1
|
Sant B, Rao PVL, Nagar DP, Pant SC, Bhasker ASB. Evaluation of abrin induced nephrotoxicity by using novel renal injury markers. Toxicon 2017; 131:20-28. [PMID: 28288935 DOI: 10.1016/j.toxicon.2017.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 12/22/2022]
Abstract
Abrin is a potent plant toxin analogous to ricin that is derived from the seeds of Abrus precatorius plant. It belongs to the family of type II ribosome-inactivating proteins and causes cell death by irreversibly inactivating ribosomes through site-specific depurination. In this study we examined the in vivo nephrotoxicity potential of abrin toxin in terms of oxidative stress, inflammation, histopathological changes and biomarkers of kidney injury. Animals were exposed to 0.5 and 1.0 LD50 dose of abrin by intraperitoneal route and observed for 1, 3, and 7 day post-toxin exposure. Depletion of reduced glutathione and increased lipid peroxidation levels were observed in abrin treated mice. In addition, abrin also induced inflammation in the kidneys as observed through expression of MMP-9 and MMP-9/NGAL complex in abrin treated groups by using zymography method. Nephrotoxicity was also evaluated by western blot analysis of kidney injury biomarkers including Clusterin, Cystatin C and NGAL, and their results indicate severity of kidney injury in abrin treated groups. Kidney histology confirmed inflammatory changes due to abrin. The data generated in the present study clearly prove the nephrotoxicity potential of abrin.
Collapse
Affiliation(s)
- Bhavana Sant
- Division of Pharmacology and Toxicology, Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India
| | - P V Lakshmana Rao
- Division of Pharmacology and Toxicology, Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India
| | - D P Nagar
- Division of Pharmacology and Toxicology, Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India
| | - S C Pant
- Division of Pharmacology and Toxicology, Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India
| | - A S B Bhasker
- Division of Pharmacology and Toxicology, Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India.
| |
Collapse
|
2
|
Combes R, Grindon C, Cronin MT, Roberts DW, Garrod JF. Integrated Decision-tree Testing Strategies for Acute Systemic Toxicity and Toxicokinetics with Respect to the Requirements of the EU REACH Legislation. Altern Lab Anim 2008; 36 Suppl 1:91-109. [DOI: 10.1177/026119290803601s08] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Liverpool John Moores University and FRAME conducted a joint research project, sponsored by Defra, on the status of alternatives to animal testing with regard to the European Union REACH (Registration, Evaluation and Authorisation of Chemicals) system for the safety testing and risk assessment of chemicals. The project covered all the main toxicity endpoints associated with REACH. This paper focuses on the use of alternative (non-animal) methods (both in vitro and in silico) for acute systemic toxicity and toxicokinetic testing. The paper reviews in vitro tests based on basal cytotoxicity and target organ toxicity, along with QSAR models and expert systems available for this endpoint. The use of PBPK modelling for the prediction of ADME properties is also discussed. These tests are then incorporated into a decision-tree style, integrated testing strategy, which also includes the use of refined in vivo acute toxicity tests, as a last resort. The implementation of the strategy is intended to minimise the use of animals in the testing of acute systemic toxicity and toxicokinetics, whilst satisfying the scientific and logistical demands of the EU REACH legislation.
Collapse
Affiliation(s)
| | | | - Mark T.D. Cronin
- School of Pharmacy and Chemistry, Liverpool John Moores University, Liverpool, UK
| | - David W. Roberts
- School of Pharmacy and Chemistry, Liverpool John Moores University, Liverpool, UK
| | - John F. Garrod
- Chemicals and Nanotechnologies Division, Defra, London, UK
| |
Collapse
|
3
|
Combes R, Grindon C, Cronin MTD, Roberts DW, Garrod JF. Integrated decision-tree testing strategies for acute systemic toxicity and toxicokinetics with respect to the requirements of the EU REACH legislation. Altern Lab Anim 2008; 36:45-63. [PMID: 18333714 DOI: 10.1177/026119290803600107] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Liverpool John Moores University and FRAME conducted a joint research project, sponsored by Defra, on the status of alternatives to animal testing with regard to the European Union REACH (Registration, Evaluation and Authorisation of Chemicals) system for the safety testing and risk assessment of chemicals. The project covered all the main toxicity endpoints associated with REACH. This paper focuses on the use of alternative (non-animal) methods (both in vitro and in silico) for acute systemic toxicity and toxicokinetic testing. The paper reviews in vitro tests based on basal cytotoxicity and target organ toxicity, along with QSAR models and expert systems available for this endpoint. The use of PBPK modelling for the prediction of ADME properties is also discussed. These tests are then incorporated into a decision-tree style, integrated testing strategy, which also includes the use of refined in vivo acute toxicity tests, as a last resort. The implementation of the strategy is intended to minimise the use of animals in the testing of acute systemic toxicity and toxicokinetics, whilst satisfying the scientific and logistical demands of the EU REACH legislation.
Collapse
|
4
|
Abstract
Analgesics and nonsteroidal anti-inflammatory drugs (NSAIDs) are well recognized as a major class of therapeutic agent that causes renal papillary necrosis (RPN). Over the last decade a broad spectrum of other therapeutic agents and many chemicals have also been reported that have the potential to cause this lesion in animals and man. There is consensus that RPN is the primary lesion that can progress to cortical degeneration; and it is only at this stage that the lesion is easily diagnosed. In the absence of sensitive and selective noninvasive biomarkers of RPN there is still no clear indication of which compound, under what circumstances, has the greatest potential to cause this lesion in man. Attempts to mimic RPN in rodents using analgesics and NSAIDs have not provided robust models of the lesion. Thus, much of the research has concentrated on those compounds that cause an acute or subacute RPN as the basis by which to study the pathogenesis of the lesion. Based on the mechanistic understanding gleaned from these model compounds it has been possible to transpose an understanding of the underlying processes to the analgesics and NSAIDs. The mechanism of RPN is still controversial. There are data that support microvascular changes and local ischemic injury as the underlying cause. Alternatively, several model papillotoxins, some analgesics, and NSAIDs target selectively for the medullary interstitial cells, which is the earliest reported aberration, after which there are a series of degenerative processes affecting other renal cell types. Many papillotoxins have the potential to undergo prostaglandin hydroperoxidase-mediated metabolic activation, specifically in the renal medullary interstitial cells. These reactive intermediates, in the presence of large quantities of polyunsaturated lipid droplets, result in localized and selective injury of the medullary interstitial cells. These highly differentiated cells do not repair, and it is generally accepted that continuing insult to these cells will result in their progressive erosion. The loss of these cells is thought to be central to the degenerative cascade that affects the cortex. There is still a need to understand better the primary mechanism and the secondary consequences of RPN so that the risk of chemical agents in use and novel molecules can be fully assessed.
Collapse
Affiliation(s)
- P H Bach
- BioMedical Research Centre, Division of Biomedical Sciences, Sheffield Hallam University, England, United Kingdom
| | | |
Collapse
|
5
|
Abstract
The mammalian urinary tract includes the kidneys, ureters, urinary bladder, and urethra. The renal parenchyma is composed of the glomeruli and a heterogeneous array of tubule segments that are specialized in both function and structure and are arranged in a specific spatial distribution. The ultrastructure of the glomeruli and renal tubule epithelia have been well characterized and the relationship between the cellular structure and the function of the various components of the kidney have been the subject of intense study by many investigators. The lower urinary tract, the ureters, urinary bladder, and urethra, which are histologically similar throughout, are composed of a mucosal layer lined by transitional epithelium, a tunica muscularis, and a tunica serosa or adventitia. The present manuscript reviews the normal ultrastructural morphology of the kidney and the lower urinary tract. The normal ultrastructure is illustrated using transmission electron microscopy of normal rat kidney and urinary bladder preserved by in vivo perfusion with glutaraldehyde fixative and processed in epoxy resin.
Collapse
Affiliation(s)
- J W Verlander
- Division of Nephrology, Hypertension, and Transplantation, University of Florida College of Medicine, Health Science Center, Gainesville 32610-0224, USA
| |
Collapse
|
6
|
Abstract
The kidney is a frequent target organ for toxic effects of xenobiotics. In recent years, the molecular mechanisms responsible for the selective renal toxicity of many nephrotoxic xenobiotics have been elucidated. Accumulation by renal transport mechanisms, and thus aspects of renal physiology, plays an important role in the renal toxicity of some antibiotics, metals, and agents binding to low molecular weight proteins such as alpha(2u)-globulin. The accumulation by active transport of metabolites formed in other organs is involved in the kidney-specific toxicity of certain polyhaloalkanes, polyhaloalkenes, hydroquinones, and aminophenols. Other xenobiotics are selectively metabolized to reactive electrophiles by enzymes expressed in the kidney. This review summarizes the present knowledge on the mechanistic basis of target organ selectivity of these compounds.
Collapse
Affiliation(s)
- W Dekant
- Institut für Toxikologie, Universität Würzburg, FRG
| | | |
Collapse
|
7
|
Obatomi DK, Plummer DT. Renal damage caused by gentamicin: a study of the effect in vitro using isolated rat proximal tubular fragments. Toxicol Lett 1995; 75:75-83. [PMID: 7863540 DOI: 10.1016/0378-4274(94)03163-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The clinical use of gentamicin (G) is limited because of its nephrotoxic potential. The administration of G (50 mg/kg) to rats in a 10-day daily treatment gave a biphasic pattern of lactate dehydrogenase (LDH) and N-acetyl-beta-D-glucosaminidase (NAG) excretion. Alkaline phosphatase (ALP) was highly elevated during the corresponding second phase while a slight and statistically insignificant increase in glutamate dehydrogenase (GDH) was obtained. The kidneys of such rats were isolated and tubules prepared and incubated for a specific period of time at 37 degrees C in Kreb's Henseleit bicarbonate buffer, pH 7.4. Results indicate a considerable loss of protein (P < 0.01) after the 3rd and 10th days of treatment with G, elevated and significant increase of ALP after the 1st (P < 0.05) and 3rd (P < 0.01) days and significant increase (P < 0.05) of GDH after the 10th day of treatment. The release of GDH, LDH and NAG from tubules of rats after a single dose of G was lower than the control rats while other treatments produced a significant increase in ALP, LDH and NAG over the period of incubation. In vitro incubation of tubules in the presence of several concentrations (5, 50, 500, 5000 micrograms/g of wet cortex) of G indicated a time-dependent leakage of enzyme only at the highest concentration of G. Our results clearly indicate that cellular damage caused by G as evidenced by urinary enzyme excretion and marker enzyme release from isolated tubules occurs at very high concentration in vivo or in vitro and is time-dependent.
Collapse
Affiliation(s)
- D K Obatomi
- Department of Biochemistry, King's College London, UK
| | | |
Collapse
|
8
|
Fleck C, Bräunlich H. Renal handling of drugs and amino acids after impairment of kidney or liver function--influences of maturity and protective treatment. Pharmacol Ther 1995; 67:53-77. [PMID: 7494861 DOI: 10.1016/0163-7258(95)00010-e] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Renal tubular cells are involved both in secretion and in reabsorption processes within the kidney. Normally, most xenobiotics are secreted into the urine at the basolateral membrane of the tubular cell, whereas amino acids are reabsorbed quantitatively at the luminal side. Under different pathological or experimental circumstances, these transport steps may be changed, e.g., they may be reduced by renal impairment (reduction of kidney mass, renal ischemia, administration of nephrotoxins) or they may be enhanced after stimulation of transport carriers. Furthermore, a distinct interrelationship exists between excretory functions of the kidney and the liver. That means liver injury can influence renal transport systems also (hepato-renal syndrome). In this review, the following aspects were included: based upon general information concerning different transport pathways for xenobiotics and amino acids within kidney cells and upon a brief characterization of methods for testing impairment of kidney function, the maturation of renal transport and its stimulation are described. Similarities and differences between the postnatal development of kidney function and the increase of renal transport capacity after suitable stimulatory treatment by, for example, various hormones or xenobiotics are reviewed. Especially, renal transport in acute renal failure is described for individuals of different ages. Depending upon the maturity of kidney function, age differences in susceptibility to kidney injury occur: if energy-requiring processes are involved in the transport of the respective substance, then adults, in general, are more susceptible to renal failure than young individuals, because in immature organisms, anaerobic energy production predominates within the kidney. On the other hand, adult animals can better compensate for the loss of renal tissue (partial nephrectomy). With respect to stimulation of renal transport capacity after repeated pretreatment with suitable substances, age differences also exist: most stimulatory schedules are more effective in young, developing individuals than in mature animals. Therefore, the consequences of the stimulation of renal transport can be different in animals of different ages and are discussed in detail. Furthermore, the extent of stimulation is different for the transporters located at the basolateral and at the luminal membranes: obviously the tubular secretion at the contraluminal membrane can be stimulated more effectively than reabsorption processes at the luminal side.
Collapse
Affiliation(s)
- C Fleck
- Institute of Pharmacology and Toxicology, Freidrich Schiller University of Jena, Germany
| | | |
Collapse
|
9
|
Bach PH. Nephrotoxicity: a better mechanistic understandings using histochemistry and cytochemistry. PROGRESS IN HISTOCHEMISTRY AND CYTOCHEMISTRY 1991; 23:178-86. [PMID: 1947139 DOI: 10.1016/s0079-6336(11)80183-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- P H Bach
- Nephrotoxicity Research Group, School of Science, Polytechnic of East London, UK
| |
Collapse
|
10
|
Hirata M, Tanaka A, Hisanaga A, Ishinishi N. Effects of glutathione depletion on the acute nephrotoxic potential of arsenite and on arsenic metabolism in hamsters. Toxicol Appl Pharmacol 1990; 106:469-81. [PMID: 2260095 DOI: 10.1016/0041-008x(90)90342-r] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Our previous study showed that pretreatment with buthionine sulfoximine (BSO), which inhibits glutathione synthesis, results in acute renal failure with oliguria in hamsters ingesting sodium arsenite (5 mg As/kg). For a deeper understanding of the relationship between arsenic metabolism and the subsequent development of nephrotoxicity, we studied excretion, tissue retention, biotransformation, pharmacokinetics, and histopathological events in the kidneys of hamsters both with and without BSO pretreatment. The total amount of arsenic excreted in the urine and feces within 72 hr of arsenite administration was more than fivefold lower in BSO-pretreated animals than in the controls without pretreatment (9.2 versus 53.4% of the arsenic dose). The persistence of high amounts of total arsenic was apparent in the blood, liver, and kidneys of BSO-pretreated hamsters, even though the content of inorganic arsenic steadily decreased with time. The disappearance of inorganic arsenic from the blood showed a biphasic elimination pattern characterized first by a rapid component with a half-life of 4.5 hr and second by a slower component with a half-life of 58.0 hr in the BSO-pretreated hamsters, while these half-lives were 0.6 and 11.0 hr, respectively, in the controls. BSO pretreatment not only impaired the excretion of inorganic arsenic, but also impaired its methylation. Combined BSO/arsenite treatment resulted in renal tubular necrosis which was prominent at 1 hr after arsenite administration. By 1 hr, the renal content of inorganic arsenic in the BSO-pretreated animals was 1.7 times higher than that in the controls. This study demonstrates that glutathione depletion elicits the nephrotoxic manifestations of arsenic poisoning.
Collapse
Affiliation(s)
- M Hirata
- Department of Hygiene, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | | | | | | |
Collapse
|