331-9. [PMID: 21821717 DOI: 10.1128/ec.05108-11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two proteins that differ at the N terminus (l-KlCpo and s-KlCpo) are derived from KlHEM13, a single-copy-number gene in the haploid genome of Kluyveromyces lactis. Two transcriptional start site (tss) pools are detectable using primer extension, and their selection is heme dependent. One of these tss pools is located 5' of the first translation initiation codon (TIC) in the open reading frame of KlHEM13, while the other is located between the first and second TICs. In terms of functional significance, only s-KlCpo complements the heme deficiency caused by the Δhem13 deletion in K. lactis. Data obtained from immune detection in subcellular fractions, directed mutagenesis, chromatin immunoprecipitation (ChIP) assays, and the functional relevance of ΔKlhem13 deletion for KlHEM13 promoter activity suggest that l-KlCpo regulates KlHEM13 transcription. A hypothetical model of the evolutionary origins and coexistence of these two proteins in K. lactis is discussed.
Collapse
|
28
|
The duplicated deacetylases Sir2 and Hst1 subfunctionalized by acquiring complementary inactivating mutations. Mol Cell Biol 2011; 31:3351-65. [PMID: 21690292 DOI: 10.1128/mcb.05175-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein families are generated by successive rounds of gene duplication and subsequent diversification. However, the paths by which duplicated genes acquire distinct functions are not well characterized. We focused on a pair of duplicated deacetylases from Saccharomyces cerevisiae, Sir2 and Hst1, that subfunctionalized after duplication. As a proxy for the ancestral, nonduplicated deacetylase, we studied Sir2 from another yeast, Kluyveromyces lactis. We compared the interaction domains of these deacetylases for the Sir transcriptional silencing complex, which acts with ScSir2, and the Sum1 repressor, which acts with ScHst1, and found that these interaction domains have been retained over the course of evolution and can be disrupted by simple amino acid substitutions. Therefore, Sir2 and Hst1 subfunctionalized by acquiring complementary inactivating mutations in these interaction domains.
Collapse
|
29
|
Zuo X, Djordjevic JT, Bijosono Oei J, Desmarini D, Schibeci SD, Jolliffe KA, Sorrell TC. Miltefosine induces apoptosis-like cell death in yeast via Cox9p in cytochrome c oxidase. Mol Pharmacol 2011; 80:476-85. [PMID: 21610197 DOI: 10.1124/mol.111.072322] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Miltefosine has antifungal properties and potential for development as a therapeutic for invasive fungal infections. However, its mode of action in fungi is poorly understood. We demonstrate that miltefosine is rapidly incorporated into yeast, where it penetrates the mitochondrial inner membrane, disrupting mitochondrial membrane potential and leading to an apoptosis-like cell death. COX9, which encodes subunit VIIa of the cytochrome c oxidase (COX) complex in the electron transport chain of the mitochondrial membrane, was identified as a potential target of miltefosine from a genomic library screen of the model yeast Saccharomyces cerevisiae. When overexpressed in S. cerevisiae, COX9, but not COX7 or COX8, led to a miltefosine-resistant phenotype. The effect of miltefosine on COX activity was assessed in cells expressing different levels of COX9. Miltefosine inhibited COX activity in a dose-dependent manner in Cox9p-positive cells. This inhibition most likely contributed to the miltefosine-induced apoptosis-like cell death.
Collapse
Affiliation(s)
- Xiaoming Zuo
- Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute and Sydney Emerging Infections and Biosecurity Institute, University of Sydney, Australia
| | | | | | | | | | | | | |
Collapse
|
30
|
Safadi RA, Talarek N, Jacques N, Aigle M. Yeast prions: could they be exaptations? The URE2/[URE3] system in Kluyveromyces lactis. FEMS Yeast Res 2010; 11:151-3. [DOI: 10.1111/j.1567-1364.2010.00700.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
31
|
Heinisch JJ, Buchwald U, Gottschlich A, Heppeler N, Rodicio R. A tool kit for molecular genetics of Kluyveromyces lactis comprising a congenic strain series and a set of versatile vectors. FEMS Yeast Res 2010; 10:333-42. [PMID: 20522115 DOI: 10.1111/j.1567-1364.2009.00604.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A set of different marker deletions starting with a ura3 derivative of the Kluyveromyces lactis type strain CBS2359 was constructed. After a first cross to obtain a strain with the opposite mating type that also carried a leu2 allele, continuous back-crosses were used to obtain a congenic strain series with different marker combinations, including deletions in KlHIS3, KlADE2 and KlLAC4. Enzymes involved in carbohydrate metabolism were shown to behave very similarly to the original type strain and other K. lactis strains investigated previously. Moreover, a vector series of Saccharomyces cerevisiae genes flanked by loxP sites was constructed to be used as heterologous deletion cassettes in K. lactis, together with two plasmids for expression of Cre-recombinase for marker regeneration. To increase the frequency of homologous recombination, the Klku80 deletion was also introduced into the congenic strain series. A PCR-based method for determination of mating type is provided.
Collapse
Affiliation(s)
- Jürgen J Heinisch
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Genetik, Osnabrück, Germany.
| | | | | | | | | |
Collapse
|
32
|
Zanni E, Farina F, Ricci A, Mancini P, Frank C, Palleschi C, Uccelletti D. The Golgi alpha-1,6 mannosyltransferase KlOch1p of Kluyveromyces lactis is required for Ca2+/calmodulin-based signaling and for proper mitochondrial functionality. BMC Cell Biol 2009; 10:86. [PMID: 20003441 PMCID: PMC2797761 DOI: 10.1186/1471-2121-10-86] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 12/14/2009] [Indexed: 01/03/2023] Open
Abstract
Background Protein N-glycosylation is a relevant metabolic pathway in eukaryotes and plays key roles in cell processes. In yeasts, outer chain branching is initiated in the Golgi apparatus by the alpha-1,6-mannosyltransferase Och1p. Results Here we report that, in Kluyveromyces lactis, this glycosyltransferase is also required to maintain functional mitochondria and calcium homeostasis. Cells carrying a mutation in KlOCH1 gene showed altered mitochondrial morphology, increased accumulation of ROS and reduced expression of calcium signalling genes such as calmodulin and calcineurin. Intracellular calcium concentration was also reduced in the mutant cells with respect to the wild type counterparts. Phenotypes that occur in cells lacking the alpha-1,6-mannosyltransferase, including oxidative stress and impaired mitochondria functionality, were suppressed by increased dosage of KlCmd1p. This, in turn, acts through the action of calcineurin. Conclusions Proper functioning of the alpha-1,6-mannosyltransferase in the N-glycosylation pathway of K. lactis is required for maintaining normal calcium homeostasis; this is necessary for physiological mitochondria dynamics and functionality.
Collapse
Affiliation(s)
- Elena Zanni
- Dpt, Developmental and Cell Biology, University LA SAPIENZA, P.le. A. Moro, 500185 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
33
|
KlAft, the Kluyveromyces lactis ortholog of Aft1 and Aft2, mediates activation of iron-responsive transcription through the PuCACCC Aft-type sequence. Genetics 2009; 183:93-106. [PMID: 19581449 DOI: 10.1534/genetics.109.104364] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Iron homeostasis in fungi is regulated at the transcriptional level by two different mechanisms. It is mediated by a conserved GATA-type repressor in most fungi except in the yeast Saccharomyces cerevisiae, where it is controlled by the transcription activators Aft1 and Aft2. These activators are encoded by the paralogous genes AFT1 and AFT2, which result from the whole-genome duplication. Here, we explore regulation of iron homeostasis in the yeast Kluyveromyces lactis that diverged from S. cerevisiae before this event. We identify an ortholog of AFT1/AFT2, designated KlAFT, whose deletion leads to the inability to grow under iron limitation. We show with quantitative real-time PCR analysis that KlAft activates the transcription of all homologs of the Aft1-target genes involved in the iron transport at the cell surface in response to iron limitation. However, homologs of Aft2-specific target genes encoding intracellular iron transporters are regulated neither by KlAft nor by iron. Both bioinformatic and DNA binding and transcription analyses demonstrate that KlAft activates iron-responsive gene expression through the PuCACCC Aft-type sequence. Thus, K. lactis is the first documented species with a positive iron-transcriptional control mediated by only one copy of the Aft-type regulator. This indicates that this function was acquired before the whole-genome duplication and was then diversified into two regulators in S. cerevisiae.
Collapse
|
34
|
Hnatova M, Wésolowski-Louvel M, Dieppois G, Deffaud J, Lemaire M. Characterization of KlGRR1 and SMS1 genes, two new elements of the glucose signaling pathway of Kluyveromyces lactis. EUKARYOTIC CELL 2008; 7:1299-308. [PMID: 18552281 PMCID: PMC2519775 DOI: 10.1128/ec.00454-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 05/22/2008] [Indexed: 11/20/2022]
Abstract
The expression of the major glucose transporter gene, RAG1, is induced by glucose in Kluyveromyces lactis. This regulation involves several pathways, including one that is similar to Snf3/Rgt2-ScRgt1 in Saccharomyces cerevisiae. We have identified missing key components of the K. lactis glucose signaling pathway by comparison to the same pathway of S. cerevisiae. We characterized a new mutation, rag19, which impairs RAG1 regulation. The Rag19 protein is 43% identical to the F-box protein ScGrr1 of S. cerevisiae and is able to complement an Scgrr1 mutation. In the K. lactis genome, we identified a single gene, SMS1 (for similar to Mth1 and Std1), that encodes a protein showing an average of 50% identity with Mth1 and Std1, regulators of the ScRgt1 repressor. The suppression of the rag4 (glucose sensor), rag8 (casein kinase I), and rag19 mutations by the Deltasms1 deletion, together with the restoration of RAG1 transcription in the double mutants, demonstrates that Sms1 is a negative regulator of RAG1 expression and is acting downstream of Rag4, Rag8, and Rag19 in the cascade. We report that Sms1 regulates KlRgt1 repressor activity by preventing its phosphorylation in the absence of glucose, and that SMS1 is regulated by glucose, both at the transcriptional and the posttranslational level. Two-hybrid interactions of Sms1 with the glucose sensor and KlRgt1 repressor suggest that Sms1 mediates the glucose signal from the plasma membrane to the nucleus. All of these data demonstrated that Sms1 was the K. lactis homolog of MTH1 and STD1 of S. cerevisiae. Interestingly, MTH1 and STD1 were unable to complement a Deltasms1 mutation.
Collapse
Affiliation(s)
- Martina Hnatova
- Génétique Moléculaire des Levures, UMR Microbiologie, Adaptation et Pathogénie, Université de Lyon, Lyon, F-69003, France
| | | | | | | | | |
Collapse
|
35
|
Lamas-Maceiras M, Núñez L, Rodríguez-Belmonte E, González-Siso MI, Cerdán ME. Functional characterization of KlHAP1: a model to foresee different mechanisms of transcriptional regulation by Hap1p in yeasts. Gene 2007; 405:96-107. [PMID: 17942245 DOI: 10.1016/j.gene.2007.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 09/04/2007] [Accepted: 09/10/2007] [Indexed: 01/10/2023]
Abstract
In this work we have cloned and characterized the Kluyveromyces lactis HAP1 gene and we have found that, contrary to data previously described for the homologous gene of Saccharomyces cerevisiae, i.) the function of this gene does not affect growth in media with carbon sources used by fermentative or respiratory pathways ii) in aerobiosis, KlHap1p is not a transcriptional activator of the expression of genes related to respiration, cholesterol biosynthesis or oxidative stress defence analyzed in this study. The comparison of homology between specific regions of ScHap1p and KlHap1p reveals that the dimerization domain is poorly conserved and we have verified that this domain, cloned in the two plasmids of the two hybrid system, does not reconstitute S. cerevisiae Gal4p activity. Since the COOH-terminal transcriptional activation domain of KlHap1p is active when fused to the Gal4p-DNA binding domain, we hypothesize that differences in the capacity to form dimers could contribute to allow different functions of the protein in K. lactis and S. cerevisiae. Transcriptional expression of KlHAP1 is dependent on oxygen availability, increasing its expression in hypoxia. Deletion of KlHAP1 increases the resistance to oxidative stress or cadmium and the induction of KlYAP1 and KlTSA1 by the addition of 0.5 mM H(2)O(2) is repressed by KlHap1p. These data are discussed in reference to the evolution of respiro-fermentative metabolism in yeasts.
Collapse
Affiliation(s)
- Mónica Lamas-Maceiras
- Dpto. Biología Celular y Molecular. Universidad de A Coruña, F. Ciencias, Campus de A Zapateira s/n 15075, A Coruña, Spain
| | | | | | | | | |
Collapse
|
36
|
Rodicio R, Buchwald U, Schmitz HP, Heinisch JJ. Dissecting sensor functions in cell wall integrity signaling in Kluyveromyces lactis. Fungal Genet Biol 2007; 45:422-35. [PMID: 17827039 DOI: 10.1016/j.fgb.2007.07.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 07/24/2007] [Accepted: 07/25/2007] [Indexed: 10/23/2022]
Abstract
KlWSC1, KlWSC2/3 and KlMID2, which encode putative plasma membrane sensors for cell wall integrity signaling in Kluyveromyces lactis, were cloned and characterized. Double and triple deletion mutants show severe cell integrity defects, indicating overlapping functions. The Klwsc1 Klmid2 double deletion phenotype can be suppressed by overexpression of the downstream components KlROM2, KlPKC1 and KlBCK1. KlWsc1 sensor domain analyses showed that an amino-terminal elongation as well as an extension within the cytoplasmic domain are dispensable for function. Heterologous complementation by KlMID2 and KlWSC1 in Saccharomyces cerevisiae is only achieved upon overexpression. In contrast to ScMID2, ScWSC1 complements in K. lactis. Functional studies with chimeric Mid2 constructs indicate that species specificity is mainly conferred by the extracellular domain. Sensor-GFP fusions localize to the plasma membrane, with a cell cycle dependent distribution of KlWsc1-GFP. Both Wsc-type sensors concentrate in discrete spots within the plasma membrane.
Collapse
Affiliation(s)
- Rosaura Rodicio
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Genetik, Barbarastr. 11, D-49076 Osnabrück, Germany
| | | | | | | |
Collapse
|
37
|
Zuo X, Xue D, Li N, Clark-Walker GD. A functional core of the mitochondrial genome maintenance protein Mgm101p in Saccharomyces cerevisiae determined with a temperature-conditional allele. FEMS Yeast Res 2007; 7:131-40. [PMID: 17311591 DOI: 10.1111/j.1567-1364.2006.00141.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Analysis of Mgm101p isolated from mitochondria shows that the mature protein of 27.6 kDa lacks 22 amino acids from the N-terminus. This mitochondrial targeting sequence has been incorporated in the design of oligonucleotides used to determine a functional core of Mgm101p. Progressive deletions, although retaining the targeting sequence, reveal that 76 N-terminal and six C-terminal amino acids of Mgm101p can be removed without altering the ability to complement an mgm101-1(ts) temperature-sensitive mutant. However, this active core is unable to complement mgm101 null mutants, suggesting that the Mgm101p might need to form a dimer or multimer to be functional in vivo. The active core, enriched in basic residues, contains 165 amino acids with a pI of 9.2. Alignment with 22 Mgm101p sequences from other lower eukaryotes shows that a number of amino acids are highly conserved in this region. Random mutagenesis confirms that certain critical amino acids required for function are invariant across the 23 proteins. Searches in the PFAM database revealed a low level of structural similarity between the active core and the Rad52 protein family.
Collapse
Affiliation(s)
- Xiaoming Zuo
- Molecular Genetics and Evolution Group, Research School of Biological Sciences, The Australian National University, Canberra, ACT, Australia.
| | | | | | | |
Collapse
|
38
|
Neil H, Hnatova M, Wésolowski-Louvel M, Rycovska A, Lemaire M. Sck1 activator coordinates glucose transport and glycolysis and is controlled by Rag8 casein kinase I in Kluyveromyces lactis. Mol Microbiol 2007; 63:1537-48. [PMID: 17302826 DOI: 10.1111/j.1365-2958.2007.05606.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Casein kinases I (CKI) are ubiquitous in eukaryotic cells and are crucial factors for nutrient-signalling pathways in yeasts. In Kluyveromyces lactis, the KlRgt1 repressor represses the expression of the glucose transporter RAG1 gene in absence of glucose, but in response to glucose availability, Rag8 CKI cooperates with the Rag4 glucose sensor to inactivate KlRgt1. The SCK1 gene, a rag8 mutation suppressor, encodes a bHLH activator required for maximal expression of the RAG1 and glycolytic genes in the presence of glucose. We investigated further the function of Sck1 and its relationship to Rag8. We demonstrated that Sck1 regulates the RAG1 and glycolytic genes by directly binding to their promoter. We also found that SCK1 gene expression was induced by glucose and repressed by KlRgt1. In addition, we showed that (i) Sck1 was phosphorylated in vivo, (ii) Sck1 was phosphorylated in vitro by Rag8, and (iii) Sck1 was rapidly degraded in a rag8 mutant. We therefore suggest that Sck1 coordinates glucose import and glycolysis in K. lactis and that Rag8 controls this transcription factor by transcriptional and post-translational regulations.
Collapse
|
39
|
Rodicio R, Koch S, Schmitz HP, Heinisch JJ. KlRHO1 and KlPKC1 are essential for cell integrity signalling in Kluyveromyces lactis. Microbiology (Reading) 2006; 152:2635-2649. [PMID: 16946259 DOI: 10.1099/mic.0.29105-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cell integrity in yeasts is ensured by a rigid cell wall whose synthesis is triggered by a MAP kinase-mediated signal-transduction cascade. Upstream regulatory components of this pathway inSaccharomyces cerevisiaeinvolve a single protein kinase C, which is regulated by interaction with the small GTPase Rho1. Here, two genes were isolated which encode these proteins fromKluyveromyces lactis(KlPKC1andKlRHO1). Sequencing showed ORFs which encode proteins of 1161 and 208 amino acids, respectively. The deduced proteins shared 59 and 85 % overall amino acid identities, respectively, with their homologues fromS. cerevisiae. Null mutants in both genes were non-viable, as shown by tetrad analyses of the heterozygous diploid strains. Overexpression of theKlRHO1gene under the control of theScGAL1promoter severely impaired growth in bothS. cerevisiaeandK. lactis. On the other hand, a similar construct withKlPKC1did not show a pronounced phenotype. Two-hybrid analyses showed interaction between Rho1 and Pkc1 for theK. lactisproteins and theirS. cerevisiaehomologues. A green fluorescent protein (GFP) fusion to the C-terminal end of KlPkc1 located the protein to patches in the growing bud, and at certain stages of the division process also to the bud neck. N-terminal GFP fusions to KlRho1 localized mainly to the cell surface (presumably the cytoplasmic side of the plasma membrane) and to the vacuole, with some indications of traffic from the former to the latter. Thus, KlPkc1 and KlRho1 have been shown to serve vital functions inK. lactis, to interact in cell integrity signalling and to traffic between the plasma membrane and the vacuole.
Collapse
Affiliation(s)
- Rosaura Rodicio
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Genetik, Barbarastr. 11, 49076 Osnabrück, Germany
| | - Sabrina Koch
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Genetik, Barbarastr. 11, 49076 Osnabrück, Germany
| | - Hans-Peter Schmitz
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Genetik, Barbarastr. 11, 49076 Osnabrück, Germany
| | - Jürgen J Heinisch
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Genetik, Barbarastr. 11, 49076 Osnabrück, Germany
| |
Collapse
|
40
|
Rolland S, Hnatova M, Lemaire M, Leal-Sanchez J, Wésolowski-Louvel M. Connection between the Rag4 glucose sensor and the KlRgt1 repressor in Kluyveromyces lactis. Genetics 2006; 174:617-26. [PMID: 16783006 PMCID: PMC1602099 DOI: 10.1534/genetics.106.059766] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The RAG4 gene encodes for the sole transmembrane glucose sensor of Kluyveromyces lactis. A rag4 mutation leads to a fermentation-deficient phenotype (Rag- phenotype) and to a severe defect in the expression of the major glucose transporter gene RAG1. A recessive extragenic suppressor of the rag4 mutation has been identified. It encodes a protein (KlRgt1) 31% identical to the Saccharomyces cerevisiae Rgt1 regulator of the HXT genes (ScRgt1). The Klrgt1 null mutant displays abnormally high levels of RAG1 expression in the absence of glucose but still presents an induction of RAG1 expression in the presence of glucose. KlRgt1 is therefore only a repressor of RAG1. As described for ScRgt1, the KlRgt1 repressor function is controlled by phosphorylation in response to high glucose concentration and this phosphorylation is dependent on the sensor Rag4 and the casein kinase Rag8. However, contrary to that observed with ScRgt1, KlRgt1 is always bound to the RAG1 promoter. This article reveals that the key components of the glucose-signaling pathway are conserved between S. cerevisiae and K. lactis, but points out major differences in Rgt1 regulation and function that might reflect different carbon metabolism of these yeasts.
Collapse
Affiliation(s)
- Stéphane Rolland
- Génétique des Levures, UMR 5122 Microbiologie et Génétique, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France
| | | | | | | | | |
Collapse
|
41
|
Kagkli DM, Bonnarme P, Neuvéglise C, Cogan TM, Casaregola S. L-methionine degradation pathway in Kluyveromyces lactis: identification and functional analysis of the genes encoding L-methionine aminotransferase. Appl Environ Microbiol 2006; 72:3330-5. [PMID: 16672474 PMCID: PMC1472347 DOI: 10.1128/aem.72.5.3330-3335.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Accepted: 03/01/2006] [Indexed: 11/20/2022] Open
Abstract
Kluyveromyces lactis is one of the cheese-ripening yeasts and is believed to contribute to the formation of volatile sulfur compounds (VSCs) through degradation of L-methionine. L-methionine aminotransferase is potentially involved in the pathway that results in the production of methanethiol, a common precursor of VSCs. Even though this pathway has been studied previously, the genes involved have never been studied. In this study, on the basis of sequence homology, all the putative aminotransferase-encoding genes from K. lactis were cloned in an overproducing vector, pCXJ10, and their effects on the production of VSCs were analyzed. Two genes, KlARO8.1 and KlARO8.2, were found to be responsible for L-methionine aminotransferase activity. Transformants carrying these genes cloned in the pCXJ10 vector produced threefold-larger amounts of VSCs than the transformant containing the plasmid without any insert or other related putative aminotransferases produced.
Collapse
|
42
|
Kegel A, Martinez P, Carter SD, Åström SU. Genome wide distribution of illegitimate recombination events in Kluyveromyces lactis. Nucleic Acids Res 2006; 34:1633-45. [PMID: 16549875 PMCID: PMC1405753 DOI: 10.1093/nar/gkl064] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 01/21/2006] [Accepted: 02/28/2006] [Indexed: 11/13/2022] Open
Abstract
Illegitimate recombination (IR) is the process by which two DNA molecules not sharing homology to each other are joined. In Kluyveromyces lactis, integration of heterologous DNA occurred very frequently therefore constituting an excellent model organism to study IR. IR was completely dependent on the nonhomologous end-joining (NHEJ) pathway for DNA double strand break (DSB) repair and we detected no other pathways capable of mediating IR. NHEJ was very versatile, capable of repairing both blunt and non-complementary ends efficiently. Mapping the locations of genomic IR-events revealed target site preferences, in which intergenic regions (IGRs) and ribosomal DNA were overrepresented six-fold compared to open reading frames (ORFs). The IGR-events occurred predominantly within transcriptional regulatory regions. In a rad52 mutant strain IR still preferentially occurred at IGRs, indicating that DSBs in ORFs were not primarily repaired by homologous recombination (HR). Introduction of ectopic DSBs resulted in the efficient targeting of IR to these sites, strongly suggesting that IR occurred at spontaneous mitotic DSBs. The targeting efficiency was equal when ectopic breaks were introduced in an ORF or an IGR. We propose that spontaneous DSBs arise more frequently in transcriptional regulatory regions and in rDNA and such DSBs can be mapped by analyzing IR target sites.
Collapse
Affiliation(s)
- Andreas Kegel
- Department of Developmental Biology, Wennergren Institute, Stockholm UniversitySE-106 91 Stockholm, Sweden
| | - Paula Martinez
- Department of Developmental Biology, Wennergren Institute, Stockholm UniversitySE-106 91 Stockholm, Sweden
| | - Sidney D. Carter
- Department of Developmental Biology, Wennergren Institute, Stockholm UniversitySE-106 91 Stockholm, Sweden
| | - Stefan U. Åström
- Department of Developmental Biology, Wennergren Institute, Stockholm UniversitySE-106 91 Stockholm, Sweden
| |
Collapse
|
43
|
Lodi T, Neglia B, Donnini C. Secretion of human serum albumin by Kluyveromyces lactis overexpressing KlPDI1 and KlERO1. Appl Environ Microbiol 2005; 71:4359-63. [PMID: 16085825 PMCID: PMC1183311 DOI: 10.1128/aem.71.8.4359-4363.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The control of protein conformation during translocation through the endoplasmic reticulum is often a bottleneck for heterologous protein production. The core pathway of the oxidative folding machinery includes two conserved proteins: Pdi1p and Ero1p. We increased the dosage of the genes encoding these proteins in the yeast Kluyveromyces lactis and evaluated the secretion of heterologous proteins. KlERO1, an orthologue of Saccharomyces cerevisiae ERO1, was cloned by functional complementation of the ts phenotype of an Scero1 mutant. The expression of KlERO1 was induced by treatment of the cells with dithiothreitol and by overexpression of human serum albumin (HSA), a disulfide bond-rich protein. Duplication of either PDI1 or ERO1 led to a similar increase in HSA yield. Duplication of both genes accelerated the secretion of HSA and improved cell growth rate and yield. Increasing the dosage of KlERO1 did not affect the production of human interleukin 1beta, a protein that has no disulfide bridges. The results confirm that the ERO1 genes of S. cerevisiae and K. lactis are functionally similar even though portions of their coding sequence are quite different and the phenotypes of mutants overexpressing the genes differ. The marked effects of KlERO1 copy number on the expression of heterologous proteins with a high number of disulfide bridges suggests that control of KlERO1 and KlPDI1 is important for the production of high levels of heterologous proteins of this type.
Collapse
Affiliation(s)
- Tiziana Lodi
- Department of Genetics, Anthropology, and Evolution, University of Parma, Parco Area delle Scienze 11/A, I-43100 Parma, Italy
| | | | | |
Collapse
|
44
|
Seoane S, Guiard B, Rodríguez-Torres AM, Freire-Picos MA. Effects of splitting alternative KlCYC1 3'-UTR regions on processing: metabolic consequences and biotechnological applications. J Biotechnol 2005; 118:149-56. [PMID: 15961177 DOI: 10.1016/j.jbiotec.2005.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Revised: 03/08/2005] [Accepted: 03/18/2005] [Indexed: 11/17/2022]
Abstract
To analyze the functionality of alternative 3'-UTR processing in the yeast Kluyveromyces lactis, recombinant forms of the KlCYC1 gene containing the proximal (1-713) or the distal (699-1194) 3'-UTR region (positions related to the TAA stop codon) were obtained. The cells expressing the gene with proximal 3'-UTR showed the same growth phenotype as the wild type. When the gene expressed only the distal region, a single transcript was generated and its expression was increased in late-growth phases. Cells expressing the alternative distal 3'-UTR region showed differences in their levels of cytochrome c biomass and ethanol production with respect to the wild type. The split 3'-UTR regions were also functional as separate processing units in Saccharomyces cerevisiae. The importance of our results in recombinant gene expression applications will be discussed.
Collapse
Affiliation(s)
- Silvia Seoane
- Area de Bioquímica, Dpto de Bioloxía Celular e Molecular, Facultad de Ciencias, Campus da Zapateira S/N, 15071 A Coruña, Spain
| | | | | | | |
Collapse
|
45
|
Blanco M, Becerra M, González-Siso MI, Cerdán ME. Functional characterization of KlHEM13, a hypoxic gene of Kluyveromyces lactis. Can J Microbiol 2005; 51:241-9. [PMID: 15920622 DOI: 10.1139/w04-133] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The KlHEM13 gene of Kluyveromyces lactis encoding the coproporphyrinogen oxidase (EC 1.3.3.3), an oxygen-requiring enzyme that catalyzes the sixth step of heme biosynthesis, was cloned and functionally characterized. The coding and upstream regions of KlHEM13 were analyzed and the putative cis regulatory elements were discussed in relation to the mechanisms of regulation of this hypoxic gene in K. lactis.
Collapse
Affiliation(s)
- Moisés Blanco
- Departmento de Biología Celular y Molecular, Universidad de A Coruña, F. Ciencias, Spain
| | | | | | | |
Collapse
|
46
|
Uccelletti D, Farina F, Pinton P, Goffrini P, Mancini P, Talora C, Rizzuto R, Palleschi C. The Golgi Ca2+-ATPase KlPmr1p function is required for oxidative stress response by controlling the expression of the heat-shock element HSP60 in Kluyveromyces lactis. Mol Biol Cell 2005; 16:4636-47. [PMID: 16030259 PMCID: PMC1237070 DOI: 10.1091/mbc.e05-02-0138] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Golgi P-type Ca2+-ATPase, Pmr1p, is the major player for calcium homeostasis in yeast. The inactivation of KlPMR1 in Kluyveromyces lactis leads to high pleiotropic phenotypes that include reduced glycosylation, cell wall defects, and alterations of mitochondrial metabolism. In this article we found that cells lacking KlPmr1p have a morphologically altered mitochondrial network and that mitochondria (m) from Klpmr1delta cells accumulate Ca2+ more slowly and reach a lower [Ca2+]m level, when exposed to [Ca2+] < 5 microM, than wild-type cells. The Klpmr1delta cells also exhibit traits of ongoing oxidative stress and present hyperphosphorylation of KlHog1p, the hallmark for the activation of stress response pathways. The mitochondrial chaperone KlHsp60 acts as a multicopy suppressor of phenotypes that occur in cells lacking the Ca2+-ATPase, including relief from oxidative stress and recovery of cell wall thickness and functionality. Inhibition of KlPMR1 function decreases KlHSP60 expression at both mRNA and protein levels. Moreover, KlPRM1 loss of function correlates with both decreases in HSF DNA binding activity and KlHSP60 expression. We suggest a role for KlPMR1 in HSF DNA binding activity, which is required for proper KlHSP60 expression, a key step in oxidative stress response.
Collapse
Affiliation(s)
- Daniela Uccelletti
- Department of Developmental and Cell Biology, University of Rome La Sapienza, 00185 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Mazzoni C, Serafini A, Falcone C. The inactivation of KlNOT4, a Kluyveromyces lactis gene encoding a component of the CCR4-NOT complex, reveals new regulatory functions. Genetics 2005; 170:1023-32. [PMID: 15879504 PMCID: PMC1451162 DOI: 10.1534/genetics.105.041863] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have isolated the KlNOT4 gene of the yeast Kluyveromyces lactis, which encodes a component of the evolutionarily conserved CCR4-NOT complex. We show that inactivation of the gene leads to pleiotropic defects that were differentially suppressed by the NOT4 gene of S. cerevisiae, indicating that these genes have overlapping, but not identical, functions. K. lactis strains lacking Not4p are defective in fermentation and show reduced transcription of glucose transporter and glycolytic genes, which are phenotypes that are not found in the corresponding mutant of S. cerevisiae. We also show that Not4 proteins control the respiratory pathway in both yeasts, although with some differences. They activate transcription of KlACS2 and KlCYC1, but repress KlICL1, ScICL1, ScACS1, and ScCYC1. Altogether, our results indicate that Not4p is a pivotal factor involved in the regulation of carbon metabolism in yeast.
Collapse
Affiliation(s)
- Cristina Mazzoni
- Pasteur Institute-Cenci Bolognetti Foundation, Department of Cell and Developmental Biology, University of Rome La Sapienza, 00185 Rome, Italy.
| | | | | |
Collapse
|
48
|
Chen XJ. Sal1p, a calcium-dependent carrier protein that suppresses an essential cellular function associated With the Aac2 isoform of ADP/ATP translocase in Saccharomyces cerevisiae. Genetics 2005; 167:607-17. [PMID: 15238515 PMCID: PMC1470917 DOI: 10.1534/genetics.103.023655] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adenine nucleotide translocase (Ant) catalyzes ADP/ATP exchange between the cytosol and the mitochondrial matrix. It is also proposed to form or regulate the mitochondrial permeability transition pore, a megachannel of high conductancy on the mitochondrial membranes. Eukaryotic genomes generally contain multiple isoforms of Ant. In this study, it is shown that the Ant isoforms are functionally differentiated in Saccharomyces cerevisiae. Although the three yeast Ant proteins can equally support respiration (the R function), Aac2p and Aac3p, but not Aac1p, have an additional physiological function essential for cell viability (the V function). The loss of V function in aac2 mutants leads to a lethal phenotype under both aerobic and anaerobic conditions. The lethality is suppressed by a strain-polymorphic locus, named SAL1 (for Suppressor of aac2 lethality). SAL1 was identified to encode an evolutionarily conserved protein of the mitochondrial carrier family. Notably, the Sal1 protein was shown to bind calcium through two EF-hand motifs located on its amino terminus. Calcium binding is essential for the suppressor activity. Finally, Sal1p is not required for oxidative phosphorylation and its overexpression does not complement the R(-) phenotype of aac2 mutants. On the basis of these observations, it is proposed that Aac2p and Sal1p may define two parallel pathways that transport a nucleotide substrate in an operational mode distinct from ADP/ATP exchange.
Collapse
Affiliation(s)
- Xin Jie Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, USA.
| |
Collapse
|
49
|
Lemaire M, Wésolowski-Louvel M. Enolase and glycolytic flux play a role in the regulation of the glucose permease gene RAG1 of Kluyveromyces lactis. Genetics 2005; 168:723-31. [PMID: 15514048 PMCID: PMC1448853 DOI: 10.1534/genetics.104.029876] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We isolated a mutant, rag17, which is impaired in glucose induction of expression of the major glucose transporter gene RAG1. The RAG17 gene encodes a protein 87% identical to S. cerevisiae enolases (Eno1 and Eno2). The Kleno null mutant showed no detectable enolase enzymatic activity and has severe growth defects on glucose and gluconeogenic carbon sources, indicating that K. lactis has a single enolase gene. In addition to RAG1, the transcription of several glycolytic genes was also strongly reduced in the DeltaKleno mutant. Moreover, the defect in RAG1 expression was observed in other mutants of the glycolytic pathway (hexokinase and phosphoglycerate kinase). Therefore, it seems that the enolase and a functional glycolytic flux are necessary for induction of expression of the Rag1 glucose permease in K. lactis.
Collapse
Affiliation(s)
- Marc Lemaire
- UMR 5122 Microbiologie et Génétique, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France.
| | | |
Collapse
|
50
|
Underwood DH, Carroll C, McEachern MJ. Genetic dissection of the Kluyveromyces lactis telomere and evidence for telomere capping defects in TER1 mutants with long telomeres. EUKARYOTIC CELL 2004; 3:369-84. [PMID: 15075267 PMCID: PMC387640 DOI: 10.1128/ec.3.2.369-384.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the yeast Kluyveromyces lactis, the telomeres are composed of perfect 25-bp repeats copied from a 30-nucleotide RNA template defined by 5-nucleotide terminal repeats. A genetic dissection of the K. lactis telomere was performed by using mutant telomerase RNA (TER1) alleles to incorporate mutated telomeric repeats. This analysis has shown that each telomeric repeat contains several functional regions, some of which may physically overlap. Mutations in the terminal repeats of the template RNA typically lead to telomere shortening, as do mutations in the right side of the Rap1p binding site. Mutations in the left half of the Rap1p binding site, however, lead to the immediate formation of long telomeres. When mutated, the region immediately 3' of the Rap1p binding site on the TG-rich strand of the telomere leads to telomeres that are initially short but eventually undergo extreme telomere elongation. Mutations between this region and the 3' terminal repeat cause elevated recombination despite the presence of telomeres of nearly wild-type length. Mutants with highly elongated telomeres were further characterized and exhibit signs of telomere capping defects, including elevated levels of subtelomeric recombination and the formation of extrachromosomal and single-stranded telomeric DNA. Lengthening caused by some Rap1 binding site mutations can be suppressed by high-copy-number RAP1. Mutated telomeric repeats from a delayed elongation mutant are shown to be defective at regulating telomere length in cells with wild-type telomerase, indicating that the telomeric repeats are defective at telomere length regulation.
Collapse
Affiliation(s)
- Dana H Underwood
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | | | | |
Collapse
|